Analysis of Non-functional Properties of MPSoC Designs

  • Alexander Viehl
  • Björn Sander
  • Oliver Bringmann
  • Wolfgang Rosenstiel
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 36)

Abstract

In this chapter, a novel design and analysis methodology for simulation-based determination of non-functional properties of a system design, like performance, power consumption, and temperature is proposed. For simulation acceleration and handling of complexity issues, the design flow includes automated abstraction of component functionality. Specified platform attributes as dynamic power management and formally modeled temporal input stimuli are automatically transformed to non-functional SystemC models. The framework implements the ability for automated online and offline analysis of non-functional System-on-Chip properties.

Keywords

Non-functional properties Electronic system level Performance analysis Power estimation Temperature estimation SystemC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Austin, E. Larson, and D. Ernst. Simplescalar: an infrastructure for computer system modeling. Computer, 35(2):59–67, 2002. CrossRefGoogle Scholar
  2. 2.
    R.I. Bahar, D. Hammerstrom, J. Harlow, W.H. Joiner Jr., C. Lau, D. Marculescu, A. Orailoglu, and M. Pedram. Architectures for silicon nanoelectronics and beyond. Computer, 40(1):25–33, 2007. CrossRefGoogle Scholar
  3. 3.
    L. Benini, A. Bogliolo, and G.D. Micheli. A survey of design techniques for system-level dynamic power management. In Readings in Hardware/Software Co-design, pages 231–248, 2002. Google Scholar
  4. 4.
    L. Benini, R. Hodgson, and P. Siegel. System-level power estimation and optimization. In ISLPED ’98: Proceedings of the 1998 International Symposium on Low Power Electronics and Design, pages 173–178. Assoc. Comput. Mach., New York, 1998. CrossRefGoogle Scholar
  5. 5.
    J. Bryans, H. Bowman, and J. Derrick. Model checking stochastic automata. ACM Trans. Comput. Logic, 4(4):452–492, 2003. CrossRefMathSciNetGoogle Scholar
  6. 6.
    S. Chakraborty, S. Künzli, and L. Thiele. A general framework for analysing system properties in platform-based embedded system designs. In Proceedings of DATE, Munich, 2003. Google Scholar
  7. 7.
    A. Donlin. Transaction level modeling: flows and use models. In CODES+ISSS ’04. Assoc. Comput. Mach., New York, 2004. Google Scholar
  8. 8.
    W. Huang, K. Sankaranarayanan, R. Ribando, M. Stan, and K. Skadron. An improved block-based thermal model in HotSpot 4.0 with granularity considerations. Technical report, University of Virginia, Dept. of Computer Science, April 2007. Google Scholar
  9. 9.
    International Technology Roadmap for Semiconductors. 2007. Google Scholar
  10. 10.
    M. Krause, O. Bringmann, and W. Rosenstiel. Target software generation: an approach for automatic mapping of SystemC specifications onto real-time operating systems. Des. Autom. Embed. Syst., 10(4):229–251, 2007. CrossRefGoogle Scholar
  11. 11.
    M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, and R. Zafalon. Analyzing on-chip communication in a MPSoC environment. In DATE ’04: Proceedings of the Conference on Design, Automation and Test in Europe, 2004. Google Scholar
  12. 12.
    A. Löffler. Modeling and Transformation of Temporal Environment Models. Study thesis, University of Karlsruhe, 2008. Google Scholar
  13. 13.
    S. Manolache, P. Eles, and Z. Peng. Schedulability analysis of applications with stochastic task execution times. ACM Trans. Embed. Comput. Syst., 3(4):706–735, 2004. CrossRefGoogle Scholar
  14. 14.
