Advertisement

Role of Endothelial Progenitor Cells in the Metabolic Syndrome

  • Carla Costa

Abstract

The discovery of postnatal vasculogenesis and of the important roles played by Endothelial Progenitor Cells (EPCs) was a landmark in vascular biology that forever has changed the concept of neovascularization. In Metabolic Syndrome (MS) most of EPCs biological functions seem to be impaired and associated with deficient vascular repair, with the maintenance of endothelial dysfunction conditions and the progression of atherosclerosis. The therapeutic control of MS-associated cardiovascular risk factors may restore some of EPCs abrogated functional activities preventing cardiovascular disease development.

This review summarizes current data concerning EPCs biological features in MS and provides a therapeutic outline on the beneficial effects of restoring endogenous vasculogenesis mechanisms in the MS clinical setting.

Keywords

Cardiovascular risk factors Endothelial dysfunction Endothelial progenitor cells Metabolic syndrome Vasculogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Ahima RS, Flier JS. Adipose tissue as an endocrine organ. Trends Endocrinol Metab. 2000a; 11: 327–32.Google Scholar
  2. Ahima RS, Flier JS. Leptin. Annu Rev Physiol. 2000b; 62: 413–37.Google Scholar
  3. Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling K, Zeiher AM, Dimmeler S. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med. 2003; 9: 1370–6.PubMedCrossRefGoogle Scholar
  4. Aicher A, Zeiher AM, Dimmeler S. Mobilizing endothelial progenitor cells. Hypertension. 2005; 45: 321–5.PubMedCrossRefGoogle Scholar
  5. Anagnostoulis S, Karayiannakis AJ, Lambropoulou M, Efthimiadou A, Polychronidis A, Simopoulos C. Human leptin induces angiogenesis in vivo. Cytokine. 2008; 42: 353–7.PubMedCrossRefGoogle Scholar
  6. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999; 257: 79–83.PubMedCrossRefGoogle Scholar
  7. Aronson D. Hyperglycemia and the pathobiology of diabetic complications. Adv Cardiol. 2008; 45: 1–16.PubMedCrossRefGoogle Scholar
  8. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997; 275: 964–7.PubMedCrossRefGoogle Scholar
  9. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y, Silver M, Isner JM. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J. 1999a; 18: 3964–72.Google Scholar
  10. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999b; 85: 221–8.Google Scholar
  11. Balestrieri ML, Rienzo M, Felice F, Rossiello R, Grimaldi V, Milone L, Casamassimi A, Servillo L, Farzati B, Giovane A, Napoli C. High glucose downregulates endothelial progenitor cell number via SIRT1. Biochim Biophys Acta. 2008a; 1784: 936–45.Google Scholar
  12. Balestrieri ML, Fiorito C, Crimi E, Felice F, Schiano C, Milone L, Casamassimi A, Giovane A, Grimaldi V, del Giudice V, Minucci PB, Mancini FP, Servillo L, D’Armiento FP, Farzati B, Napoli C. Effect of red wine antioxidants and minor polyphenolic constituents on endothelial progenitor cells after physical training in mice. Int J Cardiol. 2008b; 126: 295–7.Google Scholar
  13. Balestrieri ML, Schiano C, Felice F, Casamassimi A, Balestrieri A, Milone L, Servillo L, Napoli C. Effect of low doses of red wine and pure resveratrol on circulating endothelial progenitor cells. J Biochem. 2008c; 143: 179–86.Google Scholar
