The effects of Pseudomonas putida biotype B on Tetranychus urticae (Acari: Tetranychidae)

  • H. Murat Aksoy
  • Sebahat K. Ozman-Sullivan
  • Heval Ocal
  • Nuray Celik
  • Gregory T. Sullivan


This study investigated Pseudomonas putida biotype B as a potential biological control agent of Tetranychus urticae. The bacteria were isolated from greenhouse soil from Carsamba, Turkey. The experiment was carried out in a completely randomized plot design under laboratory conditions. For this purpose, spraying and dipping applications of a suspension of P. putida biotype B (108–109 colony forming units/ml) were applied to newly emerged, copulated females. Dead mite and egg counts were started on the 3rd day after treatments, and observations were continued daily until all the mites had died and egg hatching had finished. Both types of bacterial application significantly reduced total egg numbers and egg hatching, compared to their respective controls. Bacterial spraying was significantly more effective than dipping—the spray application demonstrated 100% efficacy and resulted in the fewest viable eggs. The results of this study indicated that P. putida biotype B has a strong efficacy in causing mortality in T. urticae.


Fluorescent bacteria Pseudomonas putida Tetranychus urticae Biological control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aksoy HM, Mennan S (2004) Biological control of Heterodera cruciferae (Tylenchida: Heteroderidae) Franklin 1945 with Fluorescent Pseudomonas spp. J Phytopathol 152(8):514–518CrossRefGoogle Scholar
  2. Amer GA, Utkhede RS (2000) Development of formulations of biological agents for management of root rot of lettuce and cucumber. Can J Microbiol 46(9):809–816PubMedCrossRefGoogle Scholar
  3. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H (2000) Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50(4):1563–1589PubMedGoogle Scholar
  4. Askary H, Carrieare Y, Bealanger RR, Brodeur J (1998) Pathogenicity of the fungus Verticillium lecanii to aphids and powdery mildew. Biocontrol Sci Technol 8:23–32CrossRefGoogle Scholar
  5. Bolland HR, Gutierrez J, Flechtmann CHW (1998) World catalogue of the spider mite family (Acari: Tetranychidae). Brill Academic Publishers, LeidenGoogle Scholar
  6. Broadway RM, Gongora C, Kain WC, Sanderson JA, Monroy JA, Bennett KC, Warner JB, Hoffman MP (1998) Novel chitinolytic enzymes with biological activity against herbivorous insects. J Chem Ecol 24:985–998CrossRefGoogle Scholar
  7. Carey JR, Bradley JW (1982) Developmental rates, vital schedules, sex-ratios and life tables for Tetranychus urticae, T. turkestani and T. pacificus (Acarina: Tetranychidae) on cotton. Acarologia 23:333–345Google Scholar
  8. Chandler D, Davidson G, Pell JL, Ball BV, Shaw K, Sunderland KD (2000) Fungal biocontrol of Acari. Biocontrol Sci Technol 10:357–384CrossRefGoogle Scholar
  9. Chandler D, Davidson G, Jacobson RJ (2005) Laboratory and glasshouse evaluation of entomopathogenic fungi against the two-spotted spidermite, Tetranychus urticae (Acari: Tetranychidae) on tomato, Lycopersicon esculentum. Biocontrol Sci Technol 15:37–54CrossRefGoogle Scholar
  10. Cho JR, Kim YJ, Ahn YJ, Yoo JK, Lee JO (1995) Monitoring of acaricide resistance in field-collected populations of Tetranychus urticae (Acari: Tetranychidae) in Korea. Korean J Appl Entomol 34:40–45Google Scholar
  11. Devine GJ, Barber M, Denholm I (2001) Incidence and inheritance of resistance to METI-acaricides in European strains of the two-spotted spider mite (Tetranychus urticae) (Acari: Tetranychidae). Pest Manag Sci 57:443–448PubMedCrossRefGoogle Scholar
  12. Dowling DN, O’Gara F (1994) Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol 12:133–141CrossRefGoogle Scholar
  13. Gerson U, Weintraub PG (2007) Mites for the control of pests in protected cultivation. Pest Manag Sci 63(7):658–676PubMedCrossRefGoogle Scholar
  14. Gerson U, Smiley RL, Ochoa R (2003) Mites (Acari) in biological control. Blackwell Science, BostonCrossRefGoogle Scholar
  15. Goka K (1998) Mode of inheritance of resistance to three new acaricides in the Kanzawa spider mite, Tetranychus kanzawai Kishida (Acari: Tetranychidae). Exp Appl Acarol 22:699–708CrossRefGoogle Scholar
  16. Gomes NCM, Kosheleva IA, Abraham WR, Smalla K (2005) Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community. FEMS Microbiol Ecol 54(1):21–33PubMedCrossRefGoogle Scholar
  17. Hussey NW, Scopes NEA (1985) Greenhouse vegetables. In: Helle W, Sabelis MW (eds) Spider mites—their biology, natural enemies and control, vol 1B. Elsevier Science Publ, Amsterdam, pp 285–298Google Scholar
  18. Jeppson LR, Keifer HH, Baker EW (1975) Mites injurious to economic plants. University of California Pres, BerkeleyGoogle Scholar
  19. Kiewnick AB, Sands DC (2001) Gram-negative bacteria: Pseudomonas. In: Schaad NW, Jones JB, Chun W (eds) Laboratory guide for identification of plant pathogenic bacteria, third edn. The American Phytopathological Society, St. Paul, pp 84–120Google Scholar
  20. Kim YJ, Park HM, Cho JR, Ahn YJ (2006) Multiple resistance and biochemical mechanisms of pyridaben resistance in Tetranychus urticae (Acari: Tetranychidae). J Econ Entomol 99(3):954–958PubMedCrossRefGoogle Scholar
  21. Kramer KJ, Muthukrishnan S (1997) Insect chitinases: molecular biology and potential use as biopesticides. Insect Biochem Mol 27:887–900CrossRefGoogle Scholar
  22. Lelliott RA, Stead DE (1987) Methods for diagnosis of bacterial diseases of plants. In: Saettler AW, Schaad NW, Roth DA (eds) Methods in plant pathology. Oxford, UK, pp 100–200Google Scholar
  23. Marques S, Ramos JL (1993) Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways. Mol Microbiol 9(5):923–929PubMedCrossRefGoogle Scholar
  24. Maurhofer M, Reimmann C, Sacherer SP, Heeb S, Haas D, Defago G (1998) Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 88:678–684PubMedCrossRefGoogle Scholar
  25. McCoy CW (1996) Pathogens of eriophyoid mites. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. Elsevier Science Publ, Amsterdam, pp 481–490CrossRefGoogle Scholar
  26. Minitab (2000) Minitab statistical software, release 13.20. Minitab Inc., State College, PA, USAGoogle Scholar
  27. Muir RC, Cranham JE (1979) Resistance to pesticides in damson—hop aphid and red spider mite on English hops. Proc Br Crop Prot Conf 1:161–167Google Scholar
  28. Nauen R, Stumpf N, Elbert A, Zebitz CPW, Winkler V (2001) Acaricide toxicity and resistance in larvae of different strains of Tetranychus urticae and Panonychus ulmi (Acari: Tetranychidae). Pest Manag Sci 57:253–261PubMedCrossRefGoogle Scholar
  29. Park CS, Paulitz TC, Baker R (1988) Biocontrol of Fusarium wilt of cucumber resulting from interactions between Pseudomonas putida and non-pathogenic isolates of Fusarium oxysporum. Phytopathology 78:190–194CrossRefGoogle Scholar
  30. Poinar GO, Poinar R (1998) Parasites and pathogens of mites. Annu Rev Entomol 43:449–469PubMedCrossRefGoogle Scholar
  31. Raaijmakers JM, Vlami M, De Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Leeuwenhoek Int J G81:537–547CrossRefGoogle Scholar
  32. Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11CrossRefGoogle Scholar
  33. Sabelis MW (1985) Reproduction and sex allocation. In: Helle W, Sabelis MW (eds) Spider mites—their biology, natural enemies and control, vol 1B. Elsevier Science Publ, Amsterdam, pp 73–94Google Scholar
  34. Scher FM, Baker R (1982) Effect of Pseudomonas putida and synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72:567–1573CrossRefGoogle Scholar
  35. Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92–99PubMedCrossRefGoogle Scholar
  36. Validov S, Kamilova F, Qi S, Stephan D, Wang JJ, Makarova N, Lugtenberg B (2007) Selection of bacteria able to control Fusarium oxysporum f. sp. radicis-lycopersici in stonewool substrate. J Appl Microbiol 102(2):461–471PubMedCrossRefGoogle Scholar
  37. van de Vrie M (1985) Greenhouse ornamentals. In: Helle W, Sabelis MW (eds) Spider mites—their biology, natural enemies and control, vol 1B. Elsevier Science Publ, Amsterdam, pp 273–284Google Scholar
  38. van der Geest LPS, Elliot SL, Breeuwer JAJ, Beerling EAM (2000) Diseases of mites. Exp Appl Acarol 24:497–560PubMedCrossRefGoogle Scholar
  39. Vodovar N, Vallenet D, Cruveiller S, Rouy Z, Barbe V, Acosta C, Cattolico L, Jubin C, Lajus A, Segurens B, Vacherie B, Wincker P, Weissenbach J, Lemaitre B, Médigue C, Boccard F (2006) Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat Biotechnol 24:673–679PubMedCrossRefGoogle Scholar
  40. Walsh UF, Morrissey JP, O’Gara F (2001) Pseudomonas for biocontrol phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol 12:289–295PubMedCrossRefGoogle Scholar
  41. Ward PG, Goff M, Donner M, Kaminsky W, O’Connor KE (2006) A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ Sci Technol 40(7):2433–2437PubMedCrossRefGoogle Scholar
  42. Wilson M, McNab R, Henderson B (2002) Bacterial disease mechanisms. Cambridge University Press, CambridgeGoogle Scholar
  43. Zehnder G, Kloepper JW, Yao C, Wei G (1997) Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth promoting rhizobacteria. J Econ Entomol 90:391–396Google Scholar
  44. Zhang ZQ (2003) Mites of greenhouses: identification, biology and control. CABI Publishing, WallingfordGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • H. Murat Aksoy
    • 1
  • Sebahat K. Ozman-Sullivan
    • 1
  • Heval Ocal
    • 1
  • Nuray Celik
    • 1
  • Gregory T. Sullivan
    • 2
  1. 1.Department of Plant Protection, Faculty of AgricultureOndokuz Mayis UniversitySamsunTurkey
  2. 2.Ondokuz Mayis University, OYDEMSamsunTurkey

Personalised recommendations