Skip to main content

Molecular Descriptors

  • Chapter
  • First Online:
Recent Advances in QSAR Studies

Abstract

In the last decades, several scientific researches have been focused on studying how to encompass and convert – by a theoretical pathway – the information encoded in the molecular structure into one or more numbers used to establish quantitative relationships between structures and properties, biological activities, or other experimental properties. Molecular descriptors are formally mathematical representations of a molecule obtained by a well-specified algorithm applied to a defined molecular representation or a well-specified experimental procedure. They play a fundamental role in chemistry, pharmaceutical sciences, environmental protection policy, toxicology, ecotoxicology, health research, and quality control. Evidence of the interest of the scientific community in the molecular descriptors is provided by the huge number of descriptors proposed up today: more than 5000 descriptors derived from different theories and approaches are defined in the literature and most of them can be calculated by means of dedicated software applications. Molecular descriptors are of outstanding importance in the research fields of quantitative structure–activity relationships (QSARs) and quantitative structure–property relationships (QSPRs), where they are the independent chemical information used to predict the properties of interest. Along with the definition of appropriate molecular descriptors, the molecular structure representation and the mathematical tools for deriving and assessing models are other fundamental components of the QSAR/QSPR approach. The remarkable progress during the last few years in chemometrics and chemoinformatics has led to new strategies for finding mathematical meaningful relationships between the molecular structure and biological activities, physico-chemical, toxicological, and environmental properties of chemicals. Different approaches for deriving molecular descriptors here reviewed and some of the most relevant descriptors are presented in detail with numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Brown FK (1998) Chemoinformatics: What is it and how does it impact drug discovery. Annu Rep Med Chem 33:375–384

    Article  CAS  Google Scholar 

  3. Gasteiger J (ed) (2003) Handbook of chemoinformatics. From data to knowledge in 4 volumes. Wiley-VCH, Weinheim

    Google Scholar 

  4. Oprea TI (2003) Chemoinformatics and the quest for leads in drug discovery. In: Gasteiger J. (ed) Handbook of chemoinformatics. Wiley-VCH, Weinheim

    Google Scholar 

  5. Crum-Brown A (1864) On the theory of isomeric compounds. Trans Roy Soc Edinburgh 23:707–719

    Google Scholar 

  6. Crum-Brown A (1867) On an application of mathematics to chemistry. Proc Roy Soc (Edinburgh) 73:89–90

    Google Scholar 

  7. Crum-Brown A, Fraser TR (1868) On the connection between chemical constitution and physiological action. Part 1. On the physiological action of salts of the ammonium bases, derived from strychnia, brucia, thebia, codeia, morphia and nicotia. Trans Roy Soc Edinburgh 25:151–203

    Google Scholar 

  8. Körner W (1869) Fatti per servire alla determinazione del luogo chimico nelle sostanze aromatiche. Giornale di Scienze Naturali ed Economiche 5:212–256

    Google Scholar 

  9. Körner W (1874) Studi sulla Isomeria delle Così Dette Sostanze Aromatiche a Sei Atomi di Carbonio. Gazz Chim It 4:242

    Google Scholar 

  10. Hammett LP (1935) Reaction rates and indicator acidities. Chem Rev 17:67–79

    Article  Google Scholar 

  11. Hammett LP (1937) The effect of structure upon the reactions of organic compounds. Benzene derivatives. J Am Chem Soc 59:96–103

    Article  CAS  Google Scholar 

  12. Hammett LP (1938) Linear free energy relationships in rate and equilibrium phenomena. Trans Faraday Soc 34:156–165

    Article  CAS  Google Scholar 

  13. Wiener H (1947) Influence of interatomic forces on paraffin properties. J Chem Phys 15:766

    Article  CAS  Google Scholar 

  14. Platt JR (1947) Influence of neighbor bonds on additive bond properties in paraffins. J Chem Phys 15:419–420

    Article  CAS  Google Scholar 

  15. Taft RW (1952) Polar and steric substituent constants for aliphatic and o-benzoate groups from rates of esterification and hydrolysis of esters. J Am Chem Soc 74:3120–3128

    Article  CAS  Google Scholar 

  16. Taft RW (1953) Linear steric energy relationships. J Am Chem Soc 75:4538–4539

    Article  CAS  Google Scholar 

  17. Hansch C, Maloney PP, Fujita T et al. (1962) Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature 194:178–180

    Article  CAS  Google Scholar 

  18. Hansch C, Muir RM, Fujita T et al. (1963) The correlation of biological activity of plant growth regulators and chloromycetin derivatives with Hammett constants and partition coefficients. J Am Chem Soc 85:2817–2824

    Article  CAS  Google Scholar 

  19. Fujita T, Iwasa J, Hansch C (1964) A new substituent constant, π, derived from partition coefficients. J Am Chem Soc 86:5175–5180

    Article  CAS  Google Scholar 

  20. Hansch C, Leo A (1995) Exploring QSAR. Fundamentals and applications in chemistry and biology. American Chemical Society, Washington DC

    Google Scholar 

  21. Free SM, Wilson JW (1964) A mathematical contribution to structure–activity studies. J Med Chem 7:395–399

    Article  CAS  Google Scholar 

  22. Gordon M, Scantlebury GR (1964) Non-random polycondensation: Statistical theory of the substitution effect. Trans Faraday Soc 60:604–621

