Skip to main content

Nonequilibrium Molecular Dynamics and Multiscale Modeling of Heat Conduction in Solids

  • Chapter
  • First Online:
Trends in Computational Nanomechanics

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 9))

Abstract

Modeling methodologies for conducting concurrent multiscale simulations in solids at finite temperature are reviewed. The application of such models to the simulation of inhomogeneous thermal problems is of particular interest. Firstly, the basic methods for temperature control of molecular dynamics (MD) simulations are presented. The derivation of fundamental thermophysical properties from the quantum model of phonons is then outlined, and the relevance of classical MD simulation to heat transport phenomena discussed. Progress in fully atomistic modeling of heat transport is reviewed in relation to nonequilibrium molecular dynamics (NEMD) simulation. Different approaches to isothermal finite temperature multiscale modeling are presented. Equations of motion for coarse-grained dynamics are derived and subject to comment. The further requirements of conservation of thermal energy and the approaches to the transport of heat in non-isothermal multiscale simulations are discussed. Recent progress in this relatively new area of modeling is reported and areas for further work identified

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, New York.

    Google Scholar 

  2. Schelling PK, Phillpot SR, Keblinski P (2002) Comparison of atomic-level simulation methods for computing thermal conductivity. Phys Rev B 65:144306.

    Article  CAS  Google Scholar 

  3. Holian BL, Ravelo R (1995) Fracture simulations using large-scale molecular-dynamics. Phys Rev B 51:11275.

    Article  CAS  Google Scholar 

  4. Abraham FF, Broughton JQ, Bernstein N, Kaxiras E (1998) Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture. Europhys Lett 44:783.

    Article  CAS  Google Scholar 

  5. Lee Y, Park JY, Kim SY, Jun S, Im S (2005) Atomistic simulation of incipient plasticity under Al(111) nanoindetation. Mech Mat 37:1035.

    Article  Google Scholar 

  6. Ju Y, Sinnott SB (2004) Constant temperature MD simulations of energetic particle-solid collisions: comparison of temperature control methods. J Comp Phys 200:251.

    Article  CAS  Google Scholar 

  7. Huang PH, Lai HY (2008) Nucleation and propagation of dislocations during nanopore lattice mending by laser annealing: modified continuum-atomistic modelling. Phys Rev B 77:125408.

    Article  CAS  Google Scholar 

  8. Curtin WA, Miller RE (2003) Atomistic/continuum coupling in computational materials science. Model Simul Mater Sci Eng 11:R33.

    Article  CAS  Google Scholar 

  9. Tadmor EB, Ortiz M, Phillips R (1996) Quasicontinuum analysis of defects in solids. Philos Mag A 73:1529.

    Article  Google Scholar 

  10. Rudd RE, Broughton JQ (2000) Concurrent coupling of length scales in solid state systems. Phys Stat Sol B 217:5893.

    Article  Google Scholar 

  11. Knap J, Ortiz M (2003) Effect of indenter-radius size on Au(001) nanoindentation. Phys Rev Lett 90:226102.

    Article  CAS  Google Scholar 

  12. Rudd RE, Broughton JQ (2005) CG MD – nonlinear finite elements and finite temperature. Phys Rev B 72:144104.

    Article  CAS  Google Scholar 

  13. Binder K, Horbach J, Kob W, Paul W, Varnik F (2004) MD simulation. J Phys Condens Matter 16:S429.

    Article  CAS  Google Scholar 

  14. Liu WK, Karpov EG, Zhang S, Park HS (2004) An introduction to computational nanomechanics and materials. Comput Methods Appl Mech Eng 193:1529.

