Structural, Mechanical, and Superconducting Properties of Clathrates

  • Xavier Blase
  • Giorgio Benedek
  • Marco Bernasconi
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 3)


Clathrates are superhard cagelike structures with sp3 bonding that have been up to now synthesized for silicon. There is however some evidence of a carbon based counterpart in meteorites. If realized, carbon clathrates could on the one hand provide a material harder than diamond and on the other hand offer the possibility for selective doping and superconducting properties by intercalation. In this chapter all these aspects are thoroughly discussed by means of ab initio calculations based on density functional theory.


Fermi Level Fullerenic Cage Chemical Vapor Deposition Diamond Diamond Phase Guest Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



X.B. is indebted to D. Connétable, E. Bourgeois and V. Timoshevskii, for important contributions to part of the work presented in this chapter. G.B and M.B gratefully acknowledge the contributions to the work presented here by J. Cariboni, L. Colombo, E. Galvani, S. Gaito, A. Gambirasio, G. Onida, S. Sanguinetti, S. Serra, I. Spagnolatti and F. Zipoli. One of us (GB) acknowledges the support of the Ikerbasque Foundation (project ABSIDES).


  1. 1.
    Powell HM (1948) J Chem Soc 1:61Google Scholar
  2. 2.
    Pauling L, Marsh RE (1952) Proc Natl Acad Sci 36:112Google Scholar
  3. 3.
    Davy H (1811) Philos Trans R Soc Lond 101:30Google Scholar
  4. 4.
    Faraday M (1823) Quart J Sci Lit Arts 15:71Google Scholar
  5. 5.
    Sloan ED Jr (1998) Clathrate hydrates of natural gases, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  6. 6.
    Dickens GR, Paull CK, Wallace P (1997) Nature 385:426428Google Scholar
  7. 7.
    Cros C, Pouchard M, Hagenmuller P (1965) C R Acad Sci 260:4764Google Scholar
  8. 8.
    Kasper JS, Hagenmuller P, Pouchard M, Cros C (1965) Science 150:1713Google Scholar
  9. 9.
    McMillan PF (2002) Nat Mater 1:19Google Scholar
  10. 10.
    Kaczmarski M, Bedoya-Martinez ON, Hernández ER (2005) Phys Rev Lett 94:095701Google Scholar
  11. 11.
    Benedek G, Bernasconi M, Gambirasio A (2003) Phys Stat Sol (b) 237:296Google Scholar
  12. 12.
    Wells AF (1977) Three-dimensional nets and polyhedra. Wiley, New YorkGoogle Scholar
  13. 13.
    Williams R (1979) The geometrical foundation of natural structure. Dover, New YorkGoogle Scholar
  14. 14.
    Benedek G, Colombo L (1996) Mater Sci Forum 232:247Google Scholar
  15. 15.
    Benedek G, Colombo L, Gaito S, Serra S (1997) In: Paoletti A, Tucciarone A (eds) The physics of diamond. IOS Press, Amsterdam, pp 575–598Google Scholar
  16. 16.
    Benedek G, Bernasconi M, Donadio D, Colombo L (2001) In: Benedek G, Milani P, Ralchenko VG (eds) Nanostructured carbon for advanced applications. Kluver, Dordrecht p 89Google Scholar
  17. 17.
    Alexandrov PS (1998) Combinatorial topology. Dover, New YorkGoogle Scholar
  18. 18.
    Ceulemans A, Fowler PW (1991) Nature 353:52Google Scholar
  19. 19.
    Benedek G, Galvani E, Sanguinetti S, Serra S (1995) Chem Phys Lett 244:339Google Scholar
  20. 20.
    Breza J, Kadlecikova M, Vojs M, Michalka M, Vesely M, Daniś T (2004) Microelectr J 35:709Google Scholar
  21. 21.