  14. Boak L, Chin-Dusting JP. Hypercholesterolemia and endothelium dysfunction: role of dietary supplementation as vascular protective agents. Curr Vasc Pharmacol. 2004; 2: 45–52.PubMedCrossRefGoogle Scholar
  15. Callaghan MJ, Ceradini DJ, Gurtner GC. Hyperglycemia-induced reactive oxygen species and impaired endothelial progenitor cell function. Antioxid Redox Signal. 2005; 7:1476–82.PubMedCrossRefGoogle Scholar
  16. Chen JZ, Zhang FR, Tao QM, Wang XX, Zhu JH, Zhu JH. Number and activity of endothelial progenitor cells from peripheral blood in patients with hypercholesterolaemia. Clin Sci. 2004; 107: 273–80.PubMedCrossRefGoogle Scholar
  17. Chen YH, Lin SJ, Lin FY, Wu TC, Tsao CR, Huang PH, Liu PL, Chen YL, Chen JW. High glucose impairs early and late endothelial progenitor cells by modifying nitric oxide-related but not oxidative stress-mediated mechanisms. Diabetes. 2007; 56: 1559–68.PubMedCrossRefGoogle Scholar
  18. Costa C, Incio J, Soares R. Angiogenesis and chronic inflammation: cause or consequence? Angiogenesis. 2007; 10: 149–66.PubMedCrossRefGoogle Scholar
  19. Costa C, Vendeira P. Penis and endothelium – Extra genital aspects of erectile dysfunction. Rev Int Androl. 2007; 5: 50–8.Google Scholar
  20. Creager MA, Luscher TF, Cosentino F, Beckman JA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy, part I. Circulation. 2003; 108: 1527–32.PubMedCrossRefGoogle Scholar
  21. Cubbon RM, Rajwani A, Wheatcroft SB. The impact of insulin resistance on endothelial function, progenitor cells and repair. Diab Vasc Dis Res. 2007; 4: 103–11.PubMedCrossRefGoogle Scholar
  22. Dallabrida SM, Zurakowski D, Shih SC, Smith LE, Folkman J, Moulton KS, Rupnick MA. Adipose tissue growth and regression are regulated by angiopoietin-1. Biochem Biophys Res Commun. 2003; 311: 563–71.PubMedCrossRefGoogle Scholar
  23. Dandona P, Aljada A, Chaudhuri A, Bandyopadhyay A. The potential influence of inflammation and insulin resistance on the pathogenesis and treatment of atherosclerosis-related complications in type 2 diabetes. J Clin Endocrinol Metab. 2003; 88: 2422–9.PubMedCrossRefGoogle Scholar
  24. Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol. 2004; 25: 4–7.PubMedCrossRefGoogle Scholar
  25. De Palma M, Venneri MA, Galli R, Sergi L, Politi LS, Sampaolesi M, Naldini L. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell. 2005; 8: 211–26.PubMedCrossRefGoogle Scholar
  26. Delva P, Degan M, Vallerio P, Arosio E, Minuz P, Amen G, Di Chio M, Lechi A. Endothelial progenitor cells in patients with essential hypertension. J Hypertens. 2007; 25: 127–32.PubMedCrossRefGoogle Scholar
  27. DePrimo SE, Bello C. Surrogate biomarkers in evaluating response to anti-angiogenic agents: focus on sunitinib. Ann Oncol. 2007; 18 Suppl 10: x11–9.CrossRefGoogle Scholar
  28. Deschaseaux F, Selmani Z, Falcoz PE, Mersin N, Meneveau N, Penfornis A, Kleinclauss C, Chocron S, Etievent JP, Tiberghien P, Kantelip JP, Davani S. Two types of circulating endothelial progenitor cells in patients receiving long term therapy by HMG-CoA reductase inhibitors. Eur J Pharmacol. 2007; 562: 111–8.PubMedCrossRefGoogle Scholar
  29. Fadini GP, de Kreutzenberg SV, Coracina A, Baesso I, Agostini C, Tiengo A, Avogaro A. Circulating CD34$+$ cells, metabolic syndrome, and cardiovascular risk. Eur Heart J. 2006a; 27: 2247–55.Google Scholar
  30. Fadini GP, Sartore S, Albiero M, Baesso I, Murphy E, Menegolo M, Grego F, Vigili de Kreutzenberg S, Tiengo A, Agostini C, Avogaro A. Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arterioscler Thromb Vasc Biol. 2006b; 26: 2140–6.Google Scholar
