Stick-Spiral Model for Studying Mechanical Properties of Carbon Nanotubes

Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 9)

Abstract:

Quantum/molecular mechanics and continuum mechanics have been highly developed to describe material properties at small and large length scales. As we enter the era of nanotechnology, it has become increasingly important to model phenomena at mesoscopic length scales. Two alternative approaches, namely the “bottom up” approach based on quantum/molecular mechanics and the “top down” approach based on continuum mechanics, are frequently used to model mechanical properties of nano-structured materials. However, the connection between these two approaches is not well established. Much effort has been made to develop theories and approaches to span multiple length scales or to bridge gap between the two approaches. Based on a molecular mechanics concept, a stick-spiral model is developed to analytically link the molecular structure and macroscopic properties of carbon nanotubes. We review and summarize in this chapter the recent advances on this model

Keywords:

Carbon nanotubes Mechanical properties Multiscale model 

Notes

Acknowledgments

Financial supports from the National Natural Science Foundation of China (10402019, 10732040), Shanghai Rising-Star Program (05QMX1421), and Shanghai Leading Academic Discipline Project (Y0103) are gratefully acknowledged. The author thanks also all contributors who assisted with developing the stick-spiral model.

References

  1. 1.
    Shenoy, V.B., Miller, R., Tadmor, E.B., Phillips, R., Ortiz, M., 1998. Quasicontinuum models of interfacial structure and deformation. Phys. Rev. Lett. 80, 742–745.CrossRefGoogle Scholar
  2. 2.
    Abraham, F.F., Broughton, J.Q., Bernstein, N., Kaxiras, E., 1998. Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture. Europhys. Lett. 44, 783–787.CrossRefGoogle Scholar
  3. 3.
    Friesecke, G., James, R.D., 2000. A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorods. J. Mech. Phys. Solids 48, 1519–1540.CrossRefGoogle Scholar
  4. 4.
    Knap, J., Ortiz, M., 2001. An analysis of the quasicontinuum method. J. Mech. Phys. Solids 49, 1899–1923.CrossRefGoogle Scholar
  5. 5.
    Chang, T., Gao, H., 2003. Size dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids 51, 1059–1074.CrossRefGoogle Scholar
  6. 6.
    Liu, W.K., Karpov, E.G., Zhang, S., Park, H.S., 2004. An introduction to computational nanomechanics and materials. Comput. Methods Appl. Mech. Eng. 193, 1529–1578.CrossRefGoogle Scholar
  7. 7.
    Kadowaki, H., Liu, W.K., 2004. Bridging multi-scale method for localization problems. Comput. Methods Appl. Mech. Eng. 193, 3267–3302.CrossRefGoogle Scholar
  8. 8.
    Gates, T.S., Odegard, G.M., Frankland, S.J.V., Clancy, T.C., 2005. Computational materials: Multi-scale modeling and simulation of nanostructured materials. Compos. Sci. Technol. 65, 2416–2434.CrossRefGoogle Scholar
  9. 9.
    Buryachenko, V.A., Roy, A., Lafdi, K., Anderson, K.L., Chellapilla, S., 2005. Multi-scale mechanics of nanocomposites including interface: Experimental and numerical investigation. Compos. Sci. Technol. 65, 2435–2465.CrossRefGoogle Scholar
  10. 10.
    Buehler, M.J., 2006. Large-scale hierarchical molecular modeling of nanostructured biological materials. J. Comput. Theor. Nanosci. 3, 603–623.Google Scholar
  11. 11.
    Danielsson, M., Parks, D.M., Boyce, M.C., 2007. Micromechanics, macromechanics and constitutive modeling of the elasto-viscoplastic deformation of rubber-toughened glassy polymers. J. Mech. Phys. Solids 55, 533–561.CrossRefGoogle Scholar
  12. 12.
    Smalley, R.E., Yakobson, B.I., 1998. The future of the fullerenes. Solids State Comm. 107, 597–606.CrossRefGoogle Scholar
  13. 13.