    Article  CAS  Google Scholar 

  23. Smolenskii EA (1964) Application of the theory of graphs to calculations of the additive structural properties of hydrocarbons. Russ J Phys Chem 38:700–702

    Google Scholar 

  24. Spialter L (1964) The atom connectivity matrix (ACM) and its characteristic polynomial (ACMCP). J Chem Doc 4:261–269

    Article  CAS  Google Scholar 

  25. Balaban AT, Harary F (1968) Chemical graphs. V. Enumeration and proposed nomenclature of benzenoid catacondensed polycyclic aromatic hydrocarbons. Tetrahedron 24:2505–2516

    Article  CAS  Google Scholar 

  26. Harary F (1969) Graph theory. Addison-Wesley, Reading MA

    Google Scholar 

  27. Kier LB (1971) Molecular orbital theory in drug research. Academic Press, New York

    Google Scholar 

  28. Balaban AT, Harary F (1971) The characteristic polynomial does not uniquely determine the topology of a molecule. J Chem Doc 11:258–259

    Article  CAS  Google Scholar 

  29. Randić M (1974) On the recognition of identical graphs representing molecular topology. J Chem Phys 60:3920–3928

    Article  Google Scholar 

  30. Kier LB, Hall LH, Murray WJ et al. (1975) Molecular connectivity I: Relationship to nonspecific local anesthesia. J Pharm Sci 64:1971–1974

    Article  CAS  Google Scholar 

  31. Rohrbaugh RH, Jurs PC (1987) Descriptions of molecular shape applied in studies of structure/activity and structure/property relationships. Anal Chim Acta 199:99–109

    Article  CAS  Google Scholar 

  32. Stanton DT, Jurs PC (1990) Development and use of charged partial surface area structural descriptors in computer-assisted quantitative structure–property relationship studies. Anal Chem 62:2323–2329

    Article  CAS  Google Scholar 

  33. Todeschini R, Lasagni M, Marengo E (1994) New molecular descriptors for 2D- and 3D-structures. Theory. J Chemom 8:263–273

    Article  CAS  Google Scholar 

  34. Katritzky AR, Mu L, Lobanov VS et al. (1996) Correlation of boiling points with molecular structure. 1. A training set of 298 diverse organics and a test set of 9 simple inorganics. J Phys Chem 100:10400–10407

    Article  CAS  Google Scholar 

  35. Ferguson AM, Heritage TW, Jonathon P et al. (1997) EVA: A new theoretically based molecular descriptor for use in QSAR\QSPR analysis. J Comput Aid Mol Des 11:143–152

    Article  CAS  Google Scholar 

  36. Schuur J, Selzer P, Gasteiger J (1996) The coding of the three-dimensional structure of molecules by molecular transforms and its application to structure-spectra correlations and studies of biological activity. J Chem Inf Comput Sci 36:334–344

    CAS  Google Scholar 

  37. Consonni V, Todeschini R, Pavan M (2002) Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. Part 1. Theory of the novel 3D molecular descriptors. J Chem Inf Comput Sci 42:682–692

    CAS  Google Scholar 

  38. Goodford PJ (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28:849–857

    Article  CAS  Google Scholar 

  39. Cramer III RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  Google Scholar 

  40. Oprea TI (2004) 3D QSAR modeling in drug design. In: Bultinck P, De Winter H, Langenaeker W et al. (eds) Computational medicinal chemistry for drug discovery. Marcel Dekker, New York

    Google Scholar 

  41. Randić M (1991) Generalized molecular descriptors. J Math Chem 7:155–168

    Article  Google Scholar 

  42. Testa B, Kier LB (1991) The concept of molecular structure in structure–activity relationship studies and drug design. Med Res Rev 11:35–48

    Article  CAS  Google Scholar 

  43. Jurs PC, Dixon JS, Egolf LM (1995) Representations of molecules. In: van de Waterbeemd H (ed) Chemometrics methods in molecular design. VCH Publishers, New York

    Google Scholar 

  44. Smith EG, Baker PA (1975) The Wiswesser line-formula chemical notation (WLN). Chemical Information Management, Cherry Hill, NJ

    Google Scholar 

  45. Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28:31–36

    CAS  Google Scholar 

  46. Weininger D. (2003) SMILES – A language for molecules and reactions. In: van de Waterbeemd H (ed) Handbook of chemoinformatics. Wiley-VCH, Weinheim

    Google Scholar 

  47. SMARTS Tutorial. Daylight chemical information systems. Santa Fe, New Mexico

    Google Scholar 

  48. Buolamwini JK, Assefa H (2002) CoMFA and CoMSIA 3D QSAR and docking studies on conformationally-restrained cinnamoyl HIV-1 integrase inhibitors: Exploration of a binding mode at the active site. J Med Chem 45:841–852

    Article  CAS  Google Scholar 

  49. Xu M, Zhang A, Han S et al. (2002) Studies of 3D-quantitative structure–activity relationships on a set of nitroaromatic compounds: CoMFA, advanced CoMFA and CoMSIA. Chemosphere 48:707–715