  31. Fadini GP, Agostini C, Sartore S, Avogaro A. Endothelial progenitor cells in the natural history of atherosclerosis. Atherosclerosis. 2007; 194:46–54.PubMedCrossRefGoogle Scholar
  32. Fiorito C, Rienzo M, Crimi E, Rossiello R, Luisa Balestrieri M, Casamassimi A, Muto F, Grimaldi V, Giovane A, Farzati B, Mancini FP, Napoli C. Antioxidants increase number of progenitor endothelial cells through multiple gene expression pathways. Free Radic Res. 2008; 42: 754–62.PubMedCrossRefGoogle Scholar
  33. Folkman J. What is the role of endothelial cells in angiogenesis? Lab Invest. 1984; 51: 601–4.PubMedGoogle Scholar
  34. Francois M, Kojda G. Effect of hypercholesterolemia and of oxidative stress on the nitric oxide-cGMP pathway. Neurochem Int. 2004; 45: 955–61.PubMedCrossRefGoogle Scholar
  35. Frühbeck G. Overview of adipose tissue and its role in obesity and metabolic disorders. Methods Mol Biol. 2008; 456: 1–22.PubMedCrossRefGoogle Scholar
  36. Gallagher KA, Liu ZJ, Xiao M, Chen H, Goldstein LJ, Buerk DG, Nedeau A, Thom SR, Velazquez OC. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. J Clin Invest. 2007; 117:1249–59.PubMedCrossRefGoogle Scholar
  37. Galle J, Bengen J, Schollmeyer P, Wanner C. Impairment of endothelium-dependent dilation in rabbit renal arteries by oxidized lipoprotein (a): Role of oxygen-derived radicals. Circulation. 1995; 92: 1582–9.PubMedGoogle Scholar
  38. Gensch C, Clever YP, Werner C, Hanhoun M, Böhm M, Laufs U. The PPAR-gamma agonist pioglitazone increases neoangiogenesis and prevents apoptosis of endothelial progenitor cells. Atherosclerosis. 2007; 192: 67–74.PubMedCrossRefGoogle Scholar
  39. Gill M, Dias S, Hattori K, Rivera ML, Hicklin D, Witte L, Girardi L, Yurt R, Himel H, Rafii S. Vascular trauma induces rapid but transient mobilization of VEGFR2$(+)$AC133$(+)$ endothelial precursor cells. Circ Res. 2001; 88: 167–74.PubMedGoogle Scholar
  40. Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury. Part II. Animal and human studies. Circulation. 2003; 108: 2034–40.PubMedCrossRefGoogle Scholar
  41. Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S, Chimenti S, Landsman L, Abramovitch R, Keshet E. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell. 2006; 124:175–89.PubMedCrossRefGoogle Scholar
  42. Gulati R, Jevremovic D, Peterson TE, Chatterjee S, Shah V, Vile RG, Simari RD. Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circ Res. 2003; 93: 1023–5.PubMedCrossRefGoogle Scholar
  43. Hausman GJ, Richardson RL. Adipose tissue angiogenesis. J Anim Sci. 2004; 82: 925–34.PubMedGoogle Scholar
  44. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell. 2002; 109: 625–37.PubMedCrossRefGoogle Scholar
  45. Higashi Y, Sasaki S, Nakagawa K, et al. Endothelial function and oxidative stress in renovascular hypertension. N Engl J Med. 2002; 346: 1954–62.PubMedCrossRefGoogle Scholar
  46. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003; 348: 593–00.PubMedCrossRefGoogle Scholar
  47. Ho JW, Pang RW, Lau C, Sun CK, Yu WC, Fan ST, Poon RT. Significance of circulating endothelial progenitor cells in hepatocellular carcinoma. Hepatology. 2006; 44: 836–43.PubMedCrossRefGoogle Scholar