    Article  Google Scholar 

  15. Yip S (2005) Handbook in materials modelling. Springer, Dordrecht .

    Google Scholar 

  16. Verlet L (1967) Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules.. Phys Rev 159:98.

    Article  CAS  Google Scholar 

  17. Janezic D, Orel B (1993) Implicit Runge-Kutta method for MD integration. J Chem Info Comp Sci 33:252.

    CAS  Google Scholar 

  18. Heino P (2005) Thermal conductivity and temperature in solid argon by nonequilibrium MD simulations. Phys Rev B 71:144302.

    Article  CAS  Google Scholar 

  19. Baranyai A (2000) Temperature of nonequilibrium steady-state systems. Phys Rev E 62:5989.

    Article  CAS  Google Scholar 

  20. Braga C, Travis KP (2005) A configurational temperature Nosé-Hoover thermostat. J Chem Phys 123:134101.

    Article  CAS  Google Scholar 

  21. Andersen HC (1980) MD simulations at constant pressure and/or temperature. J Chem Phys 72:2384.

    Article  CAS  Google Scholar 

  22. Huang ZX, Tang ZA (2006) Evaluation of momentum conservation influence in non-equilibrium MD methods to compute thermal conductivity. Physica B 373:291.

    Article  CAS  Google Scholar 

  23. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101.

    Article  CAS  Google Scholar 

  24. Hoover WG, Ladd AJC, Moran B (1982) High-strain-rate plastic flow via non-equilibrium MD. Phys Rev Lett 48:1818.

    Article  CAS  Google Scholar 

  25. Evans DJ (1983) Computer “experiment” for nonlinear thermodynamics of Couette flow. J Chem Phys 78:3297.

    Article  CAS  Google Scholar 

  26. Nosé S (1984) A MD method for simulations in the canonical ensemble. Mol Phys 53:255.

    Article  Google Scholar 

  27. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695.

    Article  Google Scholar 

  28. Holian BL, Voter AF, Ravelo R (1995) Thermostatted MD: how to avoid the Toda demon hidden in Nosé-Hoover dynamics. Phys Rev E 52:2338.

    Article  Google Scholar 

  29. Tuckerman ME, Berne BJ, Martyna GJ (1992). Reversible multiple time scale molecular dynamics. J Chem Phys 97(3):1990–2001.

    Google Scholar 

  30. Adelman SA, Doll JD (1976) Generalized Langevin equation approach for atom/solid-surface scattering: general formulation for classical scattering off harmonic solids. J Chem Phys 64:2375.

    Article  CAS  Google Scholar 

  31. Berendsen HJC (1984) MD with coupling to an external bath. J Chem Phys 81:3684.

    Article  CAS  Google Scholar 

  32. Leimkuhler BJ, Sweet CR (2005) A Hamiltonian formulation for recursive multiple thermostats in a common timescale. SIAM J Appl Dyn Syst 4:178.

    Article  Google Scholar 

  33. Travis KP, Braga C (2008) Configurational temperature control for atomic and molecular systems. J Chem Phys 128:014111.

    Article  CAS  Google Scholar 

  34. Leimkuhler B, Noorizadeh E, Theil F. (2009) A gentle stochastic thermostat for MD. Journal of Statistical Physics. 135:261.

    Google Scholar 

  35. Li X, Weinan W (2007) Variational boundary conditions for MD simulations of crystalline solids at finite temperature: treatment of the thermal bath. Phys Rev B 76:104107.

    Article  CAS  Google Scholar 

  36. Leimkuhler B, Legoll F, Noorizadeh E (2008) A temperature control technique for nonequilibrium molecular simulation. J Chem Phys 128:074105.

    Article  CAS  Google Scholar 

  37. Lepri S, Livi R, Politi A (2003) Thermal conduction in classical low-dimensional lattices. Phys Rep 377:1.

    Article  CAS  Google Scholar 

  38. Heino P (2007) Thermal conduction simulations in the nanoscale. J Comput Theor Nanosci 4:896.

    CAS  Google Scholar 

  39. Murthy JY, Narumanchi SVJ, Pascual-Gutierrez JA, Wang T, Ni C, Mathur SR (2005) Review of multiscale simulation in submicron heat transfer. Int J Multiscale Comput Eng 3:5.