    Narayan J, Srivatsa AR, Peters M, Yokota S, Ravi Al KV (1988) Phys Lett 53:1823Google Scholar
  22. 22.
    Shevchenko V Ya, Madison AE (2006) Glass Phys Chem 32:118Google Scholar
  23. 23.
    Enyashin AN Ivanovskii AL (2007) Phys Sol St 49:392 [Russian original: (2007) Fiz Tverd Tela 49:378]Google Scholar
  24. 24.
    Pokropinny VV, Ivanovskii AL (2008) Rus Chem Rev 77:837Google Scholar
  25. 25.
    Hu S, Sun J, Du X, Tian F, Jiang L (2008) Diamond Rel Mater 17:142Google Scholar
  26. 26.
    Raty J-Y, Galli G, Bostedt C, van Buuren TW, Terminello LJ (2003) Phys Rev Lett 90:037401Google Scholar
  27. 27.
    Strong RT, Pickard CJ, Milman V, Thimm G, Winkler B (2004) Phys Rev B 70:045101Google Scholar
  28. 28.
    Aste T, Weaire D (1996) The pursuit of perfect packing. IoPPGoogle Scholar
  29. 29.
    Kelvin L (Sir William Thomson) (1887) Phil Mag 24:503Google Scholar
  30. 30.
    Weaire D, Phelan R (1994) Phil Mag Lett 69:107Google Scholar
  31. 31.
    Weaire D, Hutzler S (2001) The physics of foams. Oxford University Press; see also the review by de Gennes P-G (2001) Phys Today 54:54Google Scholar
  32. 32.
    Grason GM (2006) Phys Reports 433:1Google Scholar
  33. 33.
    Nester R, Vogel K, Blöchl PE (1993) Angew Chem 32:701Google Scholar
  34. 34.
    Adams GB, O’Keefe M, Demkov AA, Sankey OF, Huang Y (1994) Phys Rev B 49:8048Google Scholar
  35. 35.
    Saito S, Oshiyama A (1995) Phys Rev B 51:2628Google Scholar
  36. 36.
    Galvani E, Onida G, Serra S, Benedek G (1996) Phys Rev Lett 77:3573Google Scholar
  37. 37.
    Bernasconi M, Gaito S, Benedek G (2000) Phys Rev B 61:12689Google Scholar
  38. 38.
    Tersoff J (1988) Phys Rev B 37:6991; (1989) Phys Rev Lett 61:2879Google Scholar
  39. 39.
    Eklund PC, Rao AM (1999) Fullerene polymers and fullerene polymer composites. Springer, BerlinGoogle Scholar
  40. 40.
    Marques L, Mezouar M, Hodeau J-L, Nunez-Regueiro M, Serebryanaya NR, Ivdenko VA, Blank VD, Dubitsky GA (1999) Science 203:1720Google Scholar
  41. 41.
    Yamanaka S, Kubo A, Inumaru K, Kini NS, Inoue T, Irifune T (2006) Phys Rev Lett 96:76602Google Scholar
  42. 42.
    Chernotatonskii LA, Serebryanaya NR, Marvrin BN (2000) Chem Phys Lett 316:199Google Scholar
  43. 43.
    Blank VD, Buga SG, Dubistky GA, Serebryanaya NR, Popov MY, Sundqvist B (1998) Carbon 36:319Google Scholar
  44. 44.
    Okada S, Saito S, Oshiyama A (1999) Phys Rev Lett 83:1986Google Scholar
  45. 45.
    Berber S, Osawa E, Tománek D (2004) Phys Rev B 70:85417Google Scholar
  46. 46.
    Burgos E, Halac E, Weht R, Bonadeo H, Artacho E, Ordejón P (2000) Phys Rev Lett 85:2328Google Scholar
  47. 47.
    Zipoli F, Bernasconi M (2008) Phys Rev B 77:115432Google Scholar
  48. 48.
    Yang J, Tse JS, Tao Y, Iitaka T (2007) Angew Chem Int Ed 46:6275Google Scholar
  49. 49.
    Yang J, Tse JS, Tao Y, Iitaka T (2007) J Chem Phys 127:134906Google Scholar
  50. 50.
    Yamagami Y, Saito S (2009) Phys Rev B 79:045425Google Scholar
  51. 51.
    El Goresy A et al (2003) C R Geosci 335Google Scholar
  52. 52.
    Blank VD et al (1994) Phys Lett A 188:281Google Scholar
  53. 53.
    Brazhkin VV et al (1995) JETP Lett 62:350Google Scholar
  54. 54.
    Núnez-Regueiro M et al (1995) Phys Rev Lett 74:278Google Scholar
  55. 55.
    Blank VD et al (1995) Phys Lett A 205:208; Blank VD et al (1998) Diamond Related Mater 7:427Google Scholar