    Article  CAS  Google Scholar 

  50. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146

    Article  CAS  Google Scholar 

  51. Jain AN, Koile K, Chapman D (1994) Compass: Predicting biological activities from molecular surface properties. Performance comparisons on a steroid benchmark. J Med Chem 37: 2315–2327

    Article  CAS  Google Scholar 

  52. Todeschini R, Moro G, Boggia R et al. (1997) Modeling and prediction of molecular properties. Theory of grid-weighted holistic invariant molecular (G-WHIM) descriptors. Chemom Intell Lab Syst 36:65–73

    Article  CAS  Google Scholar 

  53. Chuman H, Karasawa M, Fujita T (1998) A novel 3-dimensional QSAR procedure – voronoi field analysis. Quant Struct – Act Relat 17:313–326

    Article  CAS  Google Scholar 

  54. Robinson DD, Winn PJ, Lyne PD et al. (1999) Self-organizing molecular field analysis: A tool for structure–activity studies. J Med Chem 42:573–583

    Article  CAS  Google Scholar 

  55. Cruciani G, Pastor M, Guba W (2000) VolSurf: a new tool for the pharmaceutic optimization of lead compounds. Eur J Pharm Sci 11(Suppl.):S29–S39

    Article  CAS  Google Scholar 

  56. Pastor M, Cruciani G, McLay IM et al. (2000) GRid-INdependent descriptors (GRIND): A novel class of alignment-independent three-dimensional molecular descriptors. J Med Chem 43:3233–3243

    Article  CAS  Google Scholar 

  57. Mekenyan O, Ivanov J, Veith GD et al. (1994) Dynamic QSAR: A new search for active conformations and significant stereoelectronic indices. Quant Struct – Act Relat 13:302–307

    CAS  Google Scholar 

  58. Duca JS, Hopfinger AJ (2001) Estimation of molecular similarity based on 4D-QSAR analysis: Formalism and validation. J Chem Inf Comput Sci 41:1367–1387

    CAS  Google Scholar 

  59. Hopfinger AJ, Wang S, Tokarski JS et al. (1997) Construction of 3D-QSAR models using the 4D-QSAR analysis formalism. J Am Chem Soc 119:10509–10524

    Article  CAS  Google Scholar 

  60. Harary F (1969) Proof techniques in graph theory. Academic Press, San Diego CA

    Google Scholar 

  61. Kier LB, Hall LH (1976) Molecular connectivity in chemistry and drug research. Academic Press, New York

    Google Scholar 

  62. Bonchev D, Trinajstić N (1977) Information theory, distance matrix, and molecular branching. J Chem Phys 67:4517–4533

    Article  CAS  Google Scholar 

  63. Balaban AT, Motoc I, Bonchev D et al. (1983) Topological indices for structure–activity correlations. In: Charton M, Motoc I (eds) Steric effects in drug design (Topics in Current Chemistry, Vol. 114). Springer-Verlag, Berlin

    Google Scholar 

  64. Rouvray DH (1983) Should we have designs on topological indices? In: King RB (ed) Chemical applications of topology and graph theory. Studies in physical and theoretical chemistry. Elsevier, Amsterdam

    Google Scholar 

  65. Basak SC, Magnuson VR, Veith GD (1987) Topological indices: Their nature, mutual relatedness, and applications. In: Charton M, Motoc I (eds) Mathematical modelling in science and technology. Pergamon Press, Oxford

    Google Scholar 

  66. Trinajstić N (1992) Chemical graph theory. CRC Press, Boca Raton, FL

    Google Scholar 

  67. Randić M. (1993) Comparative regression analysis. Regressions based on a single descriptor. Croat Chem Acta 66:289–312

    Google Scholar 

  68. Diudea MV, Gutman I (1998) Wiener-type topological indices. Croat Chem Acta 71:21–51

    CAS  Google Scholar 

  69. Ivanciuc O, Balaban AT (1999) The graph description of chemical structures. In: Devillers J, Balaban AT (eds) Topological indices and related descriptors in QSAR and QSPR. Gordon & Breach Science Publishers, Amsterdam

    Google Scholar 

  70. Basak SC, Gute BD, Grunwald GD (1997) Use of topostructural, topochemical, and geometric parameters in the prediction of vapor pressure: A hierarchical QSAR approach. J Chem Inf Comput Sci 37:651–655

    CAS  Google Scholar 

  71. Diudea MV, Horvath D, Graovac A (1995) Molecular topology. 15. 3D distance matrices and related topological indices. J Chem Inf Comput Sci 35:129–135

    CAS  Google Scholar 

  72. Balaban AT (1997) From chemical graphs to 3D molecular modeling. In: Balaban AT (ed) From chemical topology to three-dimensional geometry. Plenum Press, New York

    Google Scholar 

  73. Hosoya H (1971) Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bull Chem Soc Jap 44:2332–2339

    Article  CAS  Google Scholar 

  74. Randić M, Wilkins CL (1979) Graph theoretical ordering of structures as a basis for systematic searches for regularities in molecular data. J Phys Chem 83:1525–1540