    Article  Google Scholar 

  40. Kittel C (2005) Introduction to solid state physics. John Wiley and Sons, Inc, New York, 8th edition.

    Google Scholar 

  41. Griffiths, DJ (2005) Introduction to quantum mechanics. Pearson Education Inc., Upper Saddle River, NJ, 2nd ed.

    Google Scholar 

  42. Jolley K, Gill SPA (2009) Modelling transient heat conduction in solids at multiple length and time scales: a coupled non-equilibrium MD/continuum approach. J Comp Phys 228:7412.

    Google Scholar 

  43. Sinha S, Goodson KE (2005) Review: multiscale thermal modelling in nanoelectronics. Int J Multiscale Comput Eng 3:107.

    Article  Google Scholar 

  44. Wang JS, Wang J, Lü JT (2008) Quantum thermal transport in nanostructures. Eur Phys J B 62:381.

    Google Scholar 

  45. Wang J (2007) Quantum thermal transport from classical MD. Phys Rev Lett 99:160601.

    Article  CAS  Google Scholar 

  46. Sinha S, Goodson KE (2006) Thermal conduction in sub-100 nm transistors. Microelectron J 37:1148.

    Article  Google Scholar 

  47. Schall JD, Padgett CW, Brenner DW (2005) Ad hoc continuum-atomistic thermostat for modelling heat flow in MD simulation. Mol Simulat 31:283.

    Article  CAS  Google Scholar 

  48. Chantrenne P, Raynaud M, Baillis D, Barrat JL (2003) Study of phonon heat transfer in metallic solids from MD simulations. Microscale Thermophys Eng 7:117.

    Article  CAS  Google Scholar 

  49. Yuan SP, Jiang PX (2006) Thermal conductivity of small nickel particles. Int J Thermophys 27:581.

    Article  CAS  Google Scholar 

  50. Webb III EB, Zimmerman JA, Seel SC (2008) Reconsideration of continuum thermomechanical quantities in atomic scale simulations. Math Mech Solids 13:221.

    Article  Google Scholar 

  51. Desgranges C, Delhommelle J (2008) Molecular simulation of transport in nanopores: application of the transient-time correlation function formalism. Phys Rev E 77:027701.

    Article  CAS  Google Scholar 

  52. Jund P, Jullien R (1999) MD calculation of the thermal conductivity of vitreous silica. Phys Rev B 59:13707.

    Article  CAS  Google Scholar 

  53. Stevens RJ, Zhigilei LV, Norris PM (2007) Effects of temperature and disorder on thermal boundary conductance at solid-solid interfaces: nonequilibrium MD simulations. Int J Heat Mass Transfer 50:3977.

    Article  Google Scholar 

  54. Park HS, Karpov E, Liu WK (2004) A temperature equation for coupled atomsitic/continuum simulations. Comput Methods Appl Mech Eng 193:1713.

    Article  Google Scholar 

  55. Prasher R, Tong T, Majumdar A (2007) Diffraction-limited phonon thermal conductance of nanoconstrictions. Appl Phys Lett 91:143119.

    Article  CAS  Google Scholar 

  56. Bhowmick S, Shenoy VB (2006) Effect of strain on the thermal conductivity of solids. J Chem Phys 125:164513.

    Article  CAS  Google Scholar 

  57. Terao T, Müller-Plathe F (2005) A nonequilibrium MD method for thermal conductivities based on thermal noise. J Chem Phys 112:081103.

    Article  CAS  Google Scholar 

  58. Daly BC, Maris HJ, Imamura K, Tamura S (2002) MD calculation of the thermal conductivity of superlattices. Phys Rev B 66:024301.

    Article  CAS  Google Scholar 

  59. Hulse RJ, Rowley RL, Wilding WV (2005) Transient nonequilibrium molecular dynamic simulation of thermal conductivity: 1. Simple fluids. Int J Thermophys 26:1.

