Hybrid Quantum/Classical Modeling of Material Systems: The “Learn on the Fly” Molecular Dynamics Scheme

  • Gianpietro Moras
  • Rathin Choudhury
  • James R. Kermode
  • Gabor CsÁnyi
  • Michael C. Payne
  • Alessandro De Vita
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 9)

Abstract

The atomistic simulation of many processes in materials involves large-size model systems where different levels of complexity need to be described simultaneously. While accurate quantum mechanical simulations of large-size systems are usually not affordable, less computationally intensive classical models are not suitable for the description of many chemical processes. Hybrid (quantum/classical) modelling schemes are required in these circumstances. Here, we describe the “Learn on the fly” (LOTF) hybrid molecular dynamics scheme. Some technical aspects of this technique are illustrated through a series of examples of its applications to multiscale processes in silicon

Keywords

Quantum/classical atomistics Hybrid modeling Multiscale computations 

Notes

Acknowledgments

G.M. acknowledges the HPC-Europa programme for funding and computational resources and is grateful to Lucio Colombi Ciacchi for many insightful discussions and useful suggestions. J.R.K., G.C. and M.C.P. acknowledge support from the EPSRC portfolio grant EP/C523938/1. A.D.V. and R.C. acknowledge support from EPSRC grant EP/5C23938/1. G.C. acknowledges support from EPSRC grant EP/C52392X/1.