  56. 56.
    Liu AY, Cohen ML (1989) Science 245:841; Cohen ML (1985) Phys Rev B 32:7988Google Scholar
  57. 57.
    Teter DM (1998) MRS Bull 23:22Google Scholar
  58. 58.
    Gao F et al (2003) Phys Rev Lett 91:015502Google Scholar
  59. 59.
    Chacham H, Kleinman L (2000) Phys Rev Lett 85:4904Google Scholar
  60. 60.
    Telling RH, Pickard CJ, Payne MC, Field JE (2000) Phys Rev Lett 84:5160Google Scholar
  61. 61.
    Roundy D, Cohen ML (2001) Phys Rev B 64:212103Google Scholar
  62. 62.
    Frenkel J (1926) Z Phys 37:572; Kelly A, MacMillan NH (1986) Strong solids. Clarendon, OxfordGoogle Scholar
  63. 63.
    Gogotsi YG, Kailer A, Nickel KG (1999) Nature (London) 401:663Google Scholar
  64. 64.
    Blase X, Gillet P, San Miguel A, Mélinon P (2004) Phys Rev Lett 92:215505Google Scholar
  65. 65.
    Perottoni CA, da Jornada AH (2002) Phys Rev B 65:224208Google Scholar
  66. 66.
    Brazhkin VV, Lyapin AG, Popova SV (1998) J Appl Phys 84:219; Brazhkin VV, Lyapin AG, Hemley RJ (2002) Phil Mag A 82:231Google Scholar
  67. 67.
    Takashi H, Kaichi S, Michihiro K, Ryuichiro O (2005) Jpn J Appl Phys 44:3141-3146Google Scholar
  68. 68.
    Gryko J, McMillan PF, Marzke RF, Ramachandran GK, Patton D, Deb SK, Sankey OF (2000) Phys Rev B 62:R7707Google Scholar
  69. 69.
    Smelyanski VI, Tse JS (1997) Chem Phys Lett 264:459Google Scholar
  70. 70.
    Moriguchi K, Munetoh S, Shintani A (2000) Phys Rev B 62:7138Google Scholar
  71. 71.
    Blase X (2003) Phys Rev B 67:035211Google Scholar
  72. 72.
    Mélinon P, Kéghélian P, Blase X, Le Brusc J, Perez A, Reny E, Cros C, Pouchard M (1998) Phys Rev B 58:12590Google Scholar
  73. 73.
    Zhang SB, Wei S-H, Zunger A (2000) Phys Rev Lett 84:1232Google Scholar
  74. 74.
    Kawaji H, Horie H-O, Yamanaka S, Ishikawa M (1995) Phys Rev Lett 74:1427Google Scholar
  75. 75.
    Bobev S, Sevov SC (2000) J Solid State Chem 92:153Google Scholar
  76. 76.
    San Miguel A, Toulemonde P (2005) High Press Res 25:159Google Scholar
  77. 77.
    Reny E, Yamanaka S, Cros C, Pouchard M (2000) Chem Commun 2505–2506Google Scholar
  78. 78.
    Imai M, Nishida K, Kimura T, Yamada K (2002) J Alloy Compd 335:270Google Scholar
  79. 79.
    Herrmann RFW, Tanigaki K, Kuroshima S, Suematsu H (1998) Chem Phys Lett 283:29Google Scholar
  80. 80.
    Jaussaud N et al (2005) Inorg Chem 44:2210-2214Google Scholar
  81. 81.
    San-Miguel A et al (1999) Phys Rev Lett 83:5290Google Scholar
  82. 82.
    Ramachandran GK et al (2000) J Phys Condens Matter 12:4013Google Scholar
  83. 83.
    McMahon MI, Nelmes RJ (1993) Phys Rev B 47:8337; McMahon MI, Nelmes RJ, Wright NG, Allan DR (1994) Phys Rev B 50:739; Hu JZ, Merkle LD, Menoni CS, Spain IL (1986) Phys Rev B 34:4679Google Scholar
  84. 84.
    san Miguel A et al (2002) Phys Rev B 65:054109Google Scholar
  85. 85.
    Tse JS et al (2002) Phys Rev Lett 89:195507Google Scholar
  86. 86.
    Kume T et al (2003) Phys Rev Lett 90:155503Google Scholar
  87. 87.
    Machon D et al (2009) Phys Rev B 79:184101Google Scholar
  88. 88.
    Connétable D, Timoshevskii V, Artacho E, Blase X (2001) Phys Rev Lett 87:206405Google Scholar
  89. 89.
    Slack GA (1995) In: Rowe DM (ed) CRC handbook of thermoelectrics. CRC Press, Boca Raton, FL, p 401Google Scholar
  90. 90.