    Article  CAS  Google Scholar 

  60. Chen G, Borca-Tasciuc D, Yang RG (2004) Nanoscale heat transfer. Encyclopedia of nanoscience and nanotechnology. American Scientific publishers, Valencia, CA.

    Google Scholar 

  61. Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, Merlin R, Phillpot SR (2003) Nanoscale thermal transport. J Appl Phys 93:793.

    Article  CAS  Google Scholar 

  62. Srinivasan S, Miller RS (2007) On parallel nonequilibrium MD simulations of heat conduction in heterogeneous materials with three-body potentials: Si/Ge superlattice. Numer Heat Transfer B 52:297.

    Article  CAS  Google Scholar 

  63. Yang YW, Liu XJ, Yang JP (2008) Nonequilibrium MD simulation for size effects on thermal conductivity of Si nanostructures. Mol Simulat 34:51.

    Article  CAS  Google Scholar 

  64. Tang Q (2004) A MD simulation: the effect of finite size on the thermal conductivity in a single crystal silicon. Mol Phys 102:1959.

    Article  CAS  Google Scholar 

  65. Lee JH, Grossman JC, Reed J, Galli G (2007) Lattice thermal conductivity of nanoporous Si: MD study. Appl Phys Lett 91:223110.

    Article  CAS  Google Scholar 

  66. Heino P (2007) Dispersion and thermal resitivity in silicon nanofilms by MD. Eur Phys J B 60:171.

    Article  CAS  Google Scholar 

  67. Ponomareva I, Srivastava D, Menon M (2007) Thermal conductivity in thin silicon nanowires: phonon confinement effect. Nano Lett 7:1155.

    Article  CAS  Google Scholar 

  68. Balandin A, Wang KL (1998) Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys Rev B 58:1544.

    Article  CAS  Google Scholar 

  69. Segal D, Nitzan A (2003) Thermal conductance through molecular wires. J Chem Phys 119:136840.

    Article  CAS  Google Scholar 

  70. Zhong H, Lukes JR (2006) Interfacial thermal resistance between carbon nanotubes: MD simulations and analytical thermal modelling. Phys Rev B 74:125403.

    Article  CAS  Google Scholar 

  71. Gu Y, Chen Y (2007) Thermal conductivities of single-walled carbon nanotubes calculated from the complete phonon dispersion relations. Phys Rev B 76:134110.

    Article  CAS  Google Scholar 

  72. Che J, Çağin T, Goddard III WA (2000) Thermal conductivity of carbon nanotubes. Nanotechnology 11:65.

    Article  CAS  Google Scholar 

  73. Cao BY, Hou QW (2008) Thermal conductivity of carbon nanotubes embedded in solids. Chin Phys Lett 25:1392.

    Article  CAS  Google Scholar 

  74. Bi K, Chen Y, Yang J, Wang Y, Chen M (2006) MD simulation of thermal conductivity of single-walled carbon nanotubes. Phys Lett A 350:150.

    Article  CAS  Google Scholar 

  75. Pan RQ, Xu ZJ, Zhu ZY (2007) Length dependence of thermal conductivity of single-walled carbon nanotubes. Chin Phys Lett 24:1321.

    Article  CAS  Google Scholar 

  76. Zhang W, Zhu Z, Wang F, Wang T, Sun L, Wang Z (2004) Chirality dependence of the thermal conductivity of carbon nanotubes. Nanotechnology 15:936.

    Article  CAS  Google Scholar 

  77. Tang Q, Yao Y (2006) The Kapitza resistance across grain boundary by MD simulation. Nanoscale Microscale Thermophys Eng 10:387.

    Article  CAS  Google Scholar 

  78. Watanabe T, Ni B, Phillpot SR, Schelling PK, Keblinski P (2007) Thermal conductance across grain boundaries in diamond from MD simulation. J Appl Phys 102:063503.