    Article  Google Scholar 

  75. Kier LB (1985) A shape index from molecular graphs. Quant Struct – Act Relat 4:109–116

    Article  CAS  Google Scholar 

  76. Randić M (2001) Novel shape descriptors for molecular graphs. J Chem Inf Comput Sci 41:607–613

    Google Scholar 

  77. Wiener H (1947) Structural determination of paraffin boiling points. J Am Chem Soc 69:17–20

    Article  CAS  Google Scholar 

  78. Ivanciuc O, Balaban T-S, Balaban AT (1993) Design of topological indices. Part 4. Reciprocal distance matrix, related local vertex invariants and topological indices. J Math Chem 12:309–318

    Article  CAS  Google Scholar 

  79. Ivanciuc O (2000) QSAR comparative study of Wiener descriptors for weighted molecular graphs. J Chem Inf Comput Sci 40:1412–1422

    CAS  Google Scholar 

  80. Ivanciuc O (1999) Design of topological indices. Part 11. Distance-valency matrices and derived molecular graph descriptors. Rev Roum Chim 44:519–528

    CAS  Google Scholar 

  81. Ivanciuc O, Ivanciuc T, Diudea MV (1997) Molecular graph matrices and derived structural descriptors. SAR & QSAR Environ Res 7:63–87

    Article  CAS  Google Scholar 

  82. Gutman I, Trinajstić N (1972) Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons. Chem Phys Lett 17:535–538

    Article  CAS  Google Scholar 

  83. Randić M (1975) Graph theoretical approach to local and overall aromaticity of benzenoid hydrocarbons. Tetrahedron 31:1477–1481

    Article  Google Scholar 

  84. Kier LB, Hall LH (1977) The nature of structure–activity relationships and their relation to molecular connectivity. Eur J Med Chem 12:307–312

    CAS  Google Scholar 

  85. Balaban AT (1982) Highly discriminating distance-based topological index. Chem Phys Lett 89:399–404

    Article  CAS  Google Scholar 

  86. Balaban AT (1987) Numerical modelling of chemical structures: Local graph invariants and topological indices. In: King RB, Rouvray DH (eds) Graph theory and topology in chemistry. Elsevier, Amsterdam

    Google Scholar 

  87. Bonchev D (1983) Information theoretic indices for characterization of chemical structures. Research Studies Press, Chichester

    Google Scholar 

  88. Mekenyan O, Bonchev D, Balaban AT (1988) Topological indices for molecular fragments and new graph invariants. J Math Chem 2:347–375

    Article  CAS  Google Scholar 

  89. Burden FR (1997) A chemically intuitive molecular index based on the eigenvalues of a modified adjacency matrix. Quant Struct – Act Relat 16:309–314

    Article  CAS  Google Scholar 

  90. Filip PA, Balaban T-S, Balaban AT (1987) A new approach for devising local graph invariants: Derived topological indices with low degeneracy and good correlation ability. J Math Chem 1:61–83

    Article  CAS  Google Scholar 

  91. Estrada E, Rodriguez L, Gutièrrez A (1997) Matrix algebraic manipulation of molecular graphs. 1. Distance and vertex-adjacency matrices. MATCH Commun Math Comput Chem 35:145–156

    CAS  Google Scholar 

  92. Todeschini R., Consonni V (2009) Molecular Descriptors for Chemoinformatics (in 2 volumes). Wiley-VCH, Weinheim

    Google Scholar 

  93. Ivanciuc O, Ivanciuc T, Cabrol-Bass D et al. (2000) Comparison of weighting schemes for molecular graph descriptors: application in quantitative structure–retention relationship models for alkylphenols in gas–liquid chromatography. J Chem Inf Comput Sci 40:732–743

    CAS  Google Scholar 

  94. Harary F (1959) Status and contrastatus. Sociometry 22:23–43

    Article  Google Scholar 

  95. Petitjean M (1992) Applications of the radius-diameter diagram to the classification of topological and geometrical shapes of chemical compounds. J Chem Inf Comput Sci 32:331–337

    CAS  Google Scholar 

  96. Ivanciuc O, Balaban AT (1994) Design of topological indices. Part 8. Path matrices and derived molecular graph invariants. MATCH Commun Math Comput Chem 30:141–152

    CAS  Google Scholar 

  97. Amić D, Trinajstić N (1995) On the detour matrix. Croat Chem Acta 68:53–62

    Google Scholar 

  98. Mohar B (1989) Laplacian matrices of graphs. Stud Phys Theor Chem 63:1–8

    Google Scholar 

  99. Mohar B (1989) Laplacian matrices of graphs. In: Graovac A (ed) MATH/CHEM/COMP 1988. Elsevier, Amsterdam

    Google Scholar 

  100. Randić M (1975) On characterization of molecular branching. J Am Chem Soc 97:6609–6615

    Article  Google Scholar 

  101. Kier LB, Hall LH (2000) Intermolecular accessibility: The meaning of molecular connectivity. J Chem Inf Comput Sci 40:792–795

    CAS  Google Scholar 

  102. Kier LB, Hall LH (1986) Molecular connectivity in structure–activity analysis. Research Studies Press – Wiley, Chichester