    Baughman, R.H., Zakhidov, A.A., de Heer, W.A., 2002. Carbon nanotubes – the route toward applications. Science 297, 787–792.CrossRefGoogle Scholar
  14. 14.
    Chang, T., Geng, J., Guo, X., 2005. Chirality- and size- dependent elastic properties of single-walled carbon nanotubes. Appl. Phys. Lett. 87, 251929.CrossRefGoogle Scholar
  15. 15.
    Geng, J., Chang, T., 2006. Nonlinear stick-spiral model for predicting mechanical behavior of single-walled carbon nanotubes. Phys. Rev. B 74, 245428.CrossRefGoogle Scholar
  16. 16.
    Chang, T., Geng, J., Guo, X., 2006. Prediction of chirality- and size- dependent elastic properties of single-walled carbon nanotubes via a molecular mechanics model. Proc. R. Soc. A 462, 2523–2540.CrossRefGoogle Scholar
  17. 17.
    Chang, T., 2007. Explicit solution of the radial breathing mode frequency of single-walled carbon nanotubes. Acta Mech. Sinica 23, 159–162.CrossRefGoogle Scholar
  18. 18.
    Iijima, S., 1991. Helical microtubules of graphitic carbon. Nature 354, 56–58.CrossRefGoogle Scholar
  19. 19.
    Iijima, S., Ichihashi, T., 1993. Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605.CrossRefGoogle Scholar
  20. 20.
    White, C.T., Robertson, D.H., Mintmire, J.W., 1993. Helical and rotational symmetries of nanoscale graphatic tubules. Phys. Rev. B 47, 5485–5488.CrossRefGoogle Scholar
  21. 21.
    Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M., 1996. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 680.CrossRefGoogle Scholar
  22. 22.
    Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N., Treacy, M.M.J., 1998. Young’s modulus of single-walled carbon nanotubes. Phys. Rev. B 58, 14013–14019.CrossRefGoogle Scholar
  23. 23.
    Poncharal, P., Wang, Z.L., Ugarte, D., de Heer, W.A., 1999. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516.CrossRefGoogle Scholar
  24. 24.
    Wong, E.W., Sheehan, P.E., Lieber, C.M., 1997. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971.CrossRefGoogle Scholar
  25. 25.
    Salvetat, J.P., Kulik, A.J., Bonard, J.M., Briggs, G.A.D., Stockli, T., Metenier, K., Bonnamy, S., Beguin, F., Burnham, N.A., Forro, L., 1999. Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Adv. Mater. 11, 161–165.CrossRefGoogle Scholar
  26. 26.
    Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S., 2000. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 63.CrossRefGoogle Scholar
  27. 27.
    Demczyk, B.G., Wang, Y.M., Cumings, J., Hetman, M., Han, W., Zettl, A., Ritchie, R.O., 2002. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater. Sci. Eng. A 334, 173–178.CrossRefGoogle Scholar
  28. 28.
    Robertson, D.H., Brenner, D.W., Mintmire, J.W., 1992. Energetics of nanoscale graphitic tubules. Phys. Rev. B 45, 12592–12595.CrossRefGoogle Scholar
  29. 29.
    Iijima, S., Brabec, C., Maiti, A., Bernholc, J., 1996. Structural flexibility of carbon nanotubes. J. Chem. Phys. 104, 2089–2092.CrossRefGoogle Scholar
  30. 30.
    Yakobson, B.I., Brabec, C.J., Bernholc, J., 1996. Nanomechanics of carbon tubes: Instability beyond linear response. Phys. Rev. Lett. 76, 2511–2514.CrossRefGoogle Scholar
  31. 31.
    Garg, A., Han, J., Sinnott, S.B., 1998. Interactions of carbon nanotuble proximal probe tips with diamond and graphene. Phys. Rev. Lett. 81, 2260–2263.CrossRefGoogle Scholar
  32. 32.