    Article  CAS  Google Scholar 

  79. Alvarez-Quintana J, Alvarez X, Rodriguez-Viejo J, Jou D, Lacharmoise PD, Bernardi A, Goñi AR, Alonso MI (2008) Cross-plane thermal conductivity reduction of vertically uncorrelated Ge/Si quantum dot superlattices. Appl Phys Lett 93:013112.

    Article  CAS  Google Scholar 

  80. Mingo N, Yang L, Li D, Majumdar A (2003) Predicting the thermal conductivity of Si and Ge nanowires. Nano Lett 3:1713.

    Article  CAS  Google Scholar 

  81. Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A (2003) Thermal conductivity of individual silicon nanowires. Appl Phys Lett 83:2934.

    Article  CAS  Google Scholar 

  82. Hone J (2004) Carbon nanotubes: thermal properties. Dekker encyclopaedia of nanoscience and nanotechnology 603. Marcel Dekker Inc, New York.

    Google Scholar 

  83. Chantrenne P, Barrat JL (2004) Analytical model for the thermal conductivity of nanostructures. Superlattice Microstruct 35:173.

    Article  CAS  Google Scholar 

  84. Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80:2767.

    Article  CAS  Google Scholar 

  85. Lukes JR, Zhong H (2007) Thermal conductivity of individual single-walled carbon nanotubes. J Heat Transfer 129:705.

    Article  CAS  Google Scholar 

  86. Keblinski P, Schelling PK (2005) Comment on “Thermal contraction of carbon fullerenes and nanotubes”. Phys Rev Lett 94:209702.

    Article  CAS  Google Scholar 

  87. Kwon YK, Berber S, Tomanek D (2097) Reply to comment on “Thermal contraction of carbon fullerenes and nanotubes”. Phys Rev Lett 94:02.

    Google Scholar 

  88. Xiao SP, Belytschko T (2004) A bridging domain method for coupling continua with MD. Comput Methods Appl Mech Eng 193:1645.

    Article  Google Scholar 

  89. Liu J, Chen S, Nie X, Robbins MO (2007) A continuum-atomistic simulation of heat transfer in micro- and nano- flows. J Comp Phys 227:279.

    Article  Google Scholar 

  90. Flekkøy EG, Delgado-Buscalioni R, Coveney PV (2005) Flux boundary conditions in particle simulations. Phys Rev E 72:026703.

    Article  CAS  Google Scholar 

  91. Werder T, Walther JH, Koumoutsakos P (2005) Hybrid atomistic-continuum method for the simulation of dense fluid flows. J Comp Phys 205:373.

    Article  CAS  Google Scholar 

  92. Lu G, Tadmor EB, Kaxiras E (2006) From electrons to finite elements: a concurrent multiscale approach for metals. Phys Rev B 73:024108.

    Article  CAS  Google Scholar 

  93. LeSar R, Najafabadi R, Srolovitz DJ (1989) Finite-temperature defect properties from free-energy minimization. Phys Rev Lett 63:624.

    Article  CAS  Google Scholar 

  94. Wu ZB, Diestler DJ, Feng R, Zeng XC (2003) Coarse-graining description of solid systems at nonzero temperature. J Chem Phys 119:8013.

    Article  CAS  Google Scholar 

  95. Gill SPA, Jia Z, Leimkuhler B, Cocks ACF (2006) Rapid thermal equilibration in CG MD. Phys Rev B 73:184304.

    Article  CAS  Google Scholar 

  96. Dupuy LM, Tadmor EB, Miller RE, Phillips R (2005) Finite-temperature quasicontinuum: MD without all the atoms. Phys Rev Lett 95:060202.

    Article  CAS  Google Scholar 

  97. Curtarolo C, Ceder G (2002) Dynamics of an inhomogeneously CG multiscale system. Phys Rev Lett 88:255504.

    Article  CAS  Google Scholar 

  98. Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3:300.