  48. Holvoet P, Lee DH, Steffes M, Gross M, Jacobs DR Jr. Association between circulating oxidized low-density lipoprotein and incidence of the metabolic syndrome. JAMA. 2008; 299:2287–93.PubMedCrossRefGoogle Scholar
  49. Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006; 440: 944–8.PubMedCrossRefGoogle Scholar
  50. Hristov M, Erl W, Weber PC. Endothelial progenitor cells: isolation and characterization. Trends Cardiovasc Med. 2003; 13: 201–6.PubMedCrossRefGoogle Scholar
  51. Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK, Oh BH, Lee MM, Park YB. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol. 2004; 24: 288–93.PubMedCrossRefGoogle Scholar
  52. Imanishi T, Hano T, Matsuo Y, Nishio I. Oxidized low-density lipoprotein inhibits vascular endothelial growth factor-induced endothelial progenitor cell differentiation. Clin Exp Pharmacol Physiol. 2003; 30: 665–70.PubMedCrossRefGoogle Scholar
  53. Imanishi T, Hano T, Sawamura T, Nishio I. Oxidized low-density lipoprotein induces endothelial progenitor cell senescence, leading to cellular dysfunction. Clin Exp Pharmacol Physiol. 2004; 31: 407–13.PubMedCrossRefGoogle Scholar
  54. Imanishi T, Moriwaki C, Hano T, Nishio I. Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension. J Hypertens. 2005; 23: 1831–7.PubMedCrossRefGoogle Scholar
  55. Ingram DA, Lien IZ, Mead LE, Estes M, Prater DN, Derr-Yellin E, DiMeglio LA, Haneline LS. In vitro hyperglycemia or a diabetic intrauterine environment reduces neonatal endothelial colony-forming cell numbers and function. Diabetes. 2008; 57: 724–31.PubMedCrossRefGoogle Scholar
  56. Ishikawa M, Asahara T. Endothelial progenitor cell culture for vascular regeneration. Stem Cells Dev. 2004; 13: 344–9.PubMedCrossRefGoogle Scholar
  57. Jandeleit-Dahm K, Cooper ME. The role of AGEs in cardiovascular disease. Curr Pharm Des. 2008; 14: 979–86.PubMedCrossRefGoogle Scholar
  58. Jizhong C, Ruwen C, Chu-Huang C, Jie D. Oxidized low-density lipoprotein stimulates p53-dependent activation of proapoptotic bax leading to apoptosis of differentiated endothelial progenitor cells. Endocrinology. 2007; 148: 2085–94.CrossRefGoogle Scholar
  59. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005; 438: 820–7.PubMedCrossRefGoogle Scholar
  60. Kim JA, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation. 2006; 113: 1888–04.PubMedCrossRefGoogle Scholar
  61. Krönkel N, Adams V, Linke A, Gielen S, Erbs S, Lenk K, Schuler G, Hambrecht R. Hyperglycemia reduces survival and impairs function of circulating blood-derived progenitor cells. Arterioscler Thromb Vasc Biol. 2005; 25: 698–03.CrossRefGoogle Scholar
  62. Kugiyama K, Kerns SA, Morrisett JD, Roberts R, Henry PD. Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins. Nature. 1990; 344: 160–2.PubMedCrossRefGoogle Scholar
  63. Kuki S, Imanishi T, Kobayashi K, Matsuo Y, Obana M, Akasaka T. Hyperglycemia accelerated endothelial progenitor cell senescence via the activation of p38 mitogen-activated protein kinase. Circ J. 2006; 70: 1076–81.PubMedCrossRefGoogle Scholar
  64. Kumada M, Kihara S, Sumitsuji S, Kawamoto T, Matsumoto S, Ouchi N, Arita Y, Okamoto Y, Shimomura I, Hiraoka H, Nakamura T, Funahashi T, Matsuzawa Y; Osaka CAD Study Group. Coronary artery disease. Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler Thromb Vasc Biol. 2003; 23: 85–9.Google Scholar