    Google Scholar 

  103. Altenburg K (1980) Eine Bemerkung zu dem Randicschen “Molekularen Bindungs-Index”. Z. Phys Chemie 261:389–393

    CAS  Google Scholar 

  104. Randić M, Hansen PJ, Jurs PC (1988) Search for useful graph theoretical invariants of molecular structure. J Chem Inf Comput Sci 28:60–68

    Google Scholar 

  105. Ivanciuc O (2001) Design of topological indices. Part 19. Computation of vertex and molecular graph structural descriptors with operators. Rev Roum Chim 46:243–253

    CAS  Google Scholar 

  106. Graham RL, Lovasz L (1978) Distance matrix polynomials of trees. Adv Math 29:60–88

    Article  Google Scholar 

  107. Diudea MV, Gutman I, Jäntschi L (2001) Molecular topology. Nova Science Publishers, Huntington NY

    Google Scholar 

  108. Nikolić S, Plavšić D, Trinajstić N (1992) On the Z-counting polynomial for edge-weighted graphs. J Math Chem 9:381–387

    Article  Google Scholar 

  109. Gálvez J, García-Domenech R, De Julián-Ortiz V (2006) Assigning wave functions to graphs: A way to introduce novel topological indices. MATCH Commun Math Comput Chem 56:509–518

    Google Scholar 

  110. Hosoya H, Hosoi K, Gutman I (1975) A topological index for the total π-electron energy. Proof of a generalized hückel rule for an arbitrary network. Theor Chim Acta 38:37–47

    Article  CAS  Google Scholar 

  111. Hosoya H, Murakami M, Gotoh M (1973) Distance polynomial and characterization of a graph. Natl Sci Rept Ochanomizu Univ 24:27–34

    Google Scholar 

  112. Consonni V, Todeschini R (2008) New spectral indices for molecule description. MATCH Commun Math Comput Chem 60:3–14

    CAS  Google Scholar 

  113. Gutman I (1978) The energy of a graph. Ber Math Statist Sekt Forschungszentrum 103:1–22

    Google Scholar 

  114. Gutman I (2005) Topology and stability of conjugated hydrocarbons. The dependence of total π-electron energy on molecular topology. J Serb Chem Soc 70:441–456

    Article  CAS  Google Scholar 

  115. Gutman I, Zhou B (2006) Laplacian energy of a graph. Lin Alg Appl 414:29–37

    Article  Google Scholar 

  116. Ivanciuc O (2003) Topological indices. In: Gasteiger J (ed) Handbook of chemoinformatics. Wiley-VCH, Weinheim

    Google Scholar 

  117. Ivanciuc O (2001) Design of topological indies. Part 26. Structural descriptors computed from the Laplacian matrix of weighted molecular graphs: Modeling the aqueous solubility of aliphatic alcohols. Rev Roum Chim 46:1331–1347

    CAS  Google Scholar 

  118. Lovasz L, Pelikan J (1973) On the eigenvalue of trees. Period Math Hung 3:175–182

    Article  Google Scholar 

  119. Mohar B (1991) The Laplacian spectrum of graphs. In: Alavi Y, Chartrand C, Ollermann OR (eds) Graph theory, combinatorics, and applications. Wiley, New York

    Google Scholar 

  120. Trinajstić N, Babic D, Nikolić S et al. (1994) The Laplacian matrix in chemistry. J Chem Inf Comput Sci 34:368–376

    Google Scholar 

  121. Mohar B, Babic D, Trinajstić N (1993) A novel definition of the Wiener index for trees. J Chem Inf Comput Sci 33:153–154

    CAS  Google Scholar 

  122. Gutman I, Yeh Y-N, Lee S-L et al. (1993) Some recent results in the theory of the Wiener number. Indian J Chem 32A:651–661

    CAS  Google Scholar 

  123. Marković S, Gutman I, Bancevic Z (1995) Correlation between Wiener and quasi-Wiener indices in benzenoid hydrocarbons. J Serb Chem Soc 60:633–636

    Google Scholar 

  124. Nikolić S, Trinajstić N, Jurić A et al. (1996) Complexity of some interesting (chemical) graphs. Croat Chem Acta 69:883–897

    Google Scholar 

  125. Mallion RB, Trinajstić N (2003) Reciprocal spanning-tree density: A new index for characterizing the intricacy of a (poly)cyclic molecular graph. MATCH Commun Math Comput Chem 48:97–116

    CAS  Google Scholar 

  126. Moreau G, Turpin C (1996) Use of similarity analysis to reduce large molecular libraries to smaller sets of representative molecules. Analusis 24:M17–M21

    CAS  Google Scholar 

  127. Kier LB, Hall LH (1990) An electrotopological-state index for atoms in molecules. Pharm Res 7:801–807

    Article  CAS  Google Scholar 

  128. Broto P, Moreau G, Vandycke C (1984) Molecular structures: perception, autocorrelation descriptor and SAR studies. Use of the autocorrelation descriptors in the QSAR study of two non-narcotic analgesic series. Eur J Med Chem 19:79–84

    CAS  Google Scholar 

  129. Broto P, Devillers J (1990) Autocorrelation of properties distributed on molecular graphs. In: Karcher W, Devillers J (eds) Practical applications of quantitative structure–activity relationships (QSAR) in environmental chemistry and toxicology. Kluwer, Dordrecht