    Article  CAS  Google Scholar 

  99. Cai W, de Koning M, Bulatov VV, Yip S (2000) Minimizing boundary reflections in coupled-domain simulations. Phys Rev Lett 85:3213.

    Article  CAS  Google Scholar 

  100. Liu WK, Park HS, Qian D, Karpov EG, Kadowaki H, Wagner GJ (2006) Bridging scale methods for nanomechanics and materials. Comput Methods Appl Mech Eng 195:1407.

    Article  Google Scholar 

  101. Park HS, Liu WK (2004) An introduction and tutorial on multiple-scale analysis in solids. Comput Methods Appl Mech Eng 193:1733.

    Article  Google Scholar 

  102. Weinan E, Huang Z (2002) A dynamic atomistic-continuum method for the simulation of crystalline materials. J Comp Phys 182:234.

    Article  CAS  Google Scholar 

  103. Karpov E, Park HS, Liu WK (2007) A phonon heat bath approach for the atomistic and multiscale simulation of solids. Int J Numer Meth Eng 20:351.

    Article  Google Scholar 

  104. Qu S, Shastry V, Curtin WA, Miller RE (2005) A finite temperature dynamic coupled atomisitic/discrete dislocation method. Model Sim Mater Sci Eng 13:1101.

    Article  CAS  Google Scholar 

  105. Shilkrot LE, Miller RE, Curtin WA (2004) Multiscale plasticity modelling: coupled atomistic and discrete dislocation mechanics. J Mech Phys Solids 52:755.

    Article  Google Scholar 

  106. Tang S (2008) A finite difference approach with velocity interfacial conditions for multiscale computations of crystalline solids. J Comp Phys 227:4038.

    Article  Google Scholar 

  107. Li S, Liu X, Agrawal A, To AC (2006) Perfectly matched multiscale simulations for discrete lattice systems: extension to multiple dimensions. Phys Rev B 74:045418.

    Article  CAS  Google Scholar 

  108. Liu X, Li S (2007) Nonequilibrium multiscale computational model. J Chem Phs 126:124105.

    Article  CAS  Google Scholar 

  109. Namilae S, Nicholson DM, Nukala PKVV, Gao CY Ostesky YN, Keffer DJ (2007) Absorbing boundary conditions for MD and multiscale simulation. Phys Rev B 76:144111.

    Article  CAS  Google Scholar 

  110. Weinan E, Enquist B, Li X, Ren W, Vanden-Eijnden E (2007) Heterogeneous multiscale methods: a review. Commun Comput Phys 2:367.

    Google Scholar 

  111. Li X, Weinan, W (2005) Multiscale modelling of the dynamics of solids at finite temperature. J Mech Phys Solids 53:1650.

    Article  Google Scholar 

  112. Fish J, Chen W, Li R (2007) Generalized mathematical homogenization of atomistic media at finite temperatures in three dimensions. Comput Methods Appl Mech Eng 196:908.

    Article  Google Scholar 

  113. Schäfer C, Urbassek HM, Zhigilei LV (2002) Metal ablation by picosecond laser pulses: a hybrid simulation. Phys Rev B 66:115404.

    Article  CAS  Google Scholar 

  114. Padgett CW, Brenner DW (2005) A continuum-atomistic method for incorporating Joule heating into classical MD simulations. Mol Simulat 31:749.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful for the award of a Royal Academy of Engineering-Leverhulme Trust Senior Research Fellowship 2007–2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon P.A. Gill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gill, S.P. (2010). Nonequilibrium Molecular Dynamics and Multiscale Modeling of Heat Conduction in Solids. In: Dumitrica, T. (eds) Trends in Computational Nanomechanics. Challenges and Advances in Computational Chemistry and Physics, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9785-0_4

Download citation

Publish with us

Policies and ethics