Advanced modulation formats for fiber optic communication systems

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 68)

Abstract

Choice of modulation format plays a critical role in the design and performance of fiber optic communication systems. We discuss the basic physics of electro-optic phase and amplitude modulation and derive model transfer functions for ideal and non-ideal Mach-Zehnder modulators. We describe the generation and characteristics of the standard nonreturn-to-zero (NRZ) modulation format, as well as advanced formats such as return-to-zero (RZ), carrier-suppressed RZ (CSRZ), duobinary, modified duobinary, differential phase-shift keyed (DPSK), and return-to-zero DPSK (RZ-DPSK). Finally, we discuss the relative merits of these formats with respect to a variety of system impairments.

Keywords

Fiber optics Modulation formats Optical communication system Modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saleh B., Teich M.: Fundamentals of Photonics, Chap. 18. John Wiley & Sons, New York (1991)CrossRefGoogle Scholar
  2. 2.
    Koyama F., Iga K.: Frequency chirping in external modulators. J. Lightwave Technol. 6(1), 87–93 (1988)CrossRefADSGoogle Scholar
  3. 3.
    Djupsjöbacka A.: Residual chirp in integrated-optic modulators. IEEE Photon. Technol. Lett. 4(1), 41–43 (1992)CrossRefADSGoogle Scholar
  4. 4.
    Fishman D.A.: Design and performance of externally modulated 1.5-μm laser transmitter in the presence of chromatic dispersion. J. Lightwave Technol. 11(4), 624–632 (1993)CrossRefADSGoogle Scholar
  5. 5.
    Mu R.-M., Yu T., Grigoryan V.S., Menyuk C.R.: Dynamics of the chirped return-to-zero modulation format. J. Lightwave Technol. 20(1), 47–57 (2002)CrossRefADSGoogle Scholar
  6. 6.
    Haykin S.: Communication Systems, 4th edn. John Wiley & Sons, New York (2001)Google Scholar
  7. 7.
    Cheng K.S., Conradi J.: Reduction of pulse-to-pulse interaction using alternative RZ formats in 40-Gb/s systems. IEEE Photon. Technol. Lett. 14(1), 98–100 (2002)CrossRefADSGoogle Scholar
  8. 8.
    Proakis J.G.: Digital Communications, 3rd edn, Chap. 5. McGraw-Hill, New York (1995)Google Scholar
  9. 9.
    Ghatak A., Thyagarajan K.: An Introduction to Fiber Optics, Chap. 17. Cambridge University Press, (1998)Google Scholar
  10. 10.
    Zhu B., Nelson L.E., Stulz S., Gnauck A.H., Doerr C., Leuthold J., Grüner-Nielsen L., Pedersen M.O., Kim J., Lingle R.L. Jr.: High spectral density long-haul 40-Gb/s transmission using CSRZ-DPSK format. J. Lightwave Technol. 22(1), 208–214 (2004)CrossRefADSGoogle Scholar
  11. 11.
    Gnauck A.H., Liu X., Wei X., Gill D.M., Burrows E.C.: Comparison of modulation formats for 42.7-Gb/s single-channel transmission through 1980 km of SSMF. IEEE Photon. Technol. Lett. 16(3), 909–911 (2004)CrossRefADSGoogle Scholar
  12. 12.
    Agrawal G.P.: Fiber-Optic Communication Systems, 2nd edn. John Wiley & Sons, New York (1997)Google Scholar
  13. 13.
    Georges T.: Bit error rate degradation of interacting solitons owing to non-Gaussian statistics. Electron. Lett. 31(14), 1174–1175 (1995)CrossRefGoogle Scholar
  14. 14.
    Chandrasekhar S., Liu X.: Experimental study on 42.7-Gb/s forward-error-correction performance under burst errors. IEEE Photon. Technol. Lett. 20(11), 927–929 (2008)CrossRefADSGoogle Scholar
  15. 15.
    Lobanov S., Raghavan S., Downie J., Mauro Y., Sauer M., Hurley J.: Impact of uncompensated dispersion on non-Gaussian statistics in duobinary transmission. Opt. Eng. 46, 010501 (2007)CrossRefADSGoogle Scholar
  16. 16.
    Olsson N.A.: Lightwave systems with optical amplifiers. J. Lightwave Technol. 7(7), 1071–1082 (1989)CrossRefADSGoogle Scholar
  17. 17.
    Marcuse D.: Derivation of analytical expressions for the bit-error probability in lightwave systems with optical amplifiers. J. Lightwave Technol. 8(12), 1816–1823 (1990)CrossRefADSGoogle Scholar
  18. 18.