    Tse JS et al (2000) Phys Rev Lett 85:114Google Scholar
  91. 91.
    Nolas GS et al (1998) Appl Phys Lett 73:178Google Scholar
  92. 92.
    Slack G et al (1999) Phys Rev Lett 82:779Google Scholar
  93. 93.
    Sales BC, Chakoumakos BC, Jin R et al. (2001) Phys Rev B 63:245113Google Scholar
  94. 94.
    Dong JJ, Sankey OF, Myles CW (2001) Phys Rev Lett 86:2361Google Scholar
  95. 95.
    Christensen M et al. (2008) Nat Mater 7:811Google Scholar
  96. 96.
    Martin J et al (2006) J Appl Phys 99:044903; Nenghabi EN, Myles CW (2008) Phys Rev B 77:205203Google Scholar
  97. 97.
    Mott NF (1974) Metal-insulator transitions. Taylor and Francis, LondonGoogle Scholar
  98. 98.
    Connétable D, Timoshevskii V, Masenelli B, Beille J, Marcus J, Barbara B, Saitta AM, Rignanese G-M, Mélinon P, Yamanaka S, Blase X (2003) Phys Rev Lett 91:247001Google Scholar
  99. 99.
    Nesladek M (2005) Semicond Sci Technol 20:R19-R27Google Scholar
  100. 100.
    Collins AT (1993) In: Davies G (ed) Properties and growth of diamond. INSPEC, the Institution of Electrical Engineers, London, p 263Google Scholar
  101. 101.
    Fujimori N et al (1990) Mat Res Soc Symp Proc 162:23; Alexenko AE, Spitsyn BV (1992) Diamond Relat Mater 1:705; Koizumi S et al (1997) Appl Phys Lett 71:1065; Saito T et al. (1998) Jpn J Appl Phys Part 2, 37:L543; Nesládek N et al (1999) Phys Rev B 59:14852Google Scholar
  102. 102.
    Sakaguchi I et al (1999) Phys Rev B 60:2139Google Scholar
  103. 103.
    Fox BA et al (1995) Diamond Relat Mater 4:622; Yamanaka S et al (1998) Jpn J Appl Phys Part 2 37:L1129Google Scholar
  104. 104.
    Rey N, Munoz A, Rodriguez-Hernandez P, San-Miguel A (2008) J Phys Condes Matter 61:215218Google Scholar
  105. 105.
    Spagnolatti I, Bernasconi M, Benedek G (2003) Eur Phys J B 34:63Google Scholar
  106. 106.
    Zipoli F, Bernasconi M, Benedek G (2006) Phys Rev B 74:205408Google Scholar
  107. 107.
    Ekimov EA, Sidorov VA, Bauer ED, Melńik NN, Curro NJ, Thompson JD, Stishov SM (2004) Nature 428:542Google Scholar
  108. 108.
    Boeri L, Kortus J, Andersen OK (2004) Phys Rev Lett 93:237002Google Scholar
  109. 109.
    Lee K-W, Pickett WE (2004) Phys Rev Lett 93:237003Google Scholar
  110. 110.
    Lee K-W, Pickett WE (2006) Phys Rev B 73:75105Google Scholar
  111. 111.
    Yokoya T, Nakamura T, Matsushita T, Muro T, Takano Y, Nagao M, Takenouchi T, Kawarada H, Oguchi T (2005) Nature 438:647Google Scholar
  112. 112.
    Bustarret E et al (2006) Nature 444:465468Google Scholar
  113. 113.
    Ren ZA et al (2007) J Phys Soc Jap 76:103710Google Scholar
  114. 114.
    Blase X, Bustarret E, Chapelier C, Marcenat C (2009) Nat Mat 8:375Google Scholar
  115. 115.
    Cohen ML (1964) Phys Rev 134:A511-A521; ibid (1964) Rev Mod Phys 36:240243Google Scholar
  116. 116.
    Schooley JF, Hosler WR, Cohen ML (1964) Phys Rev Lett 12:474475; Schooley JF et al. (1965) Phys Rev Lett 14:305307Google Scholar
  117. 117.
    Hein RA, Gibson JW, Mazelsky R, Miller RC, Hulm JK (1964) Phys Rev Lett 12:320322Google Scholar
  118. 118.
    Solozhenko VL, Dubrovinskaia NA, Dubrovinsky LS (2004) Appl Phys Lett 85:1508-1510; Dubitskiy GA et al (2005) JETP Lett 81:260263Google Scholar
  119. 119.
    Solozhenko VL et al (2009) Phys Rev Lett 102:015506Google Scholar
  120. 120.
    Calandra M, Mauri F (2008) Phys Rev Lett 101:016401Google Scholar
  121. 121.
    Khan FS, Allen PB (1984) Phys Rev B 29:3341; Resta R (1991) Phys Rev B 44:11035Google Scholar
  122. 122.
    Liu AY, Mazin II (2007) Phys Rev B 75:064510; Calandra M, Kolmogorov AN, Curtarolo S (2007) Phys Rev B 75:144506Google Scholar
  123. 123.
    Ribeiro FJ, Cohen ML (2004) Phys Rev B 69:212507Google Scholar
  124. 124.
    Rosner H, Kitaigorodsky A, Pickett WE (2002) Phys Rev Lett 88:127001Google Scholar
  125. 125.
    Yokoya T et al (2001) Phys Rev B 64:172504Google Scholar
  126. 126.
    Tanigaki K, Shimizu T, Itoh KM, Teraoka J, Moritomo Y, Yamanaka S (2003) Nat Mater 2:653Google Scholar
  127. 127.
    Connétable D et al (2003) Phys Rev Let 91:247001Google Scholar
  128. 128.
    Carbotte JP (1990) Rev Mod Phys 62:10271157Google Scholar
  129. 129.
    Lortz R et al (2008) Phys Rev B 77:224507Google Scholar
  130. 130.
    Toulemonde P et al (2005) Phys Rev B 71:094504Google Scholar
  131. 131.
    Tse J et al (2005) Phys Rev B 72:155441Google Scholar
  132. 132.
    Hebard AF, Rosseinsky MJ, Haddon RC, Murphy DW, Glarum SH, Palstra TTM, Ramirez AP, Kortan AR (1991) Nature 350:600Google Scholar
  133. 133.
    Gunnarsson O (1997) Rev Mod Phys 69:575Google Scholar
  134. 134.
    Schlüter M, Lannoo M, Needels M, Baraff GA, Tománek D (1992) Phys Rev Lett 68:526Google Scholar
  135. 135.
    Coté M, Grossman JC, Cohen ML, Louie SG, Phys Rev Lett 81:697 (1998); Grossman JC, Louie SG, Cohen ML (1999) Phys Rev B 60:R6941Google Scholar
  136. 136.
    Devos A, Lannoo M (1998) Phys Rev B 58:8236Google Scholar
  137. 137.
    Adams GB, Sankey OF, Page JB, O’Keeffe M (1993) Chem Phys 176:61Google Scholar
  138. 138.
    Breda N, Broglia RA, Colò G, Onida G, Provasi D, Vigezzi E (2000) Phys Rev B 62:130Google Scholar
  139. 139.
    Spagnolatti I, Bernasconi M, Benedek G (2002) Europhys Lett 59:572Google Scholar
  140. 140.
    Romero NA, Kim J, Martin RM (2007) Phys Rev B 76:205405Google Scholar
  141. 141.
    Piskoti C, Yarger J, Zettl A (1998) Nature 393:711Google Scholar
  142. 142.
    Iqbal Z, Zhang Y, Grebel H, Vijayalakshmi S, Lahamer A, Benedek G, Bernasconi M, Cariboni J, Spagnolatti I, Sharma R, Owens FJ, Kozlov ME, Rao KV, Muhammed M (2003) Eur Phys JB 31:509Google Scholar
  143. 143.
    Wang ZX, Ke XZ, Zhu ZY, Zhu FY, Ruan ML, Chen H, Huang RB, Zheng LS (2001) Phys Lett A 280:351Google Scholar
  144. 144.
    Spanò E, Bernasconi M, Kopnin E (2005) Phys Rev B 72:14530Google Scholar
  145. 145.
    Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Rev Mod Phys 73:515Google Scholar
  146. 146.
    Allen PB, Mitrović B (1982) Solid State Phys 37:1Google Scholar
  147. 147.
    Yamanaka S, Kubo A, Kini NS, Inumaru K (2006) Phys B 389:59Google Scholar
  148. 148.
    Guloy AM, Ramlau R, Tang Z, Schnelle W, Baitinger M, Grin Y (2006) Nature 443:320Google Scholar

Copyright information

© Springer Netherlands 2010

Authors and Affiliations

  • Xavier Blase
    • 1
  • Giorgio Benedek
    • 2
    • 3
  • Marco Bernasconi
    • 2
  1. 1.Institut NéelCNRS and University Joseph FourierGrenobleFrance
  2. 2.Department of Materials ScienceUniversity of Milano-BicoccaMilanItaly
  3. 3.Donostia International Physics Center (DIPC)Donostia/SanSpain

Personalised recommendations