Kinematic properties of the jellyfish Aurelia sp

  • Tom Bajcar
  • Vlado Malačič
  • Alenka Malej
  • Brane Širok
Chapter
Part of the Developments in Hydrobiology book series (DIHY, volume 206)

Abstract

A new, relatively simple method for determining the kinematic properties of jellyfish is presented. The bell movement of the scyphomedusa (Aurelia sp.) during its pulsation cycle was analysed using computer-aided visualization. Sequences of video images of individual Aurelia in a large aquarium were taken using a standard video camera. The images were then processed to obtain time series of the relative positions of selected points on the surface of the medusa’s bell. The duration of the bell relaxation was longer than that of the bell contraction, thereby confirming published results. In addition, the area of the exumbrellar surface of Aurelia increased during bell relaxation by more than 1.3-times that of the exumbrellar surface area during the maximum contraction of the bell. The volume change during the bell pulsation cycle was also measured using the same visualization method. Significant changes, of up to 50%, in the subumbrellar cavity volume were revealed while, in contrast, the volume between the exumbrellar and subumbrellar surfaces generally remained unchanged during the entire pulsation cycle of the bell. Comparison of the time series of the exumbrellar surface area and of the subumbrellar cavity volume indicated that the change of volume takes place before the change of the surface area of the bell.

Keywords

Scyphozoa Computer-aided visualization Bell pulsation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attrill, M. J., J. Wright & M. Edwards, 2007. Climate-related increases in jellyfish frequency suggest more gelatinous future for the North Sea. Limnology & Oceanography 52: 480–485.Google Scholar
  2. Brodeur, R. D., C. E. Mills, J. E. Overland, G. E. Walters & J. D. Schumacher, 1999. Evidence for a substantial increase in gelatinous zooplankton in the Bering sea, with a possible link to climate change. Fisheries Oceanography 8: 296–306.CrossRefGoogle Scholar
  3. Colin, S. P. & J. H. Costello, 2002. Morphology, swimming performance and propulsive mode of six co-occurring hydromedusae. The Journal of Experimental Biology 205: 427–437.PubMedGoogle Scholar
  4. Colin, S. P., J. H. Costello & H. Kordula, 2006. Upstream foraging by medusae. Marine Ecology Progress Series 327: 143–155.CrossRefGoogle Scholar
  5. Costello, J. H., S. P. Colin & J. O. Dabiri, 2008. Medusan morphospace: phylogenetic constrains, biomechanical solutions, and ecological consequences. Invertebrate Biology, doi:10.1111/j.1744-7410.2008.00126x.Google Scholar
  6. Costello, J. H. & S. P. Colin, 1994. Morphology, fluid motion and predation by the scyphomedusa Aurelia aurita. Marine Biology 121: 327–334.CrossRefGoogle Scholar
  7. Costello, J. H. & S. P. Colin, 1995. Flow and feeding by swimming scyphomedusae. Marine Biology 124:399–406.CrossRefGoogle Scholar
  8. D’Ambra, I., J. H. Costello & F. Bentivegna, 2001. Flow and prey capture by the scyphomedusa Phyllorhiza punctata von Lendenfeld 1884. Hydrobiologia 451: 223–227.CrossRefGoogle Scholar
  9. Dabiri, J. O., S. P. Colin & J. H. Costello, 2006. Fast-swimming hydromedusae exploit velar kinematics to form an optimal vortex wake. Journal of Experimental Biology 209: 2025–2033.PubMedCrossRefGoogle Scholar
  10. Dabiri, J. O., S. P. Colin, J. H. Costello & M. Gharib, 2005. Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses. Journal of Experimental Biology 208: 1257–1265.PubMedCrossRefGoogle Scholar
  11. Dabiri, J. O. & M. Gharib, 2003. Sensitivity analysis of kinematic approximations in dynamic medusan swimming models. Journal of Experimental Biology 206: 3675–3680.PubMedCrossRefGoogle Scholar
  12. Daniel, T. L., 1983. Mechanics and energetics of medusan jet propulsion. Canadian Journal of Zoology 61: 1406–1420.Google Scholar
  13. DeMont, M. E. & J. M. Gosline, 1988. Mechanics of jet propulsion in the hydromedusan jellyfish, Polyorchis penicillatus. I. Mechanical properties of thelocomotor structure. Journal of Experimental Biology 134: 313–332.Google Scholar
  14. Ford, M. D. & J. H. Costello, 2000. Kinematic comparison of bell contraction by four species of hydromedusae. Scientia Marina 64(Suppl 1): 47–53.Google Scholar
  15. Ford, M. D., J. H. Costello & K. B. Heilderberg, 1997. Swimming and feeding by the scyphomedusa Chrysaora quinquecirrha. Marine Biology 129: 355–362.CrossRefGoogle Scholar
  16. Gladfelter, W. B., 1972. Structure and function of the loco-motory system of the Scyphomedusa Cyanea capilata. Marine Biology 14: 150–160.Google Scholar
  17. Gladfelter, W. B., 1973. A comparative analysis of the loco-motory systems of medusoid Cnidaria. Helgolnder wiss. Meeresunters 25: 228–272.Google Scholar
  18. Graham, M., 2001. Numerical increases and distribution shifts of Chrysaora quiquecirrha (Desor) and Aurelia aurita (Linne) (Cnidaria: Scyphozoa) in the northern Gulf of Mexico. Hydobiologia 451: 97–111.Google Scholar
  19. Graham, M., D. L. Martin, D. Felder, V. L. Asper & H. M. Perry, 2003. Ecological and economic implications of a tropical jellyfish invader in the Gulf of Mexico. Biological Invasions 5: 53–69.CrossRefGoogle Scholar
  20. Hays, G. C., A. J. Richardson & C. Robinson, 2005. Climate change and marine plankton. Trends in Ecology and Evolution 20: 337–344.PubMedCrossRefGoogle Scholar
  21. Lauder, G. V. & E. D. Tytell, 2006. Hydrodynamics of undulatory propulsion. Fish Physiology 23: 425–468.CrossRefGoogle Scholar
  22. Malej, A. & A. Malej, 2004. Invasion of the jellyfish Pelagia noctiluca in the Northern Adriatic: a non-success story. In Dumont, H., T. Shiganova & U. Niermann (eds.), Aquatic Invasions in the Black, Caspian, and Mediterranean Seas. Kluwer Academic Press, Dordrecht: 273–285.CrossRefGoogle Scholar
  23. Malej, A., V. Turk, D. Lučić & A. Benović, 2007. Direct and indirect trophic interactions of Aurelia sp. (Scyphozoa) in a stratified marine environment (Mljet Lakes, Adriatic Sea). Marine Biology 151: 827–841.CrossRefGoogle Scholar
  24. Matanoski, J. C. & R. R. Hood, 2006. An individual-based numerical model of medusa swimming behaviour. Marine Biology 149: 595–608.CrossRefGoogle Scholar
  25. Megill, W. M., 2002. The biomechanics of jellyfish swimming. Ph.D. Dissertation, Department of Zoology, University of British Columbia, 116 pp.Google Scholar
  26. Mills, C. B., 1981. Diversity of swimming behaviours in hydromedusae as related to feeding and utilization of space. Marine Biology 64: 185–189.Google Scholar
  27. Purcell, J. E. & M. N. Arai, 2001. Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydobiologia 451: 27–44.CrossRefGoogle Scholar
  28. Sach, L., 1997. Angewandte Statistik: Anwendung statistischer Methoden. Springer-Verlag, Berlin.Google Scholar
  29. Shorten, M., J. Davenport, J. E. Seymour, M. C. Cross, T. J. Carrette, G. Woodward & T. F. Cross, 2005. Kinematic analysis of swimming in Australian box jellyfish, Chiropsalmus sp. and Chironex flecheri (Cubozoa, Cnidaria: Chirodropidae). Journal of Zoology 267: 371–380.CrossRefGoogle Scholar
  30. Širok, B., T. Bajcar & M. Dular, 2002. Reverse flow phenomenon in a rotating diffuser. Journal of Flow Visualization and Image Processing 9: 193–210.Google Scholar
  31. Sobel, I., 1978. Neighborhood coding of binary images for fast contour following and general array binary processing. Computer Graphics and Image Processing 8: 127–135.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Tom Bajcar
    • 1
  • Vlado Malačič
    • 2
  • Alenka Malej
    • 2
  • Brane Širok
    • 1
  1. 1.Faculty of Mechanical EngineeringUniversity of LjubljanaLjubljanaSlovenia
  2. 2.National Institute of BiologyMarine Biology Station PiranPiranSlovenia

Personalised recommendations