    Hernandez, E., Goze, C., Bernier, P., Rubio, A., 1998. Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett. 80, 4502–4505.CrossRefGoogle Scholar
  33. 33.
    Yao, N., Lordi, V., 1998. Young’s modulus of single-walled carbon nanotubes. J. Appl. Phys. 84, 1939–1943.CrossRefGoogle Scholar
  34. 34.
    Sanchez-Portal, D., Artacho, E., Soler, J.M., Rubio, A., Ordejon, P., 1999. Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys. Rev. B 59, 12678–12688.CrossRefGoogle Scholar
  35. 35.
    Popov, V.N., Van Doren, V.E., Balkanski, M., 2000. Elastic properties of single-walled carbon nanotubes. Phys. Rev. B 61, 3078–3084.CrossRefGoogle Scholar
  36. 36.
    Belytschko, T., Xiao, S.P., Schatz, G.C., Ruoff, R.S., 2002. Atomistic simulations of nanotube fracture. Phys. Rev. B 65, 235430.CrossRefGoogle Scholar
  37. 37.
    Krenn, R.C., Roundy, D., Cohen, M.L., Chrzan, D.C., Morris, J.J.W., 2002. Connecting atomistic and experimental estimates of ideal strength. Phys. Rev. B 65, 134111.CrossRefGoogle Scholar
  38. 38.
    Ogata, S., Shibutani, Y., 2003. Ideal strength and band gap of single-walled carbon nanotubes. Phys. Rev. B 68, 165409.CrossRefGoogle Scholar
  39. 39.
    Gartstein, Y.N., Zakhidov, A.A., Baughman, R.H., 2003. Mechanical and electromechanical coupling in carbon nanotube distortions. Phys. Rev. B 68, 115415.CrossRefGoogle Scholar
  40. 40.
    Xiao, T., Xu, X., Liao, K., 2004. Characterization of nonlinear elasticity and elastic instability in single-walled carbon nanotubes. J. Appl. Phys. 95, 8145–8148.CrossRefGoogle Scholar
  41. 41.
    Liew, K.M., Wong, C.H., He, X.Q., Tan, M.J., Meguid, S.A., 2004. Nanomechanics of single and multi walled carbon nanotubes. Phys. Rev. B 69, 115429.CrossRefGoogle Scholar
  42. 42.
    Wang, Y., Wang, X.X., Ni, X.G., 2004. Atomistic simulation of the torsion deformation of carbon nanotubes. Model. Simul. Mater. Sci. Eng. 12, 1099–1107.CrossRefGoogle Scholar
  43. 43.
    Wang, L.F., Zheng, Q.S., Liu, J.Z., Jiang, Q., 2005. Size dependence of the thin-shell model for carbon nanotubes. Phys. Rev. Lett. 95, 105501.CrossRefGoogle Scholar
  44. 44.
    Liang, H.Y., Upmanyu, M., 2006. Axial-strain-induced torsion in single-walled carbon nanotubes. Phys. Rev. Lett. 96, 165501.CrossRefGoogle Scholar
  45. 45.
    Dumitrica, T., Hua, M., Yakobson, B.I., 2006. Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. Proc. Nat. Ac. Sci. USA 103, 6105–6109.CrossRefGoogle Scholar
  46. 46.
    Chang, T., Hou, J., 2006. Molecular dynamics simulations on buckling of multiwalled carbon nanotubes under bending. J. Appl. Phys. 100, 114327.CrossRefGoogle Scholar
  47. 47.
    Chang, T., Hou, J., Guo, X., 2006. Reversible mechanical bistability of single-walled carbon nanotubes under axial strain. Appl. Phys. Lett. 88, 211906.CrossRefGoogle Scholar
  48. 48.
    Chang, T., 2007. Torsional behavior of chiral single-walled carbon nanotubes is loading direction dependent. Appl. Phys. Lett. 90, 201910.CrossRefGoogle Scholar
  49. 49.