    R. Marculescu and A. Nandi. Probabilistic application modeling for system-level performance analysis. In DATE ’01: Proceedings of the Conference on Design, Automation and Test in Europe, pages 572–579. IEEE Press, Piscataway, 2001. CrossRefGoogle Scholar
  15. 15.
    M.A. Marsan, G. Conte, and G. Balbo. A class of generalized stochastic petri nets for the performance evaluation of multiprocessor systems. ACM Trans. Comput. Syst., 2(2):93–122, 1984. CrossRefGoogle Scholar
  16. 16.
    J.W. McPherson. Reliability challenges for 45 nm and beyond. In DAC, 2006. Google Scholar
  17. 17.
    M.J. Moran, H.N. Shapiro, B.R. Munson, and D.P. DeWitt. Introduction to Thermal Systems Engineering: Thermodynamics, Fluid Mechanics, and Heat Transfer. Wiley, New York, 2002. Google Scholar
  18. 18.
    W. Müller, W. Rosenstiel, and J. Ruf, editors. SystemC: Methodologies and Applications. Kluwer Academic, Norwell, 2003. MATHGoogle Scholar
  19. 19.
    G. Paci, P. Marchal, F. Poletti, and L. Benini. Exploring temperature-aware design in low-power MPSoCs. In DATE ’06: Proceedings of the Conference on Design, Automation and Test in Europe, 2006. Google Scholar
  20. 20.
    A. Viehl, M. Schwarz, O. Bringmann, and W. Rosenstiel. Probabilistic performance risk analysis at system-level. In CODES+ISSS ’07, 2007. Google Scholar
  21. 21.
    P. Pop, P. Eles, Z. Peng, and T. Pop. Analysis and optimization of distributed real-time embedded systems. In DAC ’04: Proceedings of the 41st Annual Conference on Design Automation, pages 593–625. Assoc. Comput. Mach., New York, 2004. Google Scholar
  22. 22.
    Q. Qiu, Q. Wu, and M. Pedram. Dynamic power management of complex systems using generalized stochastic petri nets. In DAC ’00: Proceedings of the 37th Conference on Design Automation, pages 352–356. Assoc. Comput. Mach., New York, 2000. CrossRefGoogle Scholar
  23. 23.
    M. Radetzki and R.S. Khaligh. Accuracy-adaptive simulation of transaction level models. In Proceedings of DATE, Munich, 2008. Google Scholar
  24. 24.
    R. Rao, S. Vrudhula, and D.N. Rakhmatov. Battery modeling for energy-aware system design. Computer, 36(12):77–87, 2003. CrossRefGoogle Scholar
  25. 25.
    K. Richter, D. Ziegenbein, M. Jersak, and R. Ernst. Model composition for scheduling analysis in platform design. In Proceedings 39th Design Automation Conference DAC, 2002. Google Scholar
  26. 26.
    S. Schliecker, M. Ivers, and R. Ernst. Integrated analysis of communicating tasks in MPSoCs. In CODES+ISSS ’06. Assoc. Comput. Mach., New York, 2006. Google Scholar
  27. 27.
    J. Schnerr, O. Bringmann, A. Viehl, and W. Rosenstiel. High-performance timing simulation of embedded software. In DAC ’08: Proceedings of the 45th Annual Conference on Design Automation, pages 290–295. Assoc. Comput. Mach., New York, 2008. CrossRefGoogle Scholar
  28. 28.
    L. Shang and R.P. Dick. Thermal crisis: challenges and potential solutions. In IEEE Potentials, 2006. Google Scholar
  29. 29.
    A. Siebenborn, A. Viehl, O. Bringmann, and W. Rosenstiel. Control-flow aware communication and conflict analysis of parallel processes. In Proceedings of the 12th Asia and South Pacific Design Automation Conference ASP-DAC 2007, Yokohama, Japan, 2007. Google Scholar
  30. 30.
    A. Viehl, M. Schwarz, O. Bringmann, and W. Rosenstiel. A hybrid approach for system-level design evaluation. In IESS, pages 165–178, 2007. Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Alexander Viehl
    • 1
  • Björn Sander
  • Oliver Bringmann
  • Wolfgang Rosenstiel
  1. 1.FZI Forschungszentrum InformatikKarlsruheGermany

Personalised recommendations