Development of the Fast Multipole Boundary Element Method for Acoustic Wave Problems

Abstract

In this chapter, we review some recent development of the fast multipole boundary element method (BEM) for solving large-scale acoustic wave problems in both 2-D and 3-D domains. First, we review the boundary integral equation (BIE) formulations for acoustic wave problems. The Burton-Miller BIE formulation is emphasized, which uses a linear combination of the conventional BIE and hypersingular BIE. Next, the fast multipole formulations for solving the BEM equations are provided for both 2-D and 3-D problems. Several numerical examples are presented to demonstrate the effectiveness and efficiency of the developed fast multipole BEM for solving large-scale acoustic wave problems, including scattering and radiation problems, and half-space problems.

Keywords

Microwave Acoustics Zinn 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th ed (United States Department of Commerce: U.S. Government Printing Office, Washington, D.C., 1972).MATHGoogle Scholar
  2. S. Amini, “On the choice of the coupling parameter in boundary integral formulations of the exterior acoustic problem,” Appl. Anal., 35, No. 75–92 (1990).MATHCrossRefMathSciNetGoogle Scholar
  3. A. J. Burton and G. F. Miller, “The application of integral equation methods to the numerical solution of some exterior boundary-value problems,” Proc. R. Soc. Lond. A, 323, No. 201–210 (1971).MATHCrossRefMathSciNetGoogle Scholar
  4. J. T. Chen and K. H. Chen, “Applications of the dual integral formulation in conjunction with fast multipole method in large-scale problems for 2D exterior acoustics,” Eng Anal Bound Elem, 28, No. 6, 685–709 (2004).MATHCrossRefGoogle Scholar
  5. S. H. Chen and Y. J. Liu, “A unified boundary element method for the analysis of sound and shell-like structure interactions. I. Formulation and verification,” J. Acoust. Soc. Am., 103, No. 3, 1247–1254 (1999).CrossRefGoogle Scholar
  6. S. H. Chen, Y. J. Liu, and X. Y. Dou, “A unified boundary element method for the analysis of sound and shell-like structure interactions. II. Efficient solution techniques,” J. Acoust. Soc. Am., 108, No. 6, 2738–2745 (2000).CrossRefGoogle Scholar
  7. R. D. Ciskowski and C. A. Brebbia, Boundary Element Methods in Acoustics (Kluwer Academic Publishers, New York, 1991).MATHGoogle Scholar
  8. R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method for the wave equation: A pedestrian prescription,” IEEE Antennas Propagat. Mag., 35, No. 3, 7–12 (1993).CrossRefGoogle Scholar
  9. K. A. Cunefare and G. Koopmann, “A boundary element method for acoustic radiation valid for all wavenumbers,” J. Acoust. Soc. Am., 85, No. 1, 39–48 (1989).CrossRefGoogle Scholar
  10. K. A. Cunefare and G. H. Koopmann, “A boundary element approach to optimization of active noise control sources on three-dimensional structures,” J. Vib. Acoust., 113, July, 387–394 (1991).CrossRefGoogle Scholar
  11. E. Darve and P. Havé, “Efficient fast multipole method for low-frequency scattering,” J. Comput. Phys., 197, No. 1, 341–363 (2004).MATHCrossRefMathSciNetGoogle Scholar
  12. N. Engheta, W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, “The fast multipole method (FMM) for electromagnetic scattering problems,” IEEE Trans. Ant. Propag., 40, No. 6, 634–641 (1992).MATHCrossRefMathSciNetGoogle Scholar
  13. M. Epton and B. Dembart, “Multipole translation theory for the three dimensional Laplace and Helmholtz equations,” SIAM J Sci Comput, 16, No. 865–897 (1995).MATHCrossRefMathSciNetGoogle Scholar
  14. G. C. Everstine and F. M. Henderson, “Coupled finite element/boundary element approach for fluid structure interaction,” J. Acoust. Soc. Am., 87, No. 5, 1938–1947 (1990).CrossRefGoogle Scholar
  15. M. Fischer, U. Gauger, and L. Gaul, “A multipole Galerkin boundary element method for acoustics,” Eng Anal Bound Elem, 28, No. 155–162 (2004).MATHCrossRefGoogle Scholar
  16. L. Greengard, J. Huang, V. Rokhlin, and S. Wandzura, “Accelerating fast multipole methods for the helmholtz equation at low frequencies,” IEEE Comput. Sci. Eng., 5, No. 3, 32–38 (1998).CrossRefGoogle Scholar
  17. L. F. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems (The MIT Press, Cambridge, 1988).MATHGoogle Scholar
  18. L. F. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,” J. Comput. Phys., 73, No. 2, 325–348 (1987).MATHCrossRefMathSciNetGoogle Scholar
  19. N. A. Gumerov and R. Duraiswami, “Recursions for the computation of multipole translation and rotation coefficients for the 3-D Helmholtz equation,” SIAM J. Sci. Comput., 25, No. 4, 1344–1381 (2003).MATHCrossRefMathSciNetGoogle Scholar
  20. M. F. Gyure and M. A. Stalzer, “A prescription for the multilevel Helmholtz FMM,” IEEE Comput. Sci. Eng., 5, No. 3, 39–47 (1998).CrossRefGoogle Scholar
  21. D. S. Jones, “Integral equations for the exterior acoustic problem,” Q. J. Mech. Appl. Math., 27, No. 129–142 (1974).MATHCrossRefGoogle Scholar
