Power and Energy Estimations in Model-Based Design

  • Eric Senn
  • Saadia Douhib
  • Dominique Blouin
  • Johann Laurent
  • Skander Turki
  • Jean-Philippe Diguet
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 36)


The aim of our works is to provide for methods and tools to quickly estimate the power consumption at the first steps of a system design. We introduce multi-level power models and show how to use them at different levels of the specification refinement in the model-based AADL (Architecture & Analysis Design Language) design flow. Those power models, with the underlying methodology for power estimation, are currently being integrated in the Open Source AADL Tool Environment (OSATE) under the name CAT: Consumption Analysis Toolbox. Its first prototype gives, in the case of a processor binding, power consumption estimations, for software components in the AADL component assembly model, with a maximal error ranging roughly from 5% at the lowest refinement level (the source code of the software component is known), to 30% at the highest level (only the operating frequency and basic target configuration parameters are considered). We illustrate our approach with the power model of a simple RISC (PowerPC 405), of a complex DSP (TI C62), and of a FPGA (from ALTERA). We show how those models can be used at different levels in the AADL flow. Obviously, the power consumption of Operating System (OS) services is also to be considered here. We show that the OS principal impact on the overall consumption is mainly due to services implying data transfers. We introduce a methodology to model Inter-Process Communications (IPC) power and energy consumption, and illustrate this methodology on the building and use of a model for Ethernet based inter-process communications.


