Skip to main content

Future Trends in Forensic Entomology

  • Chapter
  • First Online:
Current Concepts in Forensic Entomology

Abstract

The science of forensic entomology has had a staggered and interesting history (Nuorteva 1977; Smith 1986; Erzinçlioglu 1990; Marchenko 2001; Amendt et al. 2004). Its main application is the estimation of the postmortem interval (PMI), and Villet et al (this book, Chapter 7) highlight variables that affect insect development and in its consequence the calculation of this postmortem interval. Great strides have been made in basic and applied research, but there are many questions yet to be answered and there is still room for growth, as several other chapters in this book showed. While there is unquestionable the need for much more research to gather well-based data, there is also a need for quality assurance, standards and certification (Melbye and Jimenez 1997). In this chapter, we will discuss a selection of possible future trends in forensic entomology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amendt J, Krettek R, Zehner R (2004) Forensic entomology. Naturwissenschaften 91:51–65

    Article  CAS  PubMed  Google Scholar 

  • Amendt J, Krettek R, Niess C, Zehner R, Bratzke H (2000) Forensic entomology in Germany. Forensic Sci Int 113:309–314

    Article  CAS  PubMed  Google Scholar 

  • Amendt J, Campobasso CP, Gaudry E, Reiter C, LeBlanc HN, Hall MJR (2007) Best practice in forensic entomology-standards and guidelines. Int J Legal Med 121:90–104

    Article  PubMed  Google Scholar 

  • Ames C, Turner B, Daniel B (2006) The use of mitochondrial cytochrome oxidase I gene (COI) to differentiate two UK blowfly species - Calliphora vicina and Calliphora vomitoria: Forensic Sci Int 164:179–182

    Article  CAS  PubMed  Google Scholar 

  • