Symbionts, including pathogens, of the predatory mite Metaseiulus occidentalis: current and future analysis methods

Abstract

Metaseiulus (= Typhlodromus or Galendromus) occidentalis (Nesbitt) (Acari: Phytoseiidae) is an effective natural enemy of pest mites in a variety of crops around the world, although it is considered to be endemic in the western USA. A broad understanding of much of its biology, ecology, behavior, and genetics has been obtained over the past 60 years, but the role(s) symbionts play, which includes pathogens and other microorganisms, remains to be resolved fully. Until molecular tools became available, analysis methods were limited primarily to microscopic observations; some viruses and rickettsia-like organisms were observed infecting ‘diseased’ M. occidentalis, but it is not clear which one(s) was the causal agent(s) of the disease(s). Subsequent to the development of the polymerase chain reaction (PCR) and genome sequencing, we identified putative gut symbionts and reproductive tract symbionts in M. occidentalis, as well as a microsporidian pathogen. A new phylogenetic analysis of the Bacteroidetes-Flavobacterium group suggests the unnamed Bacteroidetes in M. occidentalis is associated with the digestive tract. However, much of our current information about the role these microorganisms play in the biology of M. occidentalis is based on correlation, lacking the strength of fulfilling Koch’s postulates. We also currently lack any knowledge of the importance of these microorganisms under field conditions. In the future, it should be possible to learn what role(s) these organisms play in the biology of this important predator using metagenomics approaches to analyze the transcriptome and to determine their relative abundance within their hosts with the quantitative PCR. We have just begun to resolve these relationships.

Keywords

Phytoseiidae Metaseiulus (= Typhlodromus or Galendromus) occidentalis Microbial symbionts Pathogens Assessment methods Metagenomics Bacteroidetes Wolbachia Cardinium Enterobacter Oligosporidium Viruses Serratia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnes W (1994) PCR amplification of up to 35-kb DNA with high fidelity and high yield from bacteriophage templates. Proc Natl Acad Sci USA 91:2216–2220PubMedCrossRefGoogle Scholar
  2. Becnel JJ, Jeyaprakash A, Hoy MA, Shapiro A (2002) Morphological and molecular characterization of a new microsporidian species from the predatory mite Metaseiulus occidentalis (Nesbitt) (Acari, Phytoseiidae). J Invertebr Pathol 79:163–172PubMedCrossRefGoogle Scholar
  3. Beerling EAM, van der Geest LPS (1991) Microsporidiosis in mass-rearings of the predatory mites Amblyseius cucumeris and A. barkeri (Acarina: Phytoseiidae). Proc Exp Appl Entomol NEV Amsterdam 2:157–162Google Scholar
  4. Bjornson S, Steiner MY, Keddie BA (1996) Ultrastructure and pathology of Microsporidium phytoseiuli n. sp. infecting the predatory mite, Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). J Invertebr Pathol 68:223–230CrossRefGoogle Scholar
  5. Bjornson S, Steiner MY, Keddie BA (1997) Birefringent crystals and abdominal discoloration in the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). J Invertebr Pathol 69:85–91CrossRefGoogle Scholar
  6. Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780PubMedCrossRefGoogle Scholar
  7. Bourtzis K, Miller TA (eds) (2006) Insect symbiosis, vol 2. CRC Press, Boca RatonGoogle Scholar
  8. Boush GM, Matsumura F (1967) Insecticidal degradation by Pseudomonas melophthora, the bacterial symbiote of the apple maggot. J Econ Entomol 60:918–920Google Scholar
  9. Dale C, Moran NA (2006) Molecular interactions between bacterial symbionts and their hosts. Cell 126:453–465PubMedCrossRefGoogle Scholar
  10. Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, Sun Z, Zong Q, Du Y, Du J, Driscoll M, Song W, Kingsmore SF, Egholm M, Lasken RS (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA 99:5261–5266PubMedCrossRefGoogle Scholar
  11. Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature 449:811–818PubMedCrossRefGoogle Scholar
  12. Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92PubMedCrossRefGoogle Scholar
  13. Douglas AE (1994) Symbiotic interactions. Oxford University Press, UKGoogle Scholar
  14. Enigl M, Schausberger P (2007) Incidence of the endosymbionts Wolbachia, Cardinium and Spiroplasma in phytoseiid mites and associated prey. Exp Appl Acarol 42:75–85PubMedCrossRefGoogle Scholar
  15. Felsot AS (1989) Enhanced biodegration of insecticides in soil: implications for agroecosystems. Annu Rev Entomol 34:453–476CrossRefGoogle Scholar
  16. Field RP (1978) Control of the two-spotted mite in a Victorian peach orchard with an introduced predaceous mite Typhlodromus occidentalis Nesbitt. Aust J Zool 26:518–519CrossRefGoogle Scholar
  17. Field RP, Hoy MA (1985) Diapause behavior of genetically-improved strains of the spider mite predator Metaseiulus occidentalis (Acarina: Phytoseiidae). Entomol Exp Appl 38:113–120CrossRefGoogle Scholar
  18. Flaherty DL, Huffaker CB (1970) Biological control of Pacific mites and Willamette mites in San Joaquin Valley vineyards. I. Role of Metaseiulus occidentalis. II. Influence of dispersion patterns of Metaseiulus occidentalis. Hilgardia 40(10):267–330Google Scholar
  19. Gols R, Schutte C, Stouthamer R, Dicke M (2007) PCR-based identification of the pathogenic bacterium, Acaricomes phytoseiuli, in the biological control agent Phytoseiulus persimilis (Acari: Phytoseiidae). Biol Control 42:316–325CrossRefGoogle Scholar
  20. Gruwell ME, Morse GE, Normark BB (2007) Phylogenetic congruence of armored scale insects (Hemiptera: Diaspididae) and their primary endosymbionts from the phylum Bacteroidetes. Mol Phylogenet Evol 44:267–280PubMedCrossRefGoogle Scholar
  21. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685PubMedCrossRefGoogle Scholar
  22. Hess RT, Hoy MA (1982) Microorganisms associated with the spider mite predator Metaseiulus (= Typhlodromus) occidentalis: electron microscope observations. J Invertebr Pathol 40:98–106CrossRefGoogle Scholar
  23. Hoffman AA, Turelli M, Harshman LG (1990) Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics 126:933–948Google Scholar
  24. Hotopp JCD, Clark ME, Oliveira DCSG, Foster JM, Fischer P, Torres MCM, Giebel JD, Kumar N, Ishmael N, Wang S, Ingram J, Nene RV, Shepard J, Tomkins J, Richards S, Spiro DJ, Ghedin E, Slatko BE, Tettelin H, Werren JH (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317:1753–1756PubMedCrossRefGoogle Scholar
  25. Hoy MA (1979) Parahaploidy of the “arrhenotokous” predator, Metaseiulus occidentalis (Acarina: Phytoseiidae) demonstrated by X-irradiation of males. Entomol Exp Appl 26:97–104Google Scholar
  26. Hoy MA (1982) Aerial dispersal and field efficacy of a genetically-improved strain of the spider mite predator Metaseiulus occidentalis. Entomol Exp Appl 32:205–212Google Scholar
  27. Hoy MA (1985a) Almonds: integrated mite management for California almond orchards. In: Helle W, Sabelis MW (eds) Spider mites, their biology, natural enemies, and control, vol 1B. Elsevier, Amsterdam, pp 299–310Google Scholar
  28. Hoy MA (1985b) Recent advances in genetics and genetic improvement of the Phytoseiidae. Annu Rev Entomol 30:345–370CrossRefGoogle Scholar
  29. Hoy MA (1990) Pesticide resistance in arthropod natural enemies: variability and selection responses. In: Roush RT, Tabashnik B (eds) Pesticide resistance in arthropods. Chapman and Hall, New York, pp 203–236Google Scholar
  30. Hoy MA (2000) Transgenic arthropods for pest management programs: risks and realities. Exp Appl Acarol 24:463–495PubMedCrossRefGoogle Scholar
  31. Hoy MA, Cave FE (1985) Mating behavior in four strains of Metaseiulus occidentalis (Acari: Phytoseiidae). Ann Entomol Soc Am 78:588–593Google Scholar
  32. Hoy MA, Cave FE (1988) Premating and postmating isolation among populations of Metaseiulus occidentalis (Nesbitt) (Acarina: Phytoseiidae). Hilgardia 56(6):1–20Google Scholar
  33. Hoy MA, Jeyaprakash A (2005) Microbial diversity in the predatory mite Metaseiulus occidentalis (Acari: Phytoseiidae) and its prey, Tetranychus urticae (Acari: Tetranychidae). Biol Control 32:427–441CrossRefGoogle Scholar
  34. Hoy MA, Groot JJR, van de Baan HE (1985) Influence of aerial dispersal on persistence and spread of pesticide-resistant Metaseiulus occidentalis in California almond orchards. Entomol Exp Appl 37:17–31CrossRefGoogle Scholar
  35. Hoyt SC (1969) Integrated chemical control of insects and biological control of mites on apple in Washington. J Econ Entomol 62:74–86Google Scholar
  36. Hunter MS, Perlman SJ, Kelly SE (2003) A bacterial symbiont in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella. Proc R Soc Lond B 270:2185–2190CrossRefGoogle Scholar
  37. Hurst GDD, Hammarton TC, Bandi C, Majerus TMO, Bertrand D, Majerus MEN (1997) The diversity of inherited parasites of insects: the male-killing agent of the ladybird beetle Coleomegilla maculata is a member of the Flavobacteria. Genet Res 70:1–6CrossRefGoogle Scholar
  38. Jeyaprakash A, Hoy MA (2000) Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of 63 arthropod species. Insect Mol Biol 9:393–405PubMedCrossRefGoogle Scholar
  39. Jeyaprakash A, Hoy MA (2004) Multiple displacement amplification in combination with high-fidelity PCR improves detection of bacteria from single females or eggs of Metaseiulus occidentalis (Nesbitt) (Acari: Phytoseiidae). J Invertebr Pathol 86:111–116PubMedCrossRefGoogle Scholar
  40. Jeyaprakash A, Hoy MA (2007) The mitochondrial genome of the predatory mite Metaseiulus occidentalis (Arthropoda: Chelicerata: Acari: Phytoseiidae) is unexpectedly large and contains several novel features. Gene 391:264–274PubMedCrossRefGoogle Scholar
  41. Johanowicz DJ, Hoy MA (1996) Wolbachia in a predator–prey system: 16S ribosomal DNA analysis of two phytoseiids (Acari: Phytoseiidae) and their prey (Acari: Tetranychidae). Ann Entomol Soc Am 89:435–441Google Scholar
  42. Johanowicz DL, Hoy MA (1998a) The manipulation of arthropod reproduction by Wolbachia endosymbionts. Fla Entomol 81:310–317CrossRefGoogle Scholar
  43. Johanowicz DL, Hoy MA (1998b) Experimental induction and termination of non-reciprocal reproductive incompatibilities in a parahaploid mite. Entomol Exp Appl 87:51–58CrossRefGoogle Scholar
  44. Johanowicz DL, Hoy MA (1999) Wolbachia infection dynamics in experimental laboratory populations of Metaseiulus occidentalis. Entomol Exp Appl 93:259–268CrossRefGoogle Scholar
  45. Kostiainen TS, Hoy MA (1996) The Phytoseiidae as biological control agents of pest mites and insects: a bibliography. Monograph 17, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 355 ppGoogle Scholar
  46. Lighthart B, Sewall D, Thomas DR (1988) Effect of several stress factors on the susceptibility of the predatory mite, Metaseiulus occidentalis (Acari: Phytoseiidae), to the weak bacterial pathogen Serratia marcescens. J Invertebr Pathol 52:33–42CrossRefGoogle Scholar
  47. Maekawa K, Park YC, Lo N (2005) Phylogeny of endosymbiont bacteria harbored by the woodroach Cryptocercus spp. (Cryptocercidae: Blattaria): molecular clock evidence for a late Cretaceous—early Tertiary split of Asian and American lineages. Mol Phylogenet Evol 36:728–733PubMedCrossRefGoogle Scholar
  48. McCutcheon JP, Moran NA (2007) Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci USA 104:19392–19397PubMedCrossRefGoogle Scholar
  49. McMurtry JA (1982) The use of phytoseiids for biological control: progress and future prospects. In: Hoy MA (ed) Recent advances in knowledge of the Phytoseiidae. Univ Calif Div Agric Sci Publ, 3284, Berkeley, pp 23–48Google Scholar
  50. McMurtry JA, Huffaker CB, van de Vrie M (1970) I. Tetranychid enemies: their biological characters and the impact of spray practices. Hilgardia 40(11):331–390Google Scholar
  51. Nagaraj SH, Gasser RB, Ranganathan S (2006) A hitchhiker’s guide to expressed sequence tag (EST) analysis. Brief Bioinform 8:6–21PubMedCrossRefGoogle Scholar
  52. Nelson-Rees WA, Hoy MA, Roush RT (1980) Heterochromatinization, chromatin elimination and haploidization in the parahaploid mite Metaseiulus occidentalis (Nesbitt) (Acarina: Phytoseiidae). Chromosoma 77:263–276PubMedCrossRefGoogle Scholar
  53. Olson LE, Hoy MA (2002) Heat curing Metaseiulus occidentalis (Nesbitt) (Acari, Phytoseiidae) of a fitness-reducing microsporidium. J Invertebr Pathol 79:173–178CrossRefGoogle Scholar
  54. Perlman SJ, Hunter MS, Zchori-Fein E (2006) The emerging diversity of Rickettsia. Proc R Soc B 273:2097–2106PubMedCrossRefGoogle Scholar
  55. Poinar G Jr, Poinar R (1998) Parasites and pathogens of mites. Annu Rev Entomol 43:449–469PubMedCrossRefGoogle Scholar
  56. Presnail JK, Hoy MA (1992) Stable genetic transformation of a beneficial arthropod, Metaseiulus occidentalis (Acari: Phytoseiidae), by a microinjection technique. Proc Natl Acad Sci USA 89:7732–7736PubMedCrossRefGoogle Scholar
  57. Readshaw JL (1975) Biological control of orchard mites in Australia using an insecticide-resistant predator. J Aust Inst Agric Sci 41:213–214Google Scholar
  58. Riegler M, O’Neill SL (2007) Evolutionary dynamics of insect symbiont associations. Trends Ecol Evol 22:625–627PubMedCrossRefGoogle Scholar
  59. Tanigoshi LK (1982) Advances in knowledge of the biology of the Phytoseiidae. In: Hoy MA (ed) Recent advances in knowledge of the Phytoseiidae. Univ Calif Div Agric Sci Publ, 3284, pp 1–22Google Scholar
  60. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449:804–810PubMedCrossRefGoogle Scholar
  61. Weeks AR, Stouthamer R (2003) Increased fecundity associated with infection by a Cytophaga-like intracellular bacterium in the predatory mite, Metaseiulus occidentalis. Proc R Soc Biol Lett 271(Suppl 4):193–195 May 7, 2004Google Scholar
  62. Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:172–216Google Scholar
  63. Woyke T, Teeling H, Ivanova NN, Huntemann M, Richter M, Gloeckner FO, Boffelli D, Anderson IJ, Barry KW, Shapiro HJ, Szeto E, Kyrpides NC, Mussmann M, Amann R, Bergin C, Ruehland C, Rubin EM, Dubilier N (2006) Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 443:950–955PubMedCrossRefGoogle Scholar
  64. Zchori-Fein E, Perlman SJ (2004) Distribution of the bacterial symbiont Cardinium in arthropods. Mol Ecol 13:2009–2016PubMedCrossRefGoogle Scholar
  65. Zchori-Fein E, Perlman SJ, Kelly SE, Katzir N, Hunter MS (2004) Characterization of a ‘Bacteroidetes’ symbiont in Encarsia wasps (Hymenoptera: Aphelinidae): proposal of ‘Candidatus Cardinium hertigii’. Int J Syst Evol Microbiol 54:961–968PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Entomology and NematologyUniversity of FloridaGainesvilleUSA

Personalised recommendations