  65. Kusuyama T, Omura T, Nishiya D, Enomoto S, Matsumoto R, Murata T, Takeuchi K, Yoshikawa J, Yoshiyama M. The effects of HMG-CoA reductase inhibitor on vascular progenitor cells. J Pharmacol Sci. 2006; 101: 344–9.PubMedCrossRefGoogle Scholar
  66. Kuzkaya N, Weissmann N, Harrison DG, Dikalov S. Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase. J Biol Chem. 2003; 278: 22546–54.PubMedCrossRefGoogle Scholar
  67. Li X, Xu B. HMG-CoA reductase inhibitor regulates endothelial progenitor function through the phosphatidylinositol 3’-Kinase/AKT signal transduction pathway. Appl Biochem Biotechnol. 2008 Jun 18. [Epub ahead of print]Google Scholar
  68. Llevadot J, Murasawa S, Kureishi Y, Uchida S, Masuda H, Kawamoto A, et al. HMG-CoA reductase inhibitor mobilizes bone marrow – derived endothelial progenitor cells. J Clin Invest. 2001; 108: 399–05.PubMedGoogle Scholar
  69. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Moore MA, Hajjar KA, Manova K, Benezra R, Rafii S. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med. 2001; 7: 1194–01.PubMedCrossRefGoogle Scholar
  70. Ma FX, Zhou B, Chen Z, Ren Q, Lu SH, Sawamura T, Han ZC. Oxidized low density lipoprotein impairs endothelial progenitor cells by regulation of endothelial nitric oxide synthase. J Lipid Res. 2006; 47: 1227–37.PubMedCrossRefGoogle Scholar
  71. Mahadev K, Wu X, Donnelly S, Ouedraogo R, Eckhart AD, Goldstein BJ. Adiponectin inhibits vascular endothelial growth factor-induced migration of human coronary artery endothelial cells. Cardiovasc Res. 2008; 78: 376–84.PubMedCrossRefGoogle Scholar
  72. Matsumoto T, Mifune Y, Kawamoto A, Kuroda R, Shoji T, Iwasaki H, Suzuki T, Oyamada A, Horii M, Yokoyama A, Nishimura H, Lee SY, Miwa M, Doita M, Kurosaka M, Asahara T. Fracture induced mobilization and incorporation of bone marrow-derived endothelial progenitor cells for bone healing. J Cell Physiol. 2008; 215: 234–42.PubMedCrossRefGoogle Scholar
  73. Michowitz Y, Goldstein E, Wexler D, Sheps D, Keren G, George J. Circulating endothelial progenitor cells and clinical outcome in patients with congestive heart failure. Heart. 2007; 93: 1046–50.PubMedCrossRefGoogle Scholar
  74. Min TQ, Zhu CJ, Xiang WX, Hui ZJ, Peng SY. Improvement in endothelial progenitor cells from peripheral blood by ramipril therapy in patients with stable coronary artery disease. Cardiovasc Drugs Ther. 2004; 18: 203–9.PubMedCrossRefGoogle Scholar
  75. Naik RP, Jin D, Chuang E, Gold EG, Tousimis EA, Moore AL, Christos PJ, de Dalmas T, Donovan D, Rafii S, Vahdat LT. Circulating endothelial progenitor cells correlate to stage in patients with invasive breast cancer. Breast Cancer Res Treat. 2008; 107: 133–8.PubMedCrossRefGoogle Scholar
  76. Nakagami H, Kaneda Y, Ogihara T, Morishita R. Endothelial dysfunction in hyperglycemia as a trigger of atherosclerosis. Curr Diabetes Rev. 2005; 1: 59–63.PubMedCrossRefGoogle Scholar
  77. Nonaka-Sarukawa M, Yamamoto K, Aoki H, Nishimura Y, Tomizawa H, Ichida M, Eizawa T, Muroi K, Ikeda U, Shimada K. Circulating endothelial progenitor cells in congestive heart failure. Int J Cardiol. 2007; 119: 344–8.PubMedCrossRefGoogle Scholar
  78. Patel SB, Reams GP, Spear RM, Freeman RH, Villarreal D. Leptin: linking obesity, the metabolic syndrome, and cardiovascular disease. Curr Hypertens Rep. 2008; 10: 131–7.PubMedCrossRefGoogle Scholar
  79. Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000; 95: 952–8.PubMedGoogle Scholar