    Yakobson, B.I., Campbell, M.P., Brabec, C.J., Bernholc, J., 1997. High strain rate fracture and C-chain unraveling in carbon nanotubes. Comput. Mater. Sci. 8, 341–348.CrossRefGoogle Scholar
  50. 50.
    Nardelli, M.B., Yakobson, B.I., Bernholc, J., 1998. Mechanism of strain release in carbon nanotubes. Phys. Rev. B 57, R4277.CrossRefGoogle Scholar
  51. 51.
    Nardelli, M.B., Yakobson, B.I., Bernholc, J., 1998. Brittle and ductile behavior in carbon nanotubes. Phys. Rev. Lett. 81, 4656.CrossRefGoogle Scholar
  52. 52.
    Nardelli, M.B., Fattebert, J.L., Orlikowski, D., Roland, C., Zhao, Q., Bernholc, J., 2000. Mechanical properties, defects and electronic behavior of carbon nanotubes. Carbon 38, 1703–1711.CrossRefGoogle Scholar
  53. 53.
    Zhao, Q., Nardelli, M.B., Bernholc, J., 2002. Ultimate strength of carbon nanotubes: A theoretical study. Phys. Rev. B 65, 144105.CrossRefGoogle Scholar
  54. 54.
    Liew, K.M., He, X.Q., Wong, C.H., 2004. On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation. Acta Materialia 52, 2521–2527.CrossRefGoogle Scholar
  55. 55.
    Liew, K.M., Wong, C.H., Tan, M.J., 2006. Tensile and compressive properties of carbon nanotube bundles. Acta Materialia 54, 225–231.CrossRefGoogle Scholar
  56. 56.
    Shibutani, Y., Ogata, S., 2004. Mechanical itegrity of single-walled carbon nanotubes for bending and torsion. Mod. Sim. Mater. Sci. Eng. 12, 599–610.CrossRefGoogle Scholar
  57. 57.
    Zhang, Y.Y., Tan, V.B.C., Wang, C.M., 2006. Effect of chirality on buckling behavior of single-walled carbon nanotubes. J. Appl. Phys. 100, 074304–074306.CrossRefGoogle Scholar
  58. 58.
    Duan, X., Tang, C., Zhang, J., Guo, W., Liu, Z., 2007. Two distinct buckling modes in carbon nanotube bending. Nano Lett. 7, 143–148.CrossRefGoogle Scholar
  59. 59.
    Arroyo, M., Belytschko, T., 2002. An atomistic-based finite deformation membrane for single layer crystalline films. J. Mech. Phys. Solids 50, 1941–1977.CrossRefGoogle Scholar
  60. 60.
    Li, C.Y., Chou, T.W., 2003. A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2489–2499.Google Scholar
  61. 61.
    Wagner, G.J., Liu, W.K., 2003. Coupling of atomistic and continuum simulations using a bridging scale decomposition. J. Comput. Phys. 190, 249–274.CrossRefGoogle Scholar
  62. 62.
    Pantano, A., Parks, D.M., Boyce, M.C., 2004. Mechanics of deformation of single- and multi-wall carbon nanotubes. J. Mech. Phys. Solids 52, 789–821.CrossRefGoogle Scholar
  63. 63.
    Qian, D., Wagner, G.J., Liu, W.K., 2004. A multiscale projection method for the analysis of carbon nanotubes. Comput. Methods Appl. Mech. Eng 193, 1603–1632.CrossRefGoogle Scholar
  64. 64.
    Zhang, H.W., Wang, J.B., Guo, X., 2005. Predicting the elastic properties of single-walled carbon nanotubes. J. Mech. Phys. Solids 53, 1929–1950.CrossRefGoogle Scholar
  65. 65.
    Behdinan, K., Xu, Y.G., Fawaz, Z., 2005. Molecular element method (MEM) for multi-scale modeling and simulations of nano/micro-systems. Trans. CSME 29, 403–421.Google Scholar
  66. 66.