References

  1. 1.
    Nieminen, R.M.: From atomistic simulation towards multiscale modelling of materials. J. Phys. Condens. Matter. 14, 2859–2876 (2002)CrossRefGoogle Scholar
  2. 2.
    Lin, H., Truhlar, D.G.: QM/MM: What have we learned, where are we, and where do we go from here? Theor. Chem. Acc. Theor. Comput. Model. Theor. Chim. Acta 117, 185–199 (2007)Google Scholar
  3. 3.
    Ruiz-Lopez, M.F.: Combined QM/MM calculations in chemistry and biochemistry. J. Mol. Struct. 632, ix (2003)Google Scholar
  4. 4.
    Maseras, F., Morokuma, K.: IMOMM: A new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states. J. Comput. Chem. 16, 1170–1179 (1995)CrossRefGoogle Scholar
  5. 5.
    De Vita, A., Car, R.: A novel scheme for accurate MD simulations of large systems. Mater. Res. Soc. Symp. Proc 491, 473 (1998)Google Scholar
  6. 6.
    Csányi, G., Albaret, T., Payne, M.C., De Vita, A.: “Learn on the fly”: A hybrid classical and quantum-mechanical molecular dynamics simulation. Phys. Rev. Lett. 93, 175,503 (2004)CrossRefGoogle Scholar
  7. 7.
    Csányi, G., Albaret, T., Moras, G., Payne, M.C., De Vita, A.: Multiscale hybrid simulation methods for material systems. J. Phys. Condens. Matter. 17, R691–R703 (2005)CrossRefGoogle Scholar
  8. 8.
    Moras, G., Csanyi, G., Payne, M., De Vita, A.: A novel molecular dynamics approach to large semiconductor systems. Phys. B Condens. Matter. 376–377, 936–939 (2006)Google Scholar
  9. 9.
    Csányi, G., Moras, G., Kermode, J.R., Payne, M.C., Mainwood, A., De Vita, A.: Multiscale modeling of defects in semiconductors: A novel molecular dynamics scheme. In: D.A. Drabold, S.K. Estreicher (eds.) Theory of Defects in Semiconductors, pp. 193–212. Springer, Heidelberg (2007)Google Scholar
  10. 10.
    Broughton, J.Q., Abraham, F.F., Bernstein, N., Kaxiras, E.: Concurrent coupling of length scales: Methodology and application. Phys. Rev. B 60, 2391–2403 (1999)CrossRefGoogle Scholar
  11. 11.
    Stillinger, F.H., Weber, T.A.: Computer simulation of local order in condensed phases of silicon. Phys. Rev. B. 31, 5262 (1985)CrossRefGoogle Scholar
  12. 12.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (UK) (1992)Google Scholar
  13. 13.
    Kermode, J.R.: Multiscale hybrid simulation of brittle fracture. Doctor of Philosophy Thesis, University of Cambridge (UK) (2008)Google Scholar
  14. 14.
    Moras, G.: Modelling the growth of hydrogen-induced platelets in silicon with the “Learn on the fly” multiscale molecular dynamics technique. Doctor of Philosophy Thesis, University of London (UK) (2008)Google Scholar
  15. 15.
    Kwon, I., Biswas, R., Wang, C., Ho, K., Soukoulis, C.: Transferable tight-binding models for silicon. Phys. Rev. B. 49, 7242 (1994)CrossRefGoogle Scholar
  16. 16.
    Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., Payne, M.C.: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter. 14 11, 2717–2743 (2002)CrossRefGoogle Scholar
  17. 17.
    Oyama, N., Ohno, T.: Migration processes of the \(30^\circ\) partial dislocation in silicon. Phys. Rev. Lett. 93, 195,502 (2004)CrossRefGoogle Scholar
  18. 18.
    Bulatov, V.V., Justo, J.F., Cai, W., Yip, S., Argon, A.S., Lenosky, T., Dekoning, T., Diaz de la Rubia, T.: Parameter-free modelling of dislocation motion: The case of silicon. Philos. Mag. A 81, 1257–1281 (2001)CrossRefGoogle Scholar
  19. 19.
    Baillin, X., Pelissier, J., Bacmann, J.J., Jacques, A., George, A.: Dislocation transmission through sigma=9 symmetrical tilt boundaries in silicon and germanium .1. Insitu observations by synchrotron x-ray topography and high-voltage electron-microscopy. Philos. Mag. A 55, 143–164 (1987)CrossRefGoogle Scholar
  20. 20.
    Jacques, A., George, A., Baillin, X., Bacmann, J.J.: Dislocation transmission through sigma=9 symmetrical tilt boundaries in silicon and germanium .2. Dynamic and crystallographic analysis. Philos. Mag. A 55, 165–181 (1987)CrossRefGoogle Scholar
  21. 21.
    Arias, T.A., Joannopoulos, J.D.: Ab initio theory of dislocation interactions: From close-range spontaneous annihilation to the long-range continuum limit. Phys. Rev. Lett. 73, 680–683 (1994)CrossRefGoogle Scholar
  22. 22.
    Huang, Y.M., Spence, J.C.H., Sankey, O.F.: Dislocation kink motion in silicon. Phys. Rev. Lett. 74, 3392–3395 (1995)CrossRefGoogle Scholar
  23. 23.
    Inglis, C.E.: Stresses in a plate due to the prescence of cracks and sharp corners. Trans. Inst. Naval. Archit. 55, 219 (1913)Google Scholar
  24. 24.
    Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. A 221, 163 (1921)CrossRefGoogle Scholar
  25. 25.
    Broberg, K.B.: Cracks and Fracture. Academic Press, San Diego, CA (1999)Google Scholar
  26. 26.
    Freund, L.B.: Dynamic Fracture Mechanics. Cambridge University Press, Cambridge, UK (1990)CrossRefGoogle Scholar
  27. 27.
    Lawn, B.: Fracture of Brittle Solids, 2nd Edition. Cambridge University Press, Cambridge, UK (1993)CrossRefGoogle Scholar
  28. 28.
    Lin, I.H., Thomson, R.: Cleavage, dislocation emission, and shielding for cracks under general loading. Acta Metall. 34, 187–206 (1986)CrossRefGoogle Scholar
  29. 29.
    Irwin, G.R.: Fracturing of Metals, pp. 147–166. American Society for Metals, Cleveland, OH (1948)Google Scholar
  30. 30.
    Bowler, D.R., Fearn, M., Goringe, C.M., Horsfield, A.P., Pettifor, D.G.: Hydrogen diffusion on Si(001) studied with the local density approximation and tight binding. J. Phys. Condens. Matter. 10, 3719 (1998)CrossRefGoogle Scholar
  31. 31.
    Kermode, J.R., Albaret, T., Sherman, D., Bernstein, N., Gumbsch, P., Payne, M.C., Csányi, G., De Vita, A.: Low-speed fracture instabilities in a brittle crystal. Nature 455 (7217), 1224–1227 (2008)Google Scholar
  32. 32.
    Li, J.: AtomEye: an efficient atomistic configuration viewer. Model. Simulat. Mater. Sci. Eng. 11, 173 (2003)CrossRefGoogle Scholar
  33. 33.
    Bruel, M.: Silicon on insulator material technology. Electron. Lett. 31, 1201–1202 (1995)CrossRefGoogle Scholar
  34. 34.
    Reboredo, F.A., Ferconi, M., Pantelides, S.T.: Theory of the nucleation, growth and structure of hydrogen-induced extended defects in silicon. Phys. Rev. Lett. 82, 4870–4873 (1999)CrossRefGoogle Scholar
  35. 35.
    Martsinovich, N., Suarez Martinez, I., Heggie, M.I.: First principles modelling of (100) H-induced platelets in silicon. Phys. Status Solidi C. 6, 1771–1780 (2005)CrossRefGoogle Scholar
  36. 36.
    Swadener, J.G., Baskes, M.I., Nastasi, M.: Stress-induced platelet formation in silicon: A molecular dynamics study. Phys. Rev. B. 72, 201,202 (2007)Google Scholar
  37. 37.
    Terreault, B.: Hydrogen blistering of silicon: Progress in fundamental understanding. Phys. Stat. Sol. A. 204, 2129–2184 (2007)CrossRefGoogle Scholar
  38. 38.
    Moras, G., Colombi Ciacchi, L., Csányi, G., De Vita, A.: Modelling (100) hydrogen-induced platelets in silicon with a multi-scale molecular dynamics approach. Phys. B Condens. Matter 401–402, 16–20 (2007)CrossRefGoogle Scholar
  39. 39.
    Frauenheim, T., Seifert, G., Elsterner, M., Hajnal, Z., Jungnickel, G., Porezag, D., Suhai, S., Scholz, R.: A Self-consistent charge density-functional based tight-binding method for predictive materials simulations in physics, chemistry and biology. Phys. Status Solidi B 217, 41 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Gianpietro Moras
    • 1
    • 2
  • Rathin Choudhury
    • 3
  • James R. Kermode
    • 3
  • Gabor CsÁnyi
    • 4
  • Michael C. Payne
    • 5
  • Alessandro De Vita
    • 3
  1. 1.Institut für Zuverlässigkeit von Bauteilen und SystemenUniversity of KarlsruheKarlsruheGermany
  2. 2.Fraunhofer Institut für WerkstoffmechanikFreiburgGermany
  3. 3.Department of Physics, King)s College LondonLondonUK
  4. 4.Engineering LaboratoryUniversity of CambridgeCambridgeUK
  5. 5.Theory of Condensed Matter Group, Cavendish LaboratoryUniversity of Cambridge, CambridgeCambridgeUK

Personalised recommendations