  80. Perticone F, Ceravolo R, Pujia A, Ventura G, Iacopino S, Scozzafava A, et al. Prognostic significance of endothelial dysfunction in hypertensive patients. Circulation. 2001; 104:191–6.PubMedGoogle Scholar
  81. Peters BA, Diaz LA, Polyak K, Meszler L, Romans K, Guinan EC, Antin JH, Myerson D, Hamilton SR, Vogelstein B, Kinzler KW, Lengauer C. Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nat Med. 2005; 11: 261–2.PubMedCrossRefGoogle Scholar
  82. Pircher A, Köhler CM, Skvortsov S, Dlaska M, Kawaguchi G, Schmid T, Gunsilius E, Hilbe W. Increased numbers of endothelial progenitor cells in peripheral blood and tumor specimens in non-small cell lung cancer: a methodological challenge and an ongoing debate on the clinical relevance. Oncol Rep. 2008; 19: 345–52.PubMedGoogle Scholar
  83. Pirro M, Schillaci G, Menecali C, Bagaglia F, Paltriccia R, Vaudo G, Mannarino MR, Mannarino E. Reduced number of circulating endothelial progenitors and HOXA9 expression in CD34+ cells of hypertensive patients. J Hypertens. 2007; 25: 2093–9.PubMedGoogle Scholar
  84. Pistrosch F, Herbrig K, Oelschlaegel U, Richter S, Passauer J, Fischer S, Gross P. PPARgamma-agonist rosiglitazone increases number and migratory activity of cultured endothelial progenitor cells. Atherosclerosis. 2005; 183: 163–7.PubMedCrossRefGoogle Scholar
  85. Rafii S. Circulating endothelial precursors: mystery, reality, and promise. J Clin Invest. 2000; 105: 17–9.PubMedCrossRefGoogle Scholar
  86. Ribatti D, Conconi MT, Nussdorfer GG. Nonclassic endogenous novel regulators of angiogenesis. Pharmacol Rev. 2007; 59: 185–05.PubMedCrossRefGoogle Scholar
  87. Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol. 1995; 11: 73–91.PubMedCrossRefGoogle Scholar
  88. Risau W. Mechanisms of angiogenesis. Nature. 1997; 386: 671–4.PubMedCrossRefGoogle Scholar
  89. Satoh M, Ishikawa Y, Takahashi Y, Itoh T, Minami Y, Nakamura M. Association between oxidative DNA damage and telomere shortening in circulating endothelial progenitor cells obtained from metabolic syndrome patients with coronary artery disease. Atherosclerosis. 2008; 198:347–53.PubMedCrossRefGoogle Scholar
  90. Schiffrin EL. A critical review of the role of endothelial factors in the pathogenesis of hypertension. J Cardiovasc Pharmacol. 2001; 38: S3–6.PubMedGoogle Scholar
  91. Schmidt-Lucke C, Rossig L, Fichtlscherer S, Vasa M, Britten M, Kamper U, Dimmeler S, Zeiher AM. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation. 2005; 111: 2981–7.PubMedCrossRefGoogle Scholar
  92. Schoonjans K, Auwerx J. Thiazolidinediones: an update. Lancet. 2000; 355: 1008–10.PubMedCrossRefGoogle Scholar
  93. Sepùlveda P, Martinez-León J, García-Verdugo JM. Neoangiogenesis with endothelial precursors for the treatment of ischemia. Transplant Proc. 2007; 39: 2089–94.PubMedCrossRefGoogle Scholar
  94. Shantsila E, Watson T, Lip GY. Endothelial progenitor cells in cardiovascular disorders. J Am Coll Cardiol. 2007; 49: 741–52.PubMedCrossRefGoogle Scholar
  95. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR, Moore MA, Storb RF, Hammond WP. Evidence for circulating bone marrow-derived endothelial cells. Blood. 1998; 92: 362–7.PubMedGoogle Scholar
  96. Shibata R, Skurk C, Ouchi N, Galasso G, Kondo K, Ohashi T, Shimano M, Kihara S, Murohara T, Walsh K. Adiponectin promotes endothelial progenitor cell number and function. FEBS Lett. 2008; 582: 1607–12.PubMedCrossRefGoogle Scholar