Power and energy consumption modelling Model driven engineering AADL Embedded system Processors FPGA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The SAE AADL Standard Info Site.
  2. 2.
    The SPICES ITEA Project Website.
  3. 3.
    SAE—Society of Automative Engineers. SAES AS5506, v1.0. Embedded Computing Systems Committee, SAE, November 2004. Google Scholar
  4. 4.
    AM3, ATLAS MegaModel Management.
  5. 5.
    H. Balp, É. Borde, G. Haïk, and J.-F. Tilman. Automatic composition of AADL models for the verification of critical component-based embedded systems. In Proc. of the Thirteenth IEEE Int. Conf. on Engineering of Complex Computer Systems (ICECCS), Belfast, Ireland, 2008. Google Scholar
  6. 6.
    R. BenAtitallah, S. Niar, A. Greiner, S. Meftali, and J.L. Dekeyser. Estimating energy consumption for an MPSoC architectural exploration. In ARCS06, Frankfurt, Germany, 2006. Google Scholar
  7. 7.
    J. Bezivin, F. Jouault, and P. Valduriez. On the need for megamodels. In Proceedings of the OOPSLA/GPCE: Best Practices for Model-Driven Software Development Workshop, 19th Annual ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications, 2004. Google Scholar
  8. 8.
    D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-level power analysis and optimizations. In Proc. International Symposium on Computer Architecture ISCA’00, pages 83–94, 2000. Google Scholar
  9. 9.
    P. Coussy, G. Corre, P. Bomel, E. Senn, and E. Martin. High-level synthesis under I/O timing and memory constraints. In ISCAS05, International Symposium on Circuits and Systems, May 2005, Kobe, Japan, 2005. Google Scholar
  10. 10.
    S. Dhouib, J.P. Diguet, E. Senn, and J. Laurent. Energy models of real time operating systems on FPGA. In Fourth International Workshop on Operating Systems Platforms for Embedded Real-Time Applications, OSPERT 2008, Prague, July 2–4, 2008. Google Scholar
  11. 11.
    Philips Research. Diesel user manual. Technical Report, Philips Electronic Design and Tools Group, June 2001. Google Scholar
  12. 12.
    N. Dhanwada, I. Lin, and V. Narayanan. A power estimation methodology for SystemC transaction level models. In International Conference on Hardware/Software Codesign and System Synthesis, 2005. Google Scholar
  13. 13.
    P.H. Feiler, B.A. Lewis, and S. Vestal. The SAE architecture analysis & design language (AADL). A standard for engineering performance critical systems. In IEEE International Symposium on Computer-Aided Control Systems Design, pages 1206–1211. Munich, 2006. Google Scholar
  14. 14.
    W. Huangy, M.R. Stany, K. Skadronz, K. Sankaranarayananz, S. Ghoshyz, and S. Velusamyz. Compact thermal modeling for temperature aware design. In Proceedings of DAC 2004, June 7–11, San Diego, California, USA, 2004. Google Scholar
  15. 15.
    J. Hugues, B. Zalila, and L. Pautet. Rapid prototyping of distributed real-time embedded systems using the AADL and ocarina. In Proceedings of the 18th IEEE International Workshop on Rapid System Prototyping (RSP’07), pages 106–112. IEEE Computer Society Press, Porto Alegre, 2007. Google Scholar
  16. 16.
    N. Julien, J. Laurent, E. Senn, and E. Martin. Power consumption modeling of the TI C6201 and characterization of its architectural complexity. IEEE Micro, Special Issue on Power- and Complexity-Aware Design, 2003. Google Scholar
  17. 17.
    J. Laurent, N. Julien, E. Senn, and E. Martin. Functional level power analysis: an efficient approach for modeling the power consumption of complex processors. In Proc. Design Automation and Test in Europe DATE, Paris, France, 2004. Google Scholar
  18. 18.
    I. Lee, H. Kim, P. Yang, S. Yoo, E. Chung, K. Choi, J. Kong, and S. Eo. PowerVip: Soc power estimation framework at transaction level. In Proc. ASP-DAC, 2006. Google Scholar
  19. 19.
    M. Loghi, M. Poncino, and L. Benini. Cycle-accurate power analysis for multiprocessor systems on a chip. In Proceedings of the GLSVLSI, Boston, Massachusetts, USA, April 2004. Google Scholar
  20. 20.
    J. Long, J.C. Ku, S.O. Memik, and Y. Ismail. A self-adjusting clock tree architecture to cope with temperature variations. In Proceedings of the 2007 IEEE/ACM International Conference on Computer-Aided Design, pages 75–82. IEEE Press, San Jose, 2007. CrossRefGoogle Scholar
  21. 21.
    R. Peset-Lopis and K. Goossens. The petrol approach to high-level power estimation. In Proceedings of the ISLPED, Monterey, California, USA, August 1998. Google Scholar
  22. 22.
    G. Qu, N. Kawabe, K. Usami, and M. Potkonjak. Function-level power estimation methodology for microprocessors. In Proc. Design Automation Conf. DAC’00, pages 810–813, 2000. Google Scholar
  23. 23.
    A.E. Rugina, K. Kanoun, and M. Kaâniche. AADL-based dependability modelling. Technical Report 06209, LAAS, 2006. Google Scholar
  24. 24.
    E. Senn, J. Laurent, N. Julien, and E. Martin. SoftExplorer: Estimating and optimizing the power and energy consumption of a C program for DSP applications. The EURASIP Journal on Applied Signal Processing, Special Issue on DSP-Enabled Radio (16), 2005. Google Scholar
  25. 25.
    E. Senn, N. Julien, N. Abdelli, D. Elleouet, and Y. Savary. Building and using system, algorithmic, and architectural power and energy models in the FPGA design-flow. In Intl. Conf. on Reconfigurable Communication-Centric SoCs 2006, Montpellier, France, July 2006. Google Scholar
  26. 26.
    F. Singhoff, J. Legrand, L. Nana, and L. Marcé. Scheduling and memory requirements analysis with AADL. In Proceedings of the 2005 Annual ACM SIGAda International Conference on Ada, Atlanta, GA, USA, 2005. Google Scholar
  27. 27.
    S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel. An accurate and fine grain instruction-level energy model supporting software optimizations. In Proc. Int. Workshop on Power and Timing Modeling, Optimization and Simulation PATMOS’01, pages 3.2.1–3.2.10, 2001. Google Scholar
  28. 28.
    TMS320C6x User’s Guide. Texas Instruments Inc., 1999. Google Scholar
  29. 29.
    V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded software: a first step towards software power minimization. IEEE Trans. VLSI Systems, 2:437–445, 1994. CrossRefGoogle Scholar
  30. 30.
    T. Vergnaud. Modélisation des systèmes temps-réel embarqués pour la génération automatique d applications formellement vérifiées. PhD thesis, Ecole Nationale Supérieure des Télécommunications de Paris, France, 2006. Google Scholar
  31. 31.
    W. Ye, N. Vijaykrishnam, M. Kandemir, and M. Irwin. The design and use of simplepower: a cycle accurate energy estimation tool. In Proc. Design Automation Conference DAC’00, June 2000. Google Scholar
  32. 32.
    K. Yaghmour and M.R. Dagenais. Measuring and characterizing system behavior using kernel-level event logging. In 2000 USENIX Annual Technical Conference, USENIX, San Diego, CA, USA, June 18–23, 2000. Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Eric Senn
    • 1
  • Saadia Douhib
  • Dominique Blouin
  • Johann Laurent
  • Skander Turki
  • Jean-Philippe Diguet
  1. 1.Lab-STICC, CNRS UMR 3192Université de Bretagne SudLorientFrance

Personalised recommendations