    Liu, B., Jiang, H., Huang, Y., Qu, S., Yu, M.F., Hwang, K.C., 2005. Atomic-scale finite element method in multiscale computation with applications to carbon nanotubes. Phys. Rev. B 72, 035435.1–035435.8.Google Scholar
  67. 67.
    Wang, M., Zhang, X., Lu, M.W., 2005. Nonlinear membrane-spring model for carbon nanotubes. Phys. Rev. B 72, 205403–205407.CrossRefGoogle Scholar
  68. 68.
    Guo, X., Wang, J.B., Zhang, H.W., 2006. Mechanical properties of single-walled carbon nanotubes based on higher order Cauchy-Born rule. Int. J. Solids Struct. 43, 1276–1290.CrossRefGoogle Scholar
  69. 69.
    Cao, G., Chen, X., 2006. Buckling of single-walled carbon nanotubes upon bending: Molecular dynamics simulations and finite element method. Phys. Rev. B 73, 155435.CrossRefGoogle Scholar
  70. 70.
    Dumitrica, T., James, R.D., 2007. Objective molecular dynamics. J. Mech. Phys. Solids 55, 2206–2236.CrossRefGoogle Scholar
  71. 71.
    Wang, M., Zhang, X., Zheng, Q., Liu, Y., 2007. A membrane-spring model for carbon nanotubes with van der Waals interaction between non-bonded atoms. Nanotechnology 18, 375706.CrossRefGoogle Scholar
  72. 72.
    Wu, J., Hwang, K.C., Huang, Y., 2008. An atomistic-based finite-deformation shell theory for single-wall carbon nanotubes. J. Mech. Phys. Solids 56, 279–292.CrossRefGoogle Scholar
  73. 73.
    Ru, C.Q., 2000. Column buckling of multiwalled carbon nanotubes with interlayer radial displacements. Phys. Rev. B 62, 16962.CrossRefGoogle Scholar
  74. 74.
    Wang, C.Y., Ru, C.Q., Mioduchowski A., 2003. Axially compressed buckling of pressured multiwall carbon nanotubes. Int. J. Solids Struct. 40, 3893–3911.CrossRefGoogle Scholar
  75. 75.
    Han, Q., Lu, G.X., 2003. Torsional buckling of a double-walled carbon nanotube embedded in a elastic medium. Eur. J. Mech. A Solids 22, 875–883.CrossRefGoogle Scholar
  76. 76.
    Shen, H.S., 2004. Postbuckling prediction of double-walled carbon nanotubes under hydrostatic pressure. Int. J. Solids Struct. 41, 2643–2657.CrossRefGoogle Scholar
  77. 77.
    Kitipornchai, S., He, X.Q., Liew, K.M., 2005. Continuum model for the vibration of multilayered graphene sheets. Phys. Rev. B 72, 075443.CrossRefGoogle Scholar
  78. 78.
    He, X.Q., Kitipornchai, S., Liew, K.M., 2005. Buckling analysis of multi-walled carbon nanotubes: A continuum model accounting for van der Waals interaction.. J. Mech. Phys. Solids 53, 303–326.CrossRefGoogle Scholar
  79. 79.
    Wang, X., Yang, H.K., 2006. Bending stability of multiwalled carbon nanotubes. Phys. Rev. B 73, 085409.CrossRefGoogle Scholar
  80. 80.
    Longhurst, M.J., Quirke, N., 2006. The environmental effect on the radial breathing mode of carbon nanotubes in water. J. Chem. Phys. 124, 234708.CrossRefGoogle Scholar
  81. 81.
    Shen, H.S., Zhang, C.L., 2006. Postbuckling prediction of axially loaded double-walled carbon nanotubes with temperature dependent properties and initial defects. Phys. Rev. B 74, 035410.CrossRefGoogle Scholar
  82. 82.
    Wang, Q., Varadan, V.K., Quek, S.T., 2006. Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models. Phys. Lett. A 357, 130–135.CrossRefGoogle Scholar
  83. 83.
