Skip to main content

Electrical Conduction in Carbon Nanotubes under Mechanical Deformations

  • Chapter
  • First Online:
Trends in Computational Nanomechanics

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 9))

  • 1288 Accesses

Abstract

The enormous potential of carbon nanotubes (CNTs) as primary components in electronic devices and NEMS necessitates the understanding and predicting of the effects of mechanical deformation on electron transport in CNTs. In principle, detailed atomic/electronic calculations can provide both the deformed configuration and the resulting electrical transport behavior of the CNT. However, the computational expense of these simulations limits the size of the CNTs that can be studied with this technique and a direct analysis of CNTs of the dimension used in nano-electronic devices, particularly multi-wall CNTs (MWNTs), seems prohibitive at the present. Here a computationally effective mixed finite element/tight-binding (to be referred to as FE-TB) approach able to simulate the electromechanical behavior of CNTs devices is presented. The FE-based structural procedure computes the mechanical deformation of the CNTs and provides a tight-binding (TB) code with the atomic coordinates in the deformed configuration. The TB code is carefully designed to realize orders-of-magnitude reduction in computational time in calculating deformation-induced changes in electrical transport properties of the nanotubes. The FE-TB computational approach is validated in a simulation of laboratory experiments on a multiwall CNT and then used to demonstrate the role of the multiwall structure in providing robustness to conductivity in the event of imposed mechanical deformations

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poncharal P, Wang ZL, Ugarte D, de Heer WA (1999) Science 283: 1513–1516

    Google Scholar 

  2. Wang ZL, Poncharal P, de Heer WA (2000) J. Phys. Chem. Solids 61: 1025–1030

    Google Scholar 

  3. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Science 287: 637–640

    Google Scholar 

  4. Wong EW, Sheehan PE, Lieber CM (1997) Science 277: 1971–1973

    Google Scholar 

  5. Qi HJ, Teo KBK, Lau K, Boyce MC, Milne WI, Robertson J, Gleason KK (2003) J. Mech. Phys. Solids 51: 2213–2237

    Google Scholar 

  6. Robertson DH, Brenner DW, Mintmire JW (1992) Phys. Rev. B 45: 12592–12595

    Google Scholar 

  7. Zhou X, Zhou JJ, Ou-Yang ZC (2000) Phys. Rev. B 62: 13692–13696

    Google Scholar 

  8. Sanchez-Portal D, Artacho E, Soler J, Rubio A, Ordejon P (1999) Phys. Rev. B 59: 12678–12688

    Google Scholar 

  9. Yakobson B, Brabec C, Bernholc J (1996) Phys. Rev. Lett. 76: 2511–2514

    Google Scholar 

  10. Tu Z, Ou-Yang Z (2002) Phys. Rev. B 65: 233407

    Google Scholar 

  11. Kundin KN, Scuseria GE, Yakobson BI (2001) Phys. Rev. B 64: 235406

    Google Scholar 

  12. Kelly B (1981) Physics of Graphite. Applied Science Publishers, London

    Google Scholar 

  13. Pantano A, Boyce MC, Parks DM (2004) J. Mech. Phys. Solids 52: 789–821

    Google Scholar 

  14. Pantano A, Parks DM, Boyce MC (2003) Phys. Rev. Lett. 91: 145504

    Google Scholar 

  15. Pantano A, Boyce MC, Parks DM (2004) J. Eng. Mater. Technol. 126: 279–284

    Google Scholar 

  16. Bower C, Rosen R, Jin L, Han J, Zhou O (1999) Appl. Phys. Lett. 74: 3317–3319

    Google Scholar 

  17. Lourie O, Cox DM, Wagner HD (1998) Phys. Rev. Lett. 81: 1638–1641

    Google Scholar 

  18. Cumings J, Zettl A (2000) Science 289: 602–604

    Google Scholar 

  19. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical Properties of Carbon Nanotubes. Imperial College Press, London; Dresselhaus MS, Dresselhaus G, Avouris P (2001) Carbon Nanotubes. Springer, Heidelberg

    Book  Google Scholar 

  20. Bernholc J, Brenner D, Buongiorno Nardelli M, Meunier V, Roland C (2002) Annu. Rev. Mater. Res. 32: 347

    Google Scholar 

  21. Kong J, Yenilmez E, Tombler TW, Kim W, Dai H, Laughlin RB, Liu L, Jayanthi CS, Wu SY (2001) Phys. Rev. Lett. 87: 106801

    Google Scholar 

  22. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Science 287: 637

    Google Scholar 

  23. Tekleab D, Carroll DL, Samsonidze GG, Yakobson BI (2001) Phys. Rev. B 64: 035419

    Google Scholar 

  24. Frank S, Poncharal P, Wang ZL, de Heer WA (1998) Science 280: 1744

    Google Scholar 

  25. Gupta R, Smallcup RE, in het Panhuis M (2005) Nanotechnology 16: 1707

    Google Scholar 

  26. Schönenberger C, Bachtold A, Strunk C, Salvetat JP, Forró L (1999) Appl. Phys. A 69: 283

    Google Scholar 

  27. Batchtold A, Strunk C, Salvetat JP, Bonard JM, Salvetat JP, Nussbaumer T, Schönenberger C (1999) Nature 397: 673

    Google Scholar 

  28. Bourlon B, Miko C, Forro’ L, Glattli DC, Bachtold A (2004) Phys. Rev. Lett. 93: 176806

    Google Scholar 

  29. Roche S, Triozon F, Rubio A, Mayou D (2001) Phys. Lett. A 285: 94

    Google Scholar 

  30. Collins PG, Avouris Ph (2002) Appl. Phys. A 74: 329–332

    Google Scholar 

  31. Paulson S, Falvo MR, Snider N, Helser A, Hudson T, Seeger A, Taylor RM, Superfine R, Washburna S (1999) Appl. Phys. Lett. 75: 2936