    Google Scholar 

  130. Wagener M, Sadowski J, Gasteiger J (1995) Autocorrelation of molecular surface properties for modeling Corticosteroid Binding Globulin and cytosolic Ah receptor activity by neural networks. J Am Chem Soc 117:7769–7775

    Article  CAS  Google Scholar 

  131. Moreau G, Broto P (1980) The autocorrelation of a topological structure: A new molecular descriptor. Nouv J Chim 4:359–360

    CAS  Google Scholar 

  132. Moreau G, Broto P (1980) Autocorrelation of molecular structures, application to SAR studies. Nouv J Chim 4:757–764

    CAS  Google Scholar 

  133. Broto P, Moreau G, Vandycke C (1984) Molecular structures: Perception, autocorrelation descriptor and SAR studies. Autocorrelation descriptor. Eur J Med Chem 19:66–70

    CAS  Google Scholar 

  134. Hollas B (2002) Correlation properties of the autocorrelation descriptor for molecules. MATCH Commun Math Comput Chem 45:27–33

    CAS  Google Scholar 

  135. Klein CT, Kaiser D, Ecker G (2004) Topological distance based 3D descriptors for use in QSAR and diversity analysis. J Chem Inf Comput Sci 44:200–209

    CAS  Google Scholar 

  136. Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23

    CAS  Google Scholar 

  137. Geary RC (1954) The contiguity ratio and statistical mapping. Incorp Statist 5:115–145

    Article  Google Scholar 

  138. Wold S, Jonsson J, Sjöström M et al. (1993) DNA and peptide sequences and chemical processes multivariately modelled by principal component analysis and partial least-squares projections to latent structures. Anal Chim Acta 277:239–253

    Article  CAS  Google Scholar 

  139. Sjöström M, Rännar S, Wieslander Å (1995) Polypeptide sequence property relationships in Escherichia coli based on auto cross covariances. Chemom Intell Lab Syst 29:295–305

    Article  Google Scholar 

  140. Clementi S, Cruciani G, Riganelli D et al. (1993) Autocorrelation as a tool for a congruent description of molecules in 3D QSAR studies. Pharm Pharmacol Lett 3:5–8

    CAS  Google Scholar 

  141. Melville JL, Hirts JD (2007) TMACC: Interpretable correlation descriptors for quantitative structure–activity relationships. J Chem Inf Model 47:626–634

    Article  CAS  Google Scholar 

  142. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity: A rapid access to atomic charges. Tetrahedron 36:3219–3228

    Article  CAS  Google Scholar 

  143. Wildman SA, Crippen GM (1999) Prediction of physicochemical parameters by atomic contributions. J Chem Inf Comput Sci 39:868–873

    CAS  Google Scholar 

  144. Hou T-J, Xia K, Zhang W et al. (2004) ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach. J Chem Inf Comput Sci 44:266–275

    CAS  Google Scholar 

  145. Sadowski J, Wagener M, Gasteiger J (1995) Assessing similarity and diversity of combinatorial libraries by spatial autocorrelation functions and neural networks. Angew Chem Int Ed Engl 34:2674–2677

    Article  CAS  Google Scholar 

  146. Carhart RE, Smith DH, Venkataraghavan R (1985) Atom pairs as molecular features in structure–activity studies: Definition and applications. J Chem Inf Comput Sci 25:64–73

    CAS  Google Scholar 

  147. Schneider G, Neidhart W, Giller T et al. (1999) “Scaffold-Hopping” by topological pharmacophore search: A contribution to virtual screening. Angew Chem Int Ed Engl 38:2894–2895

    Article  CAS  Google Scholar 

  148. Clerc JT, Terkovics AL (1990) Versatile topological structure descriptor for quantitative structure/property studies. Anal Chim Acta 235:93–102

    Article  CAS  Google Scholar 

  149. Baumann K (2002) An alignment-independent versatile structure descriptor for QSAR and QSPR based on the distribution of molecular features. J Chem Inf Comput Sci 42:26–35

    CAS  Google Scholar 

  150. Fechner U, Franke L, Renner S et al. (2003) Comparison of correlation vector methods for ligand-based similarity searching. J Comput Aid Mol Des 17:687–698

    Article  CAS  Google Scholar 

  151. Renner S, Noeske T, Parsons CG et al. (2005) New allosteric modulators of metabotropic glutamate receptor 5 (mGluR5) found by ligand-based virtual screening. ChemBioChem 6:620–625

    Article  CAS  Google Scholar 

  152. Renner S, Schneider G (2006) Scaffold-hopping potential of ligand-based similarity concepts. ChemMedChem 1:181–185

    Article  CAS  Google Scholar 

  153. Estrada E (2001) Generalization of topological indices. Chem Phys Lett 336:248–252

    Article  CAS  Google Scholar 

  154. Estrada E, Matamala AR (2007) Generalized topological indices. Modeling gas-phase rate coefficients of atmospheric relevance. J Chem Inf Model 47:794–804

    Article  CAS  Google Scholar 

  155. Estrada E (2003) Generalized graph matrix, graph geometry, quantum chemistry, and optimal description of physicochemical properties. J Phys Chem A 107:7482–7489