  97. Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A, Sasaki K, Shimada T, Oike Y, Imaizumi T. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation. 2001; 103: 2776–9.PubMedCrossRefGoogle Scholar
  98. Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, Milde T, St Clair R, Baljevic M, White I, Jin DK, Chadburn A, Murphy AJ, Valenzuela DM, Gale NW, Thurston G, Yancopoulos GD, D’Angelica M, Kemeny N, Lyden D, Rafii S. CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J Clin Invest. 2008; 118: 2111–20.PubMedGoogle Scholar
  99. Silha JV, Krsek M, Sucharda P, Murphy LJ. Angiogenic factors are elevated in overweight and obese individuals. Int J Obes. 2005; 29: 1308–14.CrossRefGoogle Scholar
  100. Smythe J, Fox A, Fisher N, Frith E, Harris AL, Watt SM. Measuring angiogenic cytokines, circulating endothelial cells, and endothelial progenitor cells in peripheral blood and cord blood: VEGF and CXCL12 correlate with the number of circulating endothelial progenitor cells in peripheral blood. Tissue Eng Part C Methods. 2008; 14: 59–67.PubMedCrossRefGoogle Scholar
  101. Soares R, Costa C. Angiogenesis and inflammatory diseases: current concepts and therapeutic perspectives. In: Maragoudakis ME; Papadimitriou E (ed.) Angiogenesis. Basic science and clinical applications, 1st edn. Transworld Research Network. 2007; 511–47.Google Scholar
  102. Sorrentino SA, Bahlmann FH, Besler C, Müller M, Schulz S, Kirchhoff N, Doerries C, Horváth T, Limbourg A, Limbourg F, Fliser D, Haller H, Drexler H, Landmesser U. Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus: restoration by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Circulation. 2007; 116: 163–73.PubMedCrossRefGoogle Scholar
  103. Spieker LE, Noll G, Ruschitzka FT, Maier W, Luscher TF. Working under pressure: the vascular endothelium in arterial hypertension. J Hum Hypertens. 2000; 14: 617–30.PubMedCrossRefGoogle Scholar
  104. Suzuki T, Hirata K, Elkind MS, Jin Z, Rundek T, Miyake Y, Boden-Albala B, Di Tullio MR, Sacco R, Homma S. Metabolic syndrome, endothelial dysfunction, and risk of cardiovascular events: the Northern Manhattan Study (NOMAS). Am Heart J. 2008; 156: 405–10.PubMedCrossRefGoogle Scholar
  105. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med. 1999; 5: 434–8.PubMedCrossRefGoogle Scholar
  106. Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, Levine JP, Gurtner GC. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation. 2002; 106: 2781–6.PubMedCrossRefGoogle Scholar
  107. Touyz RM, Schiffrin EL. Reactive oxygen species in vascular biology: implications in hypertension. Histochem Cell Biol. 2004; 122: 339–52.PubMedCrossRefGoogle Scholar
  108. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001; 89: E1–7.PubMedCrossRefGoogle Scholar
  109. Walter DH, Rittig K, Bahlmann FH, Kirchmair R, Silver M, Murayama T, et al. Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation. 2002; 105: 3017–24.PubMedCrossRefGoogle Scholar
  110. Wang CH, Ciliberti N, Li SH, Szmitko PE, Weisel RD, Fedak PW, Al-Omran M, Cherng WJ, Li RK, Stanford WL, Verma S. Rosiglitazone facilitates angiogenic progenitor cell differentiation toward endothelial lineage: a new paradigm in glitazone pleiotropy. Circulation. 2004a; 109: 1392–00.Google Scholar
  111. Wang CH, Ting MK, Verma S, Kuo LT, Yang NI, Hsieh IC, Wang SY, Hung A, Cherng WJ. Pioglitazone increases the numbers and improves the functional capacity of endothelial progenitor cells in patients with diabetes mellitus. Am Heart J. 2006; 152: 1051.e1–8.CrossRefGoogle Scholar
