Characteristic quantities and dimensional analysis

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 68)


Phenomena in the physical sciences are described with quantities that have a numerical value and a dimension, i.e., a physical unit. Dimensional analysis is a powerful aspect of modeling and simulation. Characteristic quantities formed by a combination of model parameters can give new insights without detailed analytic or numerical calculations. Dimensional requirements lead to Buckingham’s Π theorem—a general mathematical structure of all models in physics. These aspects are illustrated with many examples of modeling, e.g., an elastic beam on supports, wave propagation on a liquid surface, the Lennard-Jones potential for the interaction between atoms, the Lindemann melting rule, and saturation phenomena in electrical and thermal conduction.


Dimensional analysis Characteristic quantity Scaling Buckingham’s theorem Lennard-Jones interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashcroft N.W., Mermin N.D.: Solid State Physics. Holt, Rinehart and Winston, Austin (1976)Google Scholar
  2. 2.
    Barenblatt G.I.: Dimensional Analysis. Gordon and Breach, New York (1987)Google Scholar
  3. 3.
    Buckingham E.: On physically similar systems: illustrations of the use of dimensional equations. Phys. Rev. 4, 345–376 (1914)CrossRefADSGoogle Scholar
  4. 4.
    Dyer, K.M., Pettitt, B.M., Stell, G.: Systematic investigation of theories of transport in the Lennard-Jones fluid. J. Chem. Phys. 126, 034502/1–034502/9 (2007)CrossRefADSGoogle Scholar
  5. 5.
    Fisk Z., Webb G.W.: Saturation of the high-temperature normal-state electrical resistivity of superconductors. Phys. Rev. Lett. 36, 1084–1086 (1976)CrossRefADSGoogle Scholar
  6. 6.
    Gilman, Y., Allen, P.B., Tahir-Kheli, J., Goddard, W.A., III.: Numerical resistivity calculations for disordered three-dimensional metal models using tight-binding Hamiltonians. Phys. Rev. B 70, 224201/1–224201/3 (2004)CrossRefADSGoogle Scholar
  7. 7.
    Gilvarry J.J.: The Lindemann and Grüneisen laws. Phys. Rev. 102, 308–316 (1956)CrossRefADSGoogle Scholar
  8. 8.
    Goren S.L.: The instability of an annular thread of fluid. J. Fluid Mech. 12, 309–319 (1962)CrossRefMathSciNetADSMATHGoogle Scholar
  9. 9.
    Granger R.A.: Fluid Mechanics. Dover, New York (1985)Google Scholar
  10. 10.
    Grimvall G.: Transport properties of metals and alloys. Physica 127B, 165–169 (1984)Google Scholar
  11. 11.
    Grimvall, G.: Thermophysical Properties of Materials. Enlarged and revised edition. North-Holland (1999)Google Scholar
  12. 12.
    Gunnarsson O., Calandra M., Han J.E.: Colloquium: saturation of electrical resistivity. Rev. Mod. Phys. 75, 1085–1099 (2003)CrossRefADSGoogle Scholar
  13. 13.
    Jones J.E.: On the determination of molecular fields—II. From the equation of state of a gas. Proc. R. Soc. Lond. A 106, 463–477 (1924)CrossRefADSGoogle Scholar
  14. 14.
    Kihara T., Koba S.: Crystal structures and intermolecular forces of rare gases. J. Phys. Soc. Jpn. 7, 348–354 (1952)CrossRefADSGoogle Scholar
  15. 15.
    Kittel C.: Introduction to Solid State Physics, 8th edn. Wiley, New York (2005)Google Scholar
  16. 16.
    Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, 2nd edn. Elsevier (1987)Google Scholar
  17. 17.
    Lighthill J.: Waves in Fluids. Cambridge University Press, Cambridge (1978)MATHGoogle Scholar
  18. 18.
    Lindemann F.A.: Molecular frequencies. Physik. Zeits. 11, 609–612 (1910)Google Scholar
  19. 19.
    Mooij J.H.: Electrical conduction in concentrated disordered transition metal alloys. Phys. Stat. Solidi A 17, 521–530 (1973)CrossRefADSGoogle Scholar
  20. 20.
    Slack G.A.: The thermal conduction of a non-metallic crystal. In: Ehrenreich, H., Seitz, F., Turnbull, D.(eds) Solid State Physics, vol. 34, pp. 1–71. Academic Press, New York (1979)Google Scholar
  21. 21.
    Stillinger F.H.: Lattice sums and their phase diagram implications for the classical Lennard-Jones model. J. Chem. Phys. 115, 5208–5212 (2001)CrossRefADSGoogle Scholar
  22. 22.
    Szirtes T.: Applied Dimensional Analysis and Modeling. McGraw-Hill, New York (1998)MATHGoogle Scholar
  23. 23.
    Taylor E.S.: Dimensional Analysis for Engineers. Clarendon Press, Oxford (1974)Google Scholar
  24. 24.
    Thompson, D.W. In: Bonner, J.T. (ed.) On Growth and Form, Abridged edn. Cambridge University Press, Cambridge (1961)Google Scholar
  25. 25.
    Timoshenko S.: Strength of Materials. Part II. Advanced Theory and Problems. McMillan, New York (1930)Google Scholar
  26. 26.
    Timoshenko S.: Strength of Materials. Part I. Elementary Theory and Problems. McMillan, New York (1930)Google Scholar
  27. 27.
    Wiesmann H., Gurvitch M., Lutz H., Ghosh A., Schwarz B., Strongin M., Allen P. B., Halley J.W.: Simple model for characterizing the electrical resistivity in A-15 superconductors. Phys. Rev. Lett. 38, 782–785 (1977)CrossRefADSGoogle Scholar
  28. 28.
    Wolf G.H., Jeanloz R.: Lindemann melting law: anharmonic correction and test of its validity for minerals. J. Geophys. Res. 89, 7821–7835 (1984)CrossRefADSGoogle Scholar
  29. 29.
    Zeller R.C., Pohl R.O.: Thermal conductivity and specific heat of non-crystalline solids. Phys. Rev. B 4, 2029–2041 (1971)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Theoretical Physics, Royal Institute of TechnologyAlbaNova University CenterStockholmSweden

Personalised recommendations