Soil Respiration in Larch Forests

  • T. Morishita
  • O. V. Masyagina
  • T. Koike
  • Y. Matsuura
Part of the Ecological Studies book series (ECOLSTUD, volume 209)


Soil respiration is an important component process of the carbon cycle (Schlesinger and Andrews 2000). It is derived from both soil microbial respiration and plant root respiration (Luo and Zhou 2006). In boreal forests, substrate supply, soil temperature, and soil moisture control the soil respiration (Luo and Zhou 2006). The litterfall on the soil surface was found to have a liner relationship with an increase in soil respiration (Bowden et al. 1993; Boone et al. 1998; Maier and Kress 2000; Sulzman et al. 2005). Soil respiration responds to aboveground herbivory (Ruess et al. 1998), carbon supply from aboveground photosynthesis to roots (Högberg et al. 2001), fine root density (Shibistova et al. 2002), and availability of nutrients (Nadelhoffer 2000; Burton et al. 2000). Soil temperature strongly affects the soil respiration (Chen and Tian 2005). The soil respiration is also affected by soil moisture as very high soil moisture can block soil pores (Bouma and Bryla 2000), and very low soil moisture limits microbial and root respiration (Yuste et al. 2003). However, the soil respiration is not related to soil moisture in relatively mesic environments (e.g., Palmroth et al. 2005).


Soil Temperature Soil Respiration Boreal Forest Root Respiration Soil Respiration Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abaimov AP, Sofronov MA (1996) The main trends of post-fire succession in near-tundra forests of central Siberia. In: Goldammer JG, Furyaev VV (eds) Fire in ecosystems of boreal Eurasia. Kluwer Academic Publishers, Dordrecht, pp 372-386Google Scholar
  2. Abaimov AP, Lesinski JA, Martinsson O, Milyutin LI (1998) Variability and ecology of Siberian larch species. Swedish University of Agricultural Sciences, Department of Silviculture, Reports 43, Umeå, p 118Google Scholar
  3. Abaimov AP, Zyryanova OA, Prokushkin SG, Koike T, Matsuura Y (2000) Forest ecosystems of the cryolithic zone of Siberia; regional features, mechanisms of stability and pyrogenic changes. Eurasian J Res 1:1-10Google Scholar
  4. Aulakh MS, Doran JW, Mosier AR (1992) Soil denitrification: significance, measurement, and effects on management. In: Stewart BA (ed) Advances in soil science vol 18. Springer, Berlin Heidelberg New York, pp 1-58Google Scholar
  5. Bhupinderpal-Singh NA, Lofvenius MO, Högberg MN, Mellander PE, Högberg P (2003) Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant Cell Environ 26:1287-1296CrossRefGoogle Scholar
  6. Bonan GB (1993) Physiological controls of the carbon balance of boreal forest ecosystems. Can J For Res 23:1453-1471CrossRefGoogle Scholar
  7. Bond-Lamberty B, Wang CK, Gower ST (2004) Contribution of root respiration to soil surface CO2 flux in a boreal black spruce chronosequence. Tree Physiol 24:1387-1395PubMedGoogle Scholar
  8. Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998) Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396:570-572CrossRefGoogle Scholar
  9. Bouma TJ, Bryla DR (2000) On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO2 concentrations. Plant Soil 227:215-221CrossRefGoogle Scholar
  10. Bowden RD, Nadelhoffer KJ, Boone RD, Melillo JM, Garrison JB (1993) Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperature mixed hardwood forest. Can J For Res 23:1402-1407CrossRefGoogle Scholar
  11. Brooks PD, McKnight D, Elder K (2004) Carbon limitation of soil respiration under winter snowpacks: potential feedbacks between growing season and winter carbon fluxes. Global Change Biol 11:231-238CrossRefGoogle Scholar