  112. Wang X, Chen J, Tao Q, Zhu J, Shang Y. Effects of ox-LDL on number and activity of circulating endothelial progenitor cells. Drug Chem Toxicol. 2004b; 27: 243–55.Google Scholar
  113. Watson T, Goon PK, Lip GY. Endothelial progenitor cells, endothelial dysfunction, inflammation, and oxidative stress in hypertension. Antioxid Redox Signal. 2008; 10: 1079–88.PubMedCrossRefGoogle Scholar
  114. Werner C, Kamani CH, Gensch C, Böhm M, Laufs U. The peroxisome proliferator-activated receptor-gamma agonist pioglitazone increases number and function of endothelial progenitor cells in patients with coronary artery disease and normal glucose tolerance. Diabetes. 2007; 56: 2609–15.PubMedCrossRefGoogle Scholar
  115. Werner N, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med. 2005; 353: 999–07.PubMedCrossRefGoogle Scholar
  116. Werner N, Nickenig G. Influence of cardiovascular risk factors on endothelial progenitor cells: limitations for therapy? Arterioscler Thromb Vasc Biol. 2006; 26: 257–66.PubMedCrossRefGoogle Scholar
  117. Whitehead JP, Richards AA, Hickman IJ, Macdonald GA, Prins JB. Adiponectin- a key adipokine in the metabolic syndrome. Diabetes Obes Metab. 2006; 8: 264–80.PubMedCrossRefGoogle Scholar
  118. Wolk R, Deb A, Caplice NM, Somers VK. Leptin receptor and functional effects of leptin in human endothelial progenitor cells. Atherosclerosis. 2005; 183: 131–9.PubMedCrossRefGoogle Scholar
  119. Yanai H, Tomono Y, Ito K, Furutani N, Yoshida H, Tada N. The underlying mechanisms for development of hypertension in the metabolic syndrome. Nutr J. 2008; 7: 10.PubMedCrossRefGoogle Scholar
  120. Yao EH, Yu Y, Fukuda N. Oxidative stress on progenitor and stem cells in cardiovascular diseases. Curr Pharm Biotechnol. 2006; 7: 101–8.PubMedCrossRefGoogle Scholar
  121. Yao EH, Fukuda N, Matsumoto T, Kobayashi N, Katakawa M, Yamamoto C, Tsunemi A, Suzuki R, Ueno T, Matsumoto K. Losartan improves the impaired function of endothelial progenitor cells in hypertension via an antioxidant effect. Hypertens Res. 2007; 30:1119–28.PubMedCrossRefGoogle Scholar
  122. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood. 2007; 109: 1801–9.PubMedCrossRefGoogle Scholar
  123. Yoon CH, Hur J, Park KW, Kim JH, Lee CS, Oh IY, Kim TY, Cho HJ, Kang HJ, Chae IH, Yang HK, Oh BH, Park YB, Kim HS. Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation. 2005; 112: 1618–27.PubMedCrossRefGoogle Scholar
  124. You T, Nicklas BJ, Ding J, Penninx BW, Goodpaster BH, Bauer DC, Tylavsky FA, Harris TB, Kritchevsky SB. The metabolic syndrome is associated with circulating adipokines in older adults across a wide range of adiposity. J Gerontol A Biol Sci Med Sci. 2008a; 63: 414–9.Google Scholar
  125. You D, Cochain C, Loinard C, Vilar J, Mees B, Duriez M, Lévy BI, Silvestre JS. Hypertension impairs postnatal vasculogenesis: role of antihypertensive agents. Hypertension. 2008b; 51: 1537–44.Google Scholar
  126. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001; 414: b782–7.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Carla Costa
    • 1
  1. 1.Department of Biochemistry (U38/FCT) and Laboratory for Molecular Cell Biology, Faculty of MedicineUniversity of Porto, Al. Prof. Hernâni MonteiroPortoPortugal

Personalised recommendations