    Article  CAS  Google Scholar 

  156. Ivanciuc O (2001) 3D QSAR models. In: Diudea MV (ed) QSPR/QSAR studies by molecular descriptors. Nova Science, Huntington NY

    Google Scholar 

  157. Todeschini R, Consonni V (2003) Descriptors from molecular geometry. In: Gasteiger J (ed) Handbook of chemoinformatics. Wiley-VCH, Weinheim

    Google Scholar 

  158. Randić M, Wilkins CL (1979) Graph theoretical study of structural similarity in benzomorphans. Int J Quantum Chem Quant Biol Symp 6:55–71

    Google Scholar 

  159. Balaban AT (1997) From chemical topology to 3D geometry. J Chem Inf Comput Sci 37:645–650

    CAS  Google Scholar 

  160. Mihalić Z, Nikolić S, Trinajstić N (1992) Comparative study of molecular descriptors derived from the distance matrix. J Chem Inf Comput Sci 32:28–37

    Google Scholar 

  161. Balasubramanian K (1995) Geometry-dependent connectivity indices for the characterization of molecular structures. Chem Phys Lett 235:580–586

    Article  CAS  Google Scholar 

  162. Mekenyan O, Peitchev D, Bonchev D et al. (1986) Modelling the interaction of small organic molecules with biomacromolecules. I. Interaction of substituted pyridines with anti-3-azopyridine antibody. Arzneim Forsch 36:176–183

    CAS  Google Scholar 

  163. Nikolić S, Trinajstić N, Mihalić Z et al. (1991) On the geometric-distance matrix and the corresponding structural invariants of molecular systems. Chem Phys Lett 179:21–28

    Article  Google Scholar 

  164. Basak SC, Gute BD, Ghatak S (1999) Prediction of complement-inhibitory activity of benzamidines using topological and geometric parameters. J Chem Inf Comput Sci 39:255–260

    CAS  Google Scholar 

  165. Castro EA, Gutman I, Marino D et al. (2002) Upgrading the Wiener index. J Serb Chem Soc 67:647–651

    Article  CAS  Google Scholar 

  166. Randić M (1988) Molecular topographic descriptors. Stud Phys Theor Chem 54:101–108

    Google Scholar 

  167. Toropov AA, Toropova AP, Ismailov T et al. (1998) 3D weighting of molecular descriptors for QSAR/QSPR by the method of ideal symmetry (MIS). 1. Application to boiling points of alkanes. J Mol Struct (Theochem) 424:237–247

    Article  CAS  Google Scholar 

  168. Krenkel G, Castro EA, Toropov A A (2002) 3D and 4D molecular models derived from the ideal symmetry method: prediction of alkanes normal boiling points. Chem Phys Lett 355:517–528

    Article  CAS  Google Scholar 

  169. Toropov AA, Toropova AP, Muftahov RA et al. (1994) Simulation of molecular systems by the ideal symmetry method for revealing quantitative structure–property relations. Russ J Phys Chem 68:577–579

    Google Scholar 

  170. Bath PA, Poirrette AR, Willett P et al. (1995) The extent of the relationship between the graph–theoretical and the geometrical shape coefficients of chemical compounds. J Chem Inf Comput Sci 35:714–716

    CAS  Google Scholar 

  171. Pepperrell CA, Willett P (1991) Techniques for the calculation of three-dimensional structural similarity using inter-atomic distances. J Comput Aid Mol Des 5:455–474

    Article  CAS  Google Scholar 

  172. Bemis GW, Kuntz ID (1992) A fast and efficient method for 2D and 3D molecular shape description. J Comput Aid Mol Des 6:607–628

    Article  CAS  Google Scholar 

  173. Nilakantan R, Bauman N, Venkataraghavan R (1993) New method for rapid characterization of molecular shapes: Applications in drug design. J Chem Inf Comput Sci 33:79–85

    CAS  Google Scholar 

  174. Bath PA, Poirrette AR, Willett P et al. (1994) Similarity searching in files of three-dimensional chemical structures: Comparison of fragment-based measures of shape similarity. J Chem Inf Comput Sci 34:141–147

    CAS  Google Scholar 

  175. Good AC, Kuntz ID (1995) Investigating the extension of pairwise distance pharmacophore measures to triplet-based descriptors. J Comput Aid Mol Des 9:373–379

    Article  CAS  Google Scholar 

  176. Good AC, Ewing TJA, Gschwend DA et al. (1995) New molecular shape descriptors: Application in database screening. J Comput Aid Mol Des 9:1–12

    Article  CAS  Google Scholar 

  177. Brown RD, Martin YC (1996) Use of structure-activity data to compare structure-based clustering methods and descriptors for use in compound selection. J Chem Inf Comput Sci 36:572–584

    CAS  Google Scholar 

  178. Bajzer Ž, Randić M, Plavšić D et al. (2003) Novel map descriptors for characterization of toxic effects in proteomics maps. J Mol Graph Model 22:1–9