  12. Burton AJ, Pregitzer KS, Zogg GP, Zak DR (1996) Latitudinal variation in sugar maple fine root respiration. Can J For Res 26:1761-1768CrossRefGoogle Scholar
  13. Burton AJ, Pregitzer KS, Hendrick RL (2000) Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia 125:389-399CrossRefGoogle Scholar
  14. Cannell MGR (1982) World forest biomass and primary production data. Academic Press, New YorkGoogle Scholar
  15. Chapuis-Lardy L, Wrage N, Metay A, Chotte JL, Bernoux M (2007) Soils, a sink for N2O? a review. Global Change Biol 13:1-17CrossRefGoogle Scholar
  16. Chen H, Tian HQ (2005) Does a general temperature-dependent Q10 model of soil respiration exsist at biome and global scale? J Integr Plant Biol 47:1288-1302CrossRefGoogle Scholar
  17. Corre MD, Pennock DJ, Van Kessel C, Elliott DK (1999) Estimation of annual nitrous oxide emissions from a transitional grassland-forest region in Saskatchewan, Canada. Biogeochemistry 44:29-49CrossRefGoogle Scholar
  18. Curry C (2007) Modeling the soil consumption of atmospheric methane at the global scale. Global Biogeochem Cycles 21:GB4012CrossRefGoogle Scholar
  19. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165-173CrossRefPubMedGoogle Scholar
  20. Dutaur L, Verchot LV (2007) A global inventory of the soil CH4 sink. Global Biogeochem Cycles 21:GB4013CrossRefGoogle Scholar
  21. Eliasson PE, McMurtrie RE, Pepper DA, Stromgren M, Linder S, Agren GI (2005) The response of heterotrophic CO2 flux to soil warming. Global Change Biol 11:167-181CrossRefGoogle Scholar
  22. Haynes BE, Gower ST (1995) Belowground carbon allocation in unfertilized and fertilized red pine plantations in northern Wisconsin. Tree Physiol 15:317-325PubMedGoogle Scholar
  23. Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Lövenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789-792CrossRefPubMedGoogle Scholar
  24. Hollinger DY, Kelliher FM, Schulze ED, Bauer G, Arneth A, Byers JN, Hunt JE, McSeveny TM, Kobak KI, Milukova I, Sogatchev A, Tatarinov F, Varlargin A, Ziegler W, Vygodskaya NN (1998) Forest-atmosphere carbon dioxide exchange in eastern Siberia. Agr Meteorol 90:291-306CrossRefGoogle Scholar
  25. Hytteborn H, Maslov AA, Nazimova DI, Rysin LP (2005) Boreal forests of Eurasia. In: Anderson F (ed) Ecosystems of the World 6 Coniferous forests. Elsevier, Amsterdam, pp 23-99Google Scholar
  26. Ilvesniemi H, Kahkonen MA, Pumpanen J, Rannik U, Wittmann C, Peramaki M, Keronen P, Hari P, Vesala T, Salkinoja-Salonen M (2005) Wintertime CO2 evolution from a boreal forest ecosystem. Boreal Environ Res 10:401-408Google Scholar
  27. IPCC (2007) Climate change 2007: the scientific basis []
  28. IUSS Working Group WRB (2006) World reference base for soil resources 2006. World Soil Resources. Reports No. 103, FAO, RomeGoogle Scholar
  29. Kajimoto T, Matsuura Y, Sofronov MA, Volokitina AV, Mori S, Osawa A, Abaimov AP (1999) Above- and belowground biomass and net primary productivity of a Larix gmelinii stand near Tura, central Siberia. Tree Physiol 19:815-822PubMedGoogle Scholar
  30. Kajimoto T, Matsuura Y, Osawa A, Abaimov AP, Zyryanova OA, Isaev AP, Yefremov DP, Mori S, Koike T (2006) Size-mass allometry and biomass allocation of two larch species growing on the continuous permafrost region in Siberia. For Ecol Manage 222:314-325CrossRefGoogle Scholar
  31. Kajimoto T, Osawa A, Matsuura Y, Abaimov AP, Zyryanova OA, Kondo K, Tokuchi N, Hirobe M (2007) Individual-based measurement and analysis of root system development: case studies for Larix gmelinii trees growing on the permafrost region in Siberia. J For Res 12:103-112CrossRefGoogle Scholar
  32. Kane ES, Valentine DW, Michaelson GJ, Fox JD, Ping CL (2006) Controls over pathways of carbon efflux from soils along climate and black spruce productivity gradients in interior Alaska. Soil Biol Biochem 38:1438-1450CrossRefGoogle Scholar