    Zhang, Y.Q., Liu, G.R., Han, X., 2006. Effect of small length scale on elastic buckling of multi-walled carbon nanotubes under radial pressure. Phys. Lett. A 349, 370–376.CrossRefGoogle Scholar
  84. 84.
    Tylikowski, A., 2008. Instability of thermally induced vibrations of carbon nanotubes. Arch. Appl. Mech. 78, 49–60.CrossRefGoogle Scholar
  85. 85.
    Wang, C.Y., Ru, C.Q., Mioduchowski, A., 2004. Applicability and limitations of simplified eleastic shell equations for carbon nanotubes. J. Appl. Mech ASME 71, 622–631.CrossRefGoogle Scholar
  86. 86.
    Ru, C.Q., 2000b. Effective bending stiffness of carbon nanotubes. Phys. Rev. B 62, 9973.CrossRefGoogle Scholar
  87. 87.
    Odegard, G.M., Gates, T.S., Nicholson, L.M., Wise, K.E., 2002. Equivalent-continuum modeling of nano-structured materials. Compos. Sci. Technol. 62, 1869–1880.CrossRefGoogle Scholar
  88. 88.
    Wang, Q., 2004. Effective in-plane stiffness and bending rigidity of armchair and zigzag carbon nanotubes. Int. J. Solids Struct. 41, 5451–5461.CrossRefGoogle Scholar
  89. 89.
    Shen, L., Li, J., 2004. Transversely isotropic elastic properties of single-walled carbon nanotubes. Phys. Rev. B 69, 045414.CrossRefGoogle Scholar
  90. 90.
    Leung, A.Y.T., Guo, X., He, X.Q., Kitipornchai, S., 2005. A continuum model for zigzag single-walled carbon nanotubes. Appl. Phys. Lett. 86, 083110.CrossRefGoogle Scholar
  91. 91.
    Chang, T., Guo, W., Guo, X., 2005. Buckling of multi-walled carbon nanotubes under axial compression and bending via a molecular mechanics model. Phys. Rev. B 72, 064101.CrossRefGoogle Scholar
  92. 92.
    Chang, T., Li, G., Guo, X., 2005. Elastic axial buckling of carbon nanotubes via a molecular mechanics model. Carbon 43, 287–294.CrossRefGoogle Scholar
  93. 93.
    Wang, Q., Duan, W.H., Liew, K.M., He, X.Q., 2007. Inelastic buckling of carbon nanotubes. Appl. Phys. Lett. 90, 033110–033113.CrossRefGoogle Scholar
  94. 94.
    Xiao, J.R., Gama, B.A., Gillespie, J.W., 2005. An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int. J. Solids Struct. 42, 3075–3092.CrossRefGoogle Scholar
  95. 95.
    Duan, W.H., Wang, Q., Liew, K.M., He, X.Q., 2007. Molecular mechanics modeling of carbon nanotube fracture. Carbon 45, 1769–1776.CrossRefGoogle Scholar
  96. 96.
    Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Ni, B., Sinnott, S.B., 2002. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter. 14, 783–802.CrossRefGoogle Scholar
  97. 97.
    Allinger, N.L., 1977. Conformational analysis 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J. Am. Chem. Soc. 99, 8127–8134.CrossRefGoogle Scholar
  98. 98.
    Leach, A.R., 1996. Molecular Modelling: Principles and Applications. Addison Wesley Longman Limited, London.Google Scholar
  99. 99.
    Jishi, R.A., Venkataraman, L., Dresselhaus, M.S., Dresselhaus, G., 1993. Phonon modes in carbon nanotubules. Chem. Phys. Lett. 209, 77.CrossRefGoogle Scholar
  100. 100.
    Kurti, J., Kresse, G., Kuzmany, H., 1998. First-principles calculations of the radial breathing mode of single-wall carbon nanotubes. Phys. Rev. B 58, R8869.CrossRefGoogle Scholar
  101. 101.