    Article  CAS  Google Scholar 

  179. Randić M (1995) Molecular profiles. Novel geometry-dependent molecular descriptors. New J Chem 19:781–791

    Google Scholar 

  180. Randić M, Kleiner AF, De Alba LM (1994) Distance/distance matrices. J Chem Inf Comput Sci 34:277–286

    Google Scholar 

  181. Randić M, Krilov G (1999) On a characterization of the folding of proteins. Int J Quant Chem 75:1017–1026

    Article  Google Scholar 

  182. Randić M (1997) On characterization of chemical structure. J Chem Inf Comput Sci 37:672–687

    Google Scholar 

  183. Todeschini R, Gramatica P (1997) 3D-modelling and prediction by WHIM descriptors. Part 5. Theory development and chemical meaning of WHIM descriptors. Quant Struct – Act Relat 16:113–119

    Article  CAS  Google Scholar 

  184. Silverman BD, Platt DE (1996) Comparative molecular moment analysis (CoMMA): 3D-QSAR without molecular superposition. J Med Chem 39:2129–2140

    Article  CAS  Google Scholar 

  185. Consonni V, Todeschini R, Pavan M et al. (2002) Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. Part 2. Application of the novel 3D molecular descriptors to QSAR/QSPR studies. J Chem Inf Comput Sci 42:693–705

    CAS  Google Scholar 

  186. Fedorowicz A, Singh H, Soderholm S et al. (2005) Structure-activity models for contact sensitization. Chem Res Toxicol 18:954–969

    Article  CAS  Google Scholar 

  187. Pérez González M, Terán C, Teijeira M et al. (2005) GETAWAY descriptors to predicting A2A adenosine receptors agonists. Eur J Med Chem 40:1080–1086

    Article  CAS  Google Scholar 

  188. Saiz-Urra L, Pérez González M, Fall Y et al. (2007) Quantitative structure–activity relationship studies of HIV-1 integrase inhibition. 1. GETAWAY descriptors. Eur J Med Chem 42:64–70

    Article  CAS  Google Scholar 

  189. Soltzberg LJ, Wilkins CL (1976) Computer recognition of activity class from molecular transforms. J Am Chem Soc 98:4006

    Article  CAS  Google Scholar 

  190. Soltzberg LJ, Wilkins CL (1977) Molecular transforms: A potential tool for structure–activity studies. J Am Chem Soc 99:439–443

    Article  CAS  Google Scholar 

  191. Wierl K (1931) Elektronenbeugung und Molekulbau. Ann Phys (Leipzig) 8:521–564

    CAS  Google Scholar 

  192. Novikov VP, Raevsky OA (1982) Representation of molecular structure as a spectrum of interatomic distances for the study of structure-biological activity relations. Khimico-Farmaceuticheskii Zhurnal 16:574–581

    CAS  Google Scholar 

  193. Raevsky OA, Dolmatova L, Grigor’ev VJ et al. (1995) Molecular recognition descriptors in QSAR. In: Sanz F, Giraldo J, Manaut F (eds) QSAR and Molecular Modelling: Concepts, Computational Tools and Biological Applications. Prous Science, Barcelona

    Google Scholar 

  194. Raevsky OA, Trepalin SV, Razdol’skii AN (2000) New QSAR descriptors calculated from interatomic interaction spectra. Pharm Chem J 34:646–649

    Article  Google Scholar 

  195. King JW, Kassel RJ, King BB (1990) The integrated molecular transform as a correlation parameter. Int J Quant Chem Quant Biol Symp 17:27–34

    Article  CAS  Google Scholar 

  196. Famini GR, Kassel RJ, King JW et al. (1991) Using theoretical descriptors in quantitative structure–activity relationships: Comparison with the molecular transform. Quant Struct -Act Relat 10:344–349

    Article  CAS  Google Scholar 

  197. Schuur J, Gasteiger J (1996) 3D-MoRSE code – A new method for coding the 3D structure of molecules. In: Gasteiger J (ed) Software Development in Chemistry. Fachgruppe Chemie-Information-Computer (CIC). Frankfurt am Main, Germany

    Google Scholar 

  198. Schuur J, Gasteiger J (1997) Infrared spectra simulation of substituted benzene derivatives on the basis of a 3D structure representation. Anal Chem 69:2398–2405

    Article  CAS  Google Scholar 

  199. Hemmer MC, Steinhauer V, Gasteiger J (1999) Deriving the 3D structure of organic molecules from their infrared spectra. Vibrat Spect 19:151–164

    Article  CAS  Google Scholar 

  200. Selzer P, Gasteiger J, Thomas H et al. (2000) Rapid access to infrared reference spectra of arbitrary organic compounds: scope and limitations of an approach to the simulation of infrared spectra by neural networks. Chem Eur J 6:920–927

    Article  CAS  Google Scholar 

  201. Aires-de-Sousa J, Gasteiger J,. (2001) New description of molecular chirality and its application to the prediction of the preferred enantiomer in stereoselective reactions: J Chem Inf Comput Sci 41:369–375

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviana Consonni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Consonni, V., Todeschini, R. (2010). Molecular Descriptors. In: Puzyn, T., Leszczynski, J., Cronin, M. (eds) Recent Advances in QSAR Studies. Challenges and Advances in Computational Chemistry and Physics, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9783-6_3

Download citation

Publish with us

Policies and ethics