  33. Kelliher FM, Lloyd J, Arneth A, Luhker B, Byers JN, McSeveny TM, Milukova I, Grigoriev S, Panfyorov M, Sogatchev A, Varlargin A, Ziegler W, Bauer G, Wong SC, Schulze ED (1999) Carbon dioxide efflux density from the floor of a central Siberian pine forest. Agr Forest Meteorol 94:217-232CrossRefGoogle Scholar
  34. Klemedtsson L, Klemedtsson ÅK, Moldan F (1997) Nitrous oxide emission from Swedish forest soils in relation to liming and simulated increased N-deposition. Biol Fertil Soils 25:290-295CrossRefGoogle Scholar
  35. Kudeyarov VN, Kurganova IN (2005) Respiration of Russian soils: Database analysis, long-term monitoring, and general estimates. Eurasian Soil Sci 38:983-992Google Scholar
  36. Kurganova IN, Kudeyarov VN (1998) Assessment of carbon dioxide effluxes from soils of the taiga zone of Russia. Eurasian Soil Sci 31:954-965Google Scholar
  37. Lavigne MB, Boutin R, Foster RJ, Goodine G, Bernier PY, Robitaille G (2003) Soil respiration responses to temperature are controlled more by roots than by decomposition in balsam fir ecosystems. Can J For Res 33:1744-1753CrossRefGoogle Scholar
  38. Luo Y, Zhou X (2006) Substrate supply and ecosystem productivity. In: Luo Y, Zhou X (eds) Soil respiration and the environment. Academic Press, San Diego New York, pp 79-84CrossRefGoogle Scholar
  39. Lydolph PE (1977) Climates of the Soviet Union. World survey of climatology, vol 7. Elsevier, Amsterdam, p 417Google Scholar
  40. Maier CA, Kress LW (2000) Soil CO2 evolution and root respiration in 11 year-old loblolly pine (Pinus taeda) plantations as affected by moisture and nutrient availability. Can J For Res 30:347-359CrossRefGoogle Scholar
  41. Matsuura Y (2006) Comparative study on soil carbon storage of permafrost ecosystems in Northeastern Eurasia. In: Ryusuke H, Georg G (eds) Symptom of Environmental Change in Siberian Permafrost Region. Hokkaido University Press, Sapporo, pp 103-107Google Scholar
  42. Melling L, Hatano R, Goh KJ (2005) Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia. Tellus B 57:1-11CrossRefGoogle Scholar
  43. Moren AS, Lindroth A (2000) CO2 exchange at the floor of a boreal forest. Agr Forest Meteorol 101:1-14CrossRefGoogle Scholar
  44. Morishita T, Hatano R, Desyatkin RV (2003) CH4 flux in an Alas ecosystem formed by forest disturbance near Yakustk, eastern Siberia, Russia. Soil Sci Plant Nutr 49:369-377Google Scholar
  45. Morishita T, Matsuura Y, Zyryanova OA, Abaimov AP (2006) CO2, CH4, and N2O fluxes from a larch forest soil in Central Siberia. In: Ryusuke H, Georg G (eds) Symptom of Environment Change in Siberian Permafrost Region. Hokkaido University Press, Sapporo, pp 1-9Google Scholar
  46. Morishita T, Hatano R, Desyatkin RV (2007) N2O flux in alas ecosystems formed by forest disturbance near Yakutsk, eastern Siberia, Russia. Eurasian J For Res 10:79-84Google Scholar
  47. Nadelhoffer KJ (2000) The potential effects of nitrogen deposition on fine-root production in forest ecosystems. New Phytol 147:131-139CrossRefGoogle Scholar
  48. Nakai Y, Matsuura Y, Kajimoto T, Abaimov AP, Yamamoto S, Zyryanova OA (2008) Eddy covariance CO2 flux above a gmelin larch forest on continuous permafrost in central Siberia during a growing season. Theor Appl Climatol 93:133-147CrossRefGoogle Scholar
  49. Nakano T, Inoue G, Fukuda M (2004) Methane consumption and soil respiration by a birch forest soil in West Siberia. Tellus B 56:223-229CrossRefGoogle Scholar
  50. Niinisto SM, Silvola J, Kellomaki S (2004) Soil CO2 efflux in a boreal pine forest under atmospheric CO2 enrichment and air warming. Global Change Biol 10:1363-1376CrossRefGoogle Scholar