    Kumar S., Mauro J.C., Raghavan S.: Impact of modulation format and filtering on the calculation of amplified spontaneous emission noise penalty. J. Opt. Comm. 25, 945–953 (2004)Google Scholar
  19. 19.
    Agrawal G.P.: Nonlinear Fiber Optics, 2nd edn. Academic Press, San Diego (1995)Google Scholar
  20. 20.
    Hayee M.I., Willner A.E.: NRZ versus RZ in 10-40-Gb/s dispersion-managed WDM transmission systems. IEEE Photon. Technol. Lett. 11(8), 991–993 (1999)CrossRefADSGoogle Scholar
  21. 21.
    Breuer D., Petermann K.: Comparison of NRZ- and RZ-modulation format for 40-Gb/s TDM standard-fiber systems. IEEE Photon. Technol. Lett. 9(3), 398–400 (1997)CrossRefADSGoogle Scholar
  22. 22.
    Suzuki M., Edagawa N.: Dispersion-managed high-capacity ultra-long-haul transmission. J. Lightwave Technol. 21(4), 916–929 (2003)CrossRefADSGoogle Scholar
  23. 23.
    Kumar S., Mauro J.C., Raghavan S., Chowdhury D.Q.: Intrachannel nonlinear penalties in dispersion-managed transmission systems. IEEE J. Sel. Top. Quant. Electron. 8(3), 626–631 (2002)CrossRefGoogle Scholar
  24. 24.
    Appathurai, S., Mikhailov, V., Killey, R.I., Bayvel, P.: Suppression of intra-channel nonlinear distortion in 40 Gbit/s transmission over standard single mode fibre using alternate-phase RZ and optimised pre-compensation. Proc. Euro. Conf. Opt. Comm. Paper Tu3.6.5 (2003)Google Scholar
  25. 25.
    Forzati M., Mårtensson J., Berntson A., Djupsjöbacka A., Johannisson P.: Reduction of intrachannel four-wave mixing using the alternate-phase RZ modulation format. IEEE Photon. Technol. Lett. 14(9), 1285–1287 (2002)CrossRefADSGoogle Scholar
  26. 26.
    Kanaev A.V., Luther G.G., Kovanis V., Bickham S.R., Conradi J.: Ghost-pulse generation suppression in phase-modulated 40-Gb/s RZ transmission. J. Lightwave Technol. 21(6), 1486–1489 (2003)CrossRefADSGoogle Scholar
  27. 27.
    Mauro J.C., Raghavan S., Ten S.: Generation and system impact of variable duty cycle α-RZ pulses. J. Opt. Comm. 26, 1015–1021 (2005)Google Scholar
  28. 28.
    Bosco G., Carena A., Curri V., Gaudino R., Poggiolini P.: On the use of NRZ, RZ, and CSRZ modulation at 40 Gb/s with narrow DWDM channel spacing. J. Lightwave Technol. 20(9), 1694–1704 (2002)CrossRefADSGoogle Scholar
  29. 29.
    Hoshida T., Vassilieva O., Yamada K., Choudhary S., Pecqueur R., Kuwahara H.: Optimal 40 Gb/s modulation formats for spectrally efficient long-haul DWDM systems. J. Lightwave Technol. 20(12), 1989–1996 (2002)CrossRefADSGoogle Scholar
  30. 30.
    Downie J.D., Ruffin A.B.: Analysis of signal distortion and crosstalk penalties induced by optical filters in optical networks. J. Lightwave Technol. 21(9), 1876–1886 (2003)CrossRefADSGoogle Scholar
  31. 31.
    Mauro, J.C., Raghavan, S., Rukosueva, M., Stefanini, C., Ten, S.: Impact of OADMs on 40 Gb/s transmission with alternative modulation formats. Proc. Euro. Conf. Opt. Comm. Paper We4.P.93 (2003)Google Scholar
  32. 32.
    Belahlou A., Bickham S., Chowdhury D., Diep P., Evans A., Grochocinski J.M., Han P., Kobyakov A., Kumar S., Luther G., Mauro J.C., Mauro Y., Mlejnek M., Muktoyuk M.S.K., Murtagh M.T., Raghavan S., Ricci V., Sevian A., Taylor N., Tsuda S., Vasilyev M., Wang L.: Fiber design considerations for 40 Gb/s systems. J. Lightwave Technol. 20(12), 2290–2305 (2002)CrossRefADSGoogle Scholar
  33. 33.
    Hodžić A., Konrad B., Petermann K.: Alternative modulation formats in N  ×  40 Gb/s WDM standard fiber RZ-transmission systems. J. Lightwave Technol. 20(4), 598–607 (2002)CrossRefADSGoogle Scholar
  34. 34.
    Xie C., Möller L., Haunstein H., Hunsche S.: Comparison of system tolerance to polarization-mode dispersion between different modulation formats. IEEE Photon. Technol. Lett. 15(8), 1168–1170 (2003)CrossRefADSGoogle Scholar
  35. 35.
    Chen, X., Li, M.-J., Nolan, D.A.: Spun fibers for low PMD: understanding of fundamental characteristics. Dig. LEOS Summer Topical Meet. 123–124 (2003)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Science and Technology DivisionCorning IncorporatedCorningUSA

Personalised recommendations