    Google Scholar 

  32. Minot ED, Yaish Y, Sazonova V, Park J, Brink M, McEuen PL (2003) Phys. Rev. Lett. 90: 156401

    Google Scholar 

  33. Liu B, Jiang H, Johnson HT, Huang Y (2004) J. Mech. Phys. Solids 52: 1

    Google Scholar 

  34. Maiti A, Svizhenko A, Anantram MP (2002) Phys. Rev. Lett. 88: 126805

    Google Scholar 

  35. Lu J, Wu J, Duan W, Liu F, Zhu B, Gu B (2003) Phys. Rev. Lett. 90: 156601

    Google Scholar 

  36. Farajian AA, Yakobson BI, Mizuseki H, Kawazoe Y (2003) Phys. Rev. B 67: 205423

    Google Scholar 

  37. Rochefort A, Avouris P, Lesage F, Salahub DR (1999) Phys. Rev. B 60: 13824

    Google Scholar 

  38. Yang L and Han J (2000) Phys. Rev. Lett. 85: 154

    Google Scholar 

  39. Tunney MA, Cooper NR (2006) Phys. Rev. B 74: 075406

    Google Scholar 

  40. Sanvito S, Kwon Y, Tománek D, Lambert CJ (2000) Phys. Rev. Lett. 84: 1974

    Google Scholar 

  41. Delaney P, Di Ventra M, Pantelides ST (1999) Appl. Phys. Lett. 75: 3787

    Google Scholar 

  42. Kwon Y, Tománek D (1998) Phys. Rev. B 58: R16001

    Google Scholar 

  43. Choi HJ, Ihm J, Yoon Y, Louie SG (1999) Phys. Rev. B 58: R14009

    Google Scholar 

  44. Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297: 787

    Google Scholar 

  45. Bernholc J, Brabec C, Nardelli M, Maiti A, Roland C, Yakobson B (1998) Appl. Phys. A Mater. Sci. Process. 67: 39–46

    Google Scholar 

  46. Belytschko T, Xiao S, Schatz G, Ruoff R (2002) Phys. Rev. B 65: 235430

    Google Scholar 

  47. Yakobson B, Avouris P (2001) Springer, Heidelberg, pp. 287, M.S. Dresselhaus et al., eds.

    Google Scholar 

  48. Girifalco LA, Hodak M, Lee RS (2000) Phys. Rev. B 62: 13104–13110

    Google Scholar 

  49. Girifalco LA, Lad RA (1956) J. Chem. Phys. 25: 693–697

    Google Scholar 

  50. Zhao YX, Spain IL (1989) Phys. Rev. B 40: 993–997

    Google Scholar 

  51. Ruoff RS, Ruoff AL (1991) Appl. Phys. Lett. 59: 1553–1555

    Google Scholar 

  52. Qian D, Liu WK, Ruoff RS (2001) J. Phys. Chem. B 105: 10753–10758

    Google Scholar 

  53. Hanfland M, Beister H, Syassen K (1989) Phys. Rev. B 39: 12598–12603

    Google Scholar 

  54. Boettger J (1997) Phys. Rev. B 55: 11202–11211

    Google Scholar 

  55. Ru CQ (2000) J. Appl. Phys. 87: 7227–7231

    Google Scholar 

  56. Xu CH, Wang CT, Chan CT, Ho KM (1992) J Phys Condens Matter 4: 6047

    Google Scholar 

  57. Charlier J-C, Lambin Ph, Ebbesen TW (1997) Phys. Rev. B 54: R8377

    Google Scholar 

  58. Porezag D, Frauenheim Th, Kohler Th, Seifert G, Kaschner R (1995) Phys. Rev. B 51: 12947

    Google Scholar 

  59. Meunier V, Buongiorno Nardelli M, Roland C, Bernholc J (2001) Phys. Rev. B 64: 195419

    Google Scholar 

  60. Hertel T, Walkup R, Avouris P (1998) Physical Review B 58: 13870–13873

    Google Scholar 

  61. Timoshenko S (1936) Theory of Elastic Stability. McGraw–Hill, New York

    Google Scholar 

  62. Falvo M, Clary G, Taylor R, Chi V, Brooks F, Washburn S, Superfine R (1997) Nature 389: 582–584

    Google Scholar 

  63. Maiti A (2000) Chemical Phys. Lett. 331: 21–25

    Google Scholar 

  64. Ebbesen TW, Takada T (1995) Carbon 33: 973–978

    Google Scholar 

  65. Kuzumaki T, Mitsuda Y (2004) Appl. Phys. Lett. 85: 1250–1252

    Google Scholar 

  66. Charlier JC, Blase X, Roche S (2007) Rev Mod Phys 79: 677

    Google Scholar 

  67. Yao Z, Kane CL, Dekker C (2000) Phys. Rev. Lett. 84: 2941

    Google Scholar 

  68. Collins PG, Arnold M, Hersam M, Martel R, Avouris P (2001) Phys. Rev. Lett. 86: 3128

    Google Scholar 

  69. Collins PG, Arnold M, Avouris P (2001) Science 292: 706

    Google Scholar 

  70. Yao Z, Postma H, Balents L, Dekker C (1999) Nature 402: 273

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pantano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pantano, A. (2010). Electrical Conduction in Carbon Nanotubes under Mechanical Deformations. In: Dumitrica, T. (eds) Trends in Computational Nanomechanics. Challenges and Advances in Computational Chemistry and Physics, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9785-0_13

Download citation

Publish with us

Policies and ethics