  51. O’Connell KEB, Gower ST, Norman JM (2003) Net ecosystem production of two contrasting boreal black spruce forest communities. Ecosystems 6:248-260CrossRefGoogle Scholar
  52. Palmroth S, Maier CA, McCarthy HR, Oishi AC, Kim HS, Johnsen KH, Katul GG, Oren R (2005) Contrasting responses to drought of forest floor CO2 efflux in a Loblolly pine plantation and a nearby Oak-Hickory forest. Global Change Biol 11:421-434CrossRefGoogle Scholar
  53. Rayment MB, Jarvis PG (1997) An improved open chamber system for measuring soil CO2 effluxes in the field. J Geophys Res 102(D24):28779-28784CrossRefGoogle Scholar
  54. Ruess RW, Hendrick RL, Bryant JP (1998) Regulation of fine root dynamics by mammalian browsers in early successional Alaskan taiga forests. Ecology 79:2706-2720CrossRefGoogle Scholar
  55. Ruess RW, Hendrick RL, Burton AJ, Pregitzer KS, Sveinbjornsson B, Allen ME, Maurer GE (2003) Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. Ecol Monogr 73:643-662CrossRefGoogle Scholar
  56. Sawamoto T, Hatano R, Yajima T, Takahashi K, Isaev AP (2000) Soil respiration in Siberian taiga ecosystems with different histories of forest fire. Soil Sci Plant Nutr 46:31-42Google Scholar
  57. Schlesinger WH, Andrews JA (2000) Soil respiration and the global carbon cycle. Biogeochemistry 48:7-20CrossRefGoogle Scholar
  58. Shibistova O, Lloyd J, Evgrafova S, Savushkina N, Zrazhevskaya G, Arneth A, Knohl A, Kolle O, Schulze ED (2002) Seasonal and spatial variability in soil CO2 efflux rates for a central Siberian Pinus sylvestris forest. Tellus B 54:552-567CrossRefGoogle Scholar
  59. Striegl RG, Wickland KP (1998) Effects of a clear-cut harvest on soil respiration in a jack pine - lichen woodland. Can J For Res 28:534-539CrossRefGoogle Scholar
  60. Sulzman EW, Brant JB, Bowden RD, Lajtha K (2005) Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest. Biogeochemistry 73:231-256CrossRefGoogle Scholar
  61. Takakai F, Desyatkin AR, Lopez CML, Fedorov AN, Desyatkin RV, Hatano R (2008) CH4 and N2O emissions from a forest-alas ecosystem in the permafrost taiga forest region, eastern Siberia, Russia. J Geophys Res 113:G02002. doi: 10.1029/2007JG000521 CrossRefGoogle Scholar
  62. Tryon PR, Chapin FS (1983) Temperature control over root-growth and root biomass in taiga forest trees. Can J For Res 13:827-833CrossRefGoogle Scholar
  63. Weber MG, Van Cleve K (2005) The boreal forests of North America. In: Andersson F (ed) Ecosystems of the World 6 Coniferous Forests. Elsevier, Amsterdam, pp 101-130Google Scholar
  64. Widen B, Majdi H (2001) Soil CO2 efflux and root respiration at three sites in a mixed pine and spruce forest: seasonal and diurnal variation. Can J For Res 31:786-796CrossRefGoogle Scholar
  65. Winston GC, Sundquist ET, Stephens BB, Trumbore SE (1997) Winter CO2 fluxes in a boreal forest. J Geophys Res 102(D24):28795-28804CrossRefGoogle Scholar
  66. Yanagihara Y, Koike T, Matsuura Y, Mori S, Shibata H, Satoh F, Masuyagina OV, Zyryanova OA, Prokushkin AS, Prokushkin SG, Abaimov AP (2000) Soil respiration rate on the constrasting north- and south-facing slopes of a larch forest in central Siberia. Eurasian J For Res 1:19-29Google Scholar
  67. Yuste JC, Janssens IA, Carrara A, Meiresonne L, Ceulemans R (2003) Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest. Tree Physiol 23:1263-1270Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • T. Morishita
    • 1
  • O. V. Masyagina
    • 2
  • T. Koike
    • 3
  • Y. Matsuura
    • 1
  1. 1.Department of Forest Site EnvironmentForestry and Forest Products Research InstituteTsukubaJapan
  2. 2.V.N. Sukachev Institute of Forest, Siberian Branch, Russian Academy of SciencesKrasnoyarskRussia
  3. 3.Department of Forest ScienceHokkaido UniversitySapporoJapan

Personalised recommendations