  22. R. Kress, “Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering,” Quart. J. Mech. Appl. Math., 38, No. 2, 323–341 (1985).MATHCrossRefMathSciNetGoogle Scholar
  23. G. Krishnasamy, T. J. Rudolphi, L. W. Schmerr, and F. J. Rizzo, “Hypersingular boundary integral equations: some applications in acoustic and elastic wave scattering,” J. App. Mech., 57, No. 404–414 (1990).MATHCrossRefMathSciNetGoogle Scholar
  24. R. E. Kleinman and G. F. Roach, “Boundary integral equations for the three-dimensional Helmholtz equation,” SIAM Rev., 16, No. 214–236 (1974).MATHCrossRefMathSciNetGoogle Scholar
  25. S. Koc and W. C. Chew, “Calculation of acoustical scattering from a cluster of scatterers,” J. Acoust. Soc. Am., 103, No. 2, 721–734 (1998).CrossRefGoogle Scholar
  26. C. Lu and W. Chew, “Fast algorithm for solving hybrid integral equations,” IEE Proc. H, 140, No. 455–460 (1993).Google Scholar
  27. Y. J. Liu, “Development and applications of hypersingular boundary integral equations for 3-D acoustics and elastodynamics”, Ph.D., Department of Theoretical and Applied Mechanics, University of Illinois at Urbana-Champaign (1992).Google Scholar
  28. Y. J. Liu and F. J. Rizzo, “A weakly-singular form of the hypersingular boundary integral equation applied to 3-D acoustic wave problems,” Comput. Methods Appl.Mech. Eng., 96, No. 271–287 (1992).MATHCrossRefMathSciNetGoogle Scholar
  29. Y. J. Liu and S. H. Chen, “A new form of the hypersingular boundary integral equation for 3-D acoustics and its implementation with C$0$ boundary elements,” Comput. Methods Appl.Mech. Eng., 173, No. 3–4, 375–386 (1999).MATHCrossRefGoogle Scholar
  30. R. Martinez, “The thin-shape breakdown (TSB) of the Helmholtz integral equation,” J. Acoust. Soc. Am., 90, No. 5, 2728–2738 (1991).CrossRefGoogle Scholar
  31. W. L. Meyer, W. A. Bell, B. T. Zinn, and M. P. Stallybrass, “Boundary integral solutions of three dimensional acoustic radiation problems,” J. Sound Vib., 59, No. 245–262 (1978).MATHCrossRefGoogle Scholar
  32. N. Nishimura, “Fast multipole accelerated boundary integral equation methods,” Appl. Mech. Rev., 55, No. 4 (July), 299–324 (2002).CrossRefGoogle Scholar
  33. V. Rokhlin, “Rapid solution of integral equations of classical potential theory,” J. Comp. Phys., 60, No. 187–207 (1985).MATHCrossRefMathSciNetGoogle Scholar
  34. V. Rokhlin, “Rapid solution of integral equations of scattering theory in two dimensions,” J. Comput. Phys., 86, No. 2, 414–439 (1990).MATHCrossRefMathSciNetGoogle Scholar
  35. V. Rokhlin, “Diagonal forms of translation operators for the Helmholtz equation in three dimensions,” Appl. Comput. Harmon. Anal., 1, No. 1, 82–93 (1993).MATHCrossRefMathSciNetGoogle Scholar
  36. H. A. Schenck, “Improved integral formulation for acoustic radiation problems,” J. Acoust. Soc. Am., 44, No. 41–58 (1968).CrossRefGoogle Scholar
  37. A. F. Seybert, B. Soenarko, F. J. Rizzo, and D. J. Shippy, “An advanced computational method for radiation and scattering of acoustic waves in three dimensions,” J. Acoust. Soc. Am., 77, No. 2, 362–368 (1985).MATHCrossRefGoogle Scholar
  38. A. F. Seybert and T. K. Rengarajan, “The use of CHIEF to obtain unique solutions for acoustic radiation using boundary integral equations,” J. Acoust. Soc. Am., 81, No. 1299–1306 (1987).CrossRefGoogle Scholar
  39. L. Shen and Y. J. Liu, “An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton-Miller formulation,” Comput. Mech., 40, No. 3, 461–472 (2007).MATHCrossRefGoogle Scholar
  40. L. Shen and Y. J. Liu, “An adaptive fast multipole boundary element method for 3-D half-space acoustic wave problems,” in review, (2009).Google Scholar
  41. M. A. Tournour and N. Atalla, “Efficient evaluation of the acoustic radiation using multipole expansion,” Int. J. Numer. Methods Eng. 46, No. 6, 825–837 (1999).MATHCrossRefGoogle Scholar
  42. F. Ursell, “On the exterior problems of acoustics,” Proc. Cambridge Philos. Soc., 74, No. 117–125 (1973).MATHCrossRefMathSciNetGoogle Scholar
  43. R. Wagner and W. Chew, “A ray-propagation fast multipole algorithm,” Microwave Opt. Technol. Lett., 7, No. 435–438 (1994).CrossRefGoogle Scholar
  44. T. W. Wu, A. F. Seybert, and G. C. Wan, “On the numerical implementation of a Cauchy principal value integral to insure a unique solution for acoustic radiation and scattering,” J. Acoust. Soc. Am., 90, No. 1, 554–560 (1991).CrossRefGoogle Scholar
  45. S.-A. Yang, “Acoustic scattering by a hard and soft body across a wide frequency range by the Helmholtz integral equation method,” J. Acoust. Soc. Am., 102, No. 5, Pt. 1, November, 2511–2520 (1997).CrossRefGoogle Scholar
  46. K. Yoshida, “Applications of fast multipole method to boundary integral equation method”, Ph.D. Dissertation, Department of Global Environment Engineering, Kyoto University (2001).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of CincinnatiCincinnatiUSA

Personalised recommendations