    Bandow, S., Asaka, S., Saito, Y., Rao, A.M., Grigorian, L., Ritchter, E., Eklund, P.C., 1998. Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Phys. Rev. Lett. 80, 3779–3782.CrossRefGoogle Scholar
  102. 102.
    Sanchez-Portal, D., Artacho, E., Soler, J.M., Rubio, A., Ordejon, P., 1999. Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys. Rev. B 59, 12678–12688.CrossRefGoogle Scholar
  103. 103.
    Jorio, A., Saito, R., Hafner, J.H., Lieber, C.M., Hunter, M., McClure, T., Dresselhaus, G., Dresselhaus, M.S., 2001. Structural (n,m) determination of isolated single wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 86, 1118.CrossRefGoogle Scholar
  104. 104.
    Dobardzic, E., Milosevic, I., Nikolic, B., Vukovic, T., Damnjanovic, M., 2003. Single-wall carbon nanotubes phonon spectra: Symmetry-based calculations. Phys. Rev. B 68, 045408.CrossRefGoogle Scholar
  105. 105.
    Longhurst, M.J., Quirke, N., 2005. The radial breathing mode of carbon nanotubes. Mol. Simul. 31, 135.CrossRefGoogle Scholar
  106. 106.
    Kurti, J., Zolyomi, V., Kertesz, M., Sun, G., 2003. The geometry and the radial breathing mode of carbon nanotubes: Beyond the ideal behaviour. New J Phys. 5, 125.CrossRefGoogle Scholar
  107. 107.
    Telg, H., Maultzsch, J., Reich, S., Hennrich, F., Thomsen, C., 2004. Chirality distribution and transition energies of carbon nanotubes. Phys. Rev. Lett. 93, 177401.CrossRefGoogle Scholar
  108. 108.
    Damnjanovic, M., Dobardzic, E., Milosevic, I., 2004. Chirality dependence of the radial breathing mode: A simplemodel. J. Phys. Condens. Matter. 16, L505–L508.CrossRefGoogle Scholar
  109. 109.
    Meyer, J.C., Paillet, M., Michel, T., Moreac, A., Neumann, A., Duesberg, G.S., Roth, S., Sauvajol, J., 2005. Raman modes of index-identified freestanding single-walled carbon nanotubes. Phys. Rev. Lett. 95, 217401.CrossRefGoogle Scholar
  110. 110.
    Lawler, H.M., Areshkin, D., Mintmire, J.W., White, C.T., 2005. Radial-breathing mode frequencies for single-walled carbon nanotubes of arbitrary chirality: First-principles calculations. Phys. Rev. B 72, 233403.CrossRefGoogle Scholar
  111. 111.
    Popov, V.N., Lambin, P., 2006. Radius and chirality dependence of the radial breathing mode and the G-band phonon modes of single-walled carbon nanotubes. Phys. Rev. B 73, 085407.CrossRefGoogle Scholar
  112. 112.
    Xiao, Y., Li, Z.M., Yan, X.H., Zhang, Y., Mao, Y.L., Yang, Y.R., 2005. Curvature effect on the radial breathing modes of single-walled carbon nanotubes. Phys. Rev. B 71, 233405.CrossRefGoogle Scholar
  113. 113.
    Li, L., Chang, T., 2008. Explicit solutions for G-band Raman frequencies of single-walled carbon nanotubes. Acta Mech. Solida Sinica, (in press).Google Scholar
  114. 114.
    Xiao, J.R., Gillespie, J., 2006. Nonlinear deformation and progressive failure of multiwalled carbon nanotubes under internal radial pressure. Phys. Rev. B 74, 155404–155407.CrossRefGoogle Scholar
  115. 115.
    Walters, D.A., Ericson, L.M., Casavant, M.J., 1999. Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett 74(25), 3803–3805.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Shanghai Institute of Applied Mathematics and Mechanics, Institute of Low Dimensional Carbon and Device PhysicsShanghai UniversityShanghaiPeople’s Republic of China

Personalised recommendations