Multiscale simulations of complex systems: computation meets reality

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 68)


Multiscale simulations are evolving into a powerful tool for exploring the nature of complex physical phenomena. We discuss two representative examples of such phenomena, stress corrosion cracking and ultrafast DNA sequencing during translocation through nanopores, which are relevant to practical applications. Multiscale methods that are able to exploit the potential of massively parallel computer architectures, will offer unique insight into such complex phenomena. This insight can guide the design of novel devices and processes based on a fundamental understanding of the link between atomistic-scale processes and macroscopic behavior.


Multiscale simulations Biomolecules Corrosion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lu, G., Kaxiras, E.: Overview of multiscale simulations of materials. In: Rieth, M., Schommers, W. (eds.) Handbook of Theoretical and Computational Nanothechnology, vol. X, pp. 1–33. American Scientific Publishers (2005)Google Scholar
  2. 2.
    Winzer N., Artens A., Song G., Ghali E., Dietzel W., Ulrich K., Hortand N., Blawert C.: A critical review of the stress corrosion cracking (SCC) of Magnesium alloys. Adv. Eng. Mater. 7, 659 (2005)CrossRefGoogle Scholar
  3. 3.
    Hirth J.P., Lothe J.: Theory of Dislocations. Krieger Publshing Co., Malabar, Florida (1992)Google Scholar
  4. 4.
    Peierls, R.: The size of a dislocation. Proc. Phys. Soc. London 52, 34–37 (1940); Nabarro, F.R.N.: Dislocations in a simple cubic lattice. Proc. Phys. Soc. London 59, 256–272 (1947)Google Scholar
  5. 5.
    Devincre B., Kubin L.: Mesoscopic simulations of dislocations and plasticity. Mater. Sci. Eng. A 234–236, 8–14 (1994)Google Scholar
  6. 6.
    Bulatov V., Abraham F.F., Kubin L., Yip S.: Connecting atomistic and mesoscopic simulations of crystal plasticity. Nature 391, 669–681 (1998)CrossRefADSGoogle Scholar
  7. 7.
    Car R., Parrinello M.: Unified approach for molecular-dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985)CrossRefADSGoogle Scholar
  8. 8.
    Kuhne T.D., Krack M., Mohamed F.R., Parrinello M.: Efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics. Phys. Rev. Lett. 98, 066401 (2007)CrossRefADSGoogle Scholar
  9. 9.
    Abraham, F., Broughton, J., Bernstein, N., Kaxiras, E.: Spanning the length scales in dynamic simulation. Comput. Phys. B. 12, 538–546 (1998); Broughton, J., Abraham, F., Bernstein, N., Kaxiras, E.: Concurrent coupling of length scales: methodology and application. Phys. Rev. B. 60, 2391–2403 (1999)Google Scholar
  10. 10.
    Tadmor E.B., Ortiz M., Phillips R.: Quasicontinuum analysis of defects in solids. Philos. Mag. A. 73, 1529–1563 (1996)CrossRefADSGoogle Scholar
  11. 11.
    Smith G.S., Tadmor E.B., Bernstein N., Kaxiras E.: Multiscale simulation of silicon nanoindentation. Acta Mater. 49, 4089 (2001)CrossRefGoogle Scholar
  12. 12.
    Tadmor E.B., Waghmare U.V., Smith G.S., Kaxiras E.: Polarization switching in PbTiO3: an ab initio finite element simulation. Acta Mater. 50, 2989 (2002)CrossRefGoogle Scholar
  13. 13.
    Voter, A.F.: A method for accelerating the molecular dynamics simulation of infrequent events. J. Chem. Phys. 106, 4665–4677 (1997); Voter, A.F.: Hyperdynamics: accelerated molecular dynamics of infrequent events. Phys. Rev. Lett. 78, 3908–3911 (1997)Google Scholar
  14. 14.
    Kasianowicz, J.J., Brandin, E., Branton, D., Deamer, D.: Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 93, 13770–13773 (1996); Meller, A., Nivon, L., Brandin, E., Golovchenko, J., Branton, D.: Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl. Acad. Sci. 97, 1079–1084 (2000); Li, J., Gershow, M., Stein, D., Brandin, E., Golovchenko, J.A.: DNA molecules and configurations in a solid-state nanopore microscope. Nat. Mater. 2, 611–615 (2003); Storm, A.J., Storm, C., Chen, J., Zandbergen, H., Joanny, J.-F., Dekker, C.: Fast DNA translocation through a solid-state nanopore. Nanoletter 5, 1193–1197 (2005)Google Scholar
  15. 15.
    Dekker C.: Solid state nanopores. Nat. Nanotech. 2, 209–215 (2007)CrossRefADSGoogle Scholar
  16. 16.
    Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon Press, Oxford (2001); Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and applications. Phys. Rep. 222, 145–197 (1992)Google Scholar
  17. 17.
    Fyta, M.G., Melchionna, S., Kaxiras, E., Succi, S.: Multiscale coupling of molecular dynamics and hydrodynamics: application to DNA translocation through a nanopore. Multiscale Model. Sim. 5, 1156–1173 (2006); Fyta, M.G., Melchionna, S., Kaxiras, E., Succi, S.: Exploring DNA translocation through a nanopore via a multiscale Lattice-Boltzmann molecular-dynamics methodology. Int. J. Mod. Phys. C. 18, 685–692 (2007); Fyta, M.G., Kaxiras, E., Melchionna, S., Succi, S.: Multiscale modeling of biological flows. Comput. Sci. Eng. 20 (2008) to appearGoogle Scholar
  18. 18.
    Bernaschi M., Melchionna S., Succi S., Fyta M., Kaxiras E.: Quantized current blockade and hydrodynamic correlations in biopolymer translocation through nanopores: evidence from multiscale simulations. Nano Lett. 8, 1115–1119 (2008)CrossRefADSGoogle Scholar
  19. 19.
    Öttinger, H.C.: Stochastic Processes in Polymeric Fluids: Tools and Examples for Developing Simulation Algorithms. Springer, Berlin (1996); Beyond Equilibrium Thermodynamics. Wiley, New York (2005)Google Scholar
  20. 20.
    Praprotnik M., Kremer K., Delle Site L.: Adaptive molecular resolution via a continuous change of the phase space dimensionality. Phys. Rev. E. 75, 017701 (2007)CrossRefADSGoogle Scholar
  21. 21.
    E,W., Engquist, B., Li, X.T.: Heterogeneous multiscale methods: a review. Commun. Comp. Phys. 2, 367–450 (2007); and in Kevrekidis, I.G., Gear, C.W., Hummer, G.: Equation-free: the computer-aided analysis of complex multiscale systems. AiChe J. 50, 1346–1355 (2004)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Physics and School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA
  2. 2.Istituto Applicazioni Calcolo, CNRRomaItaly
  3. 3.Initiative in Innovative ComputingHarvard UniversityCambridgeUSA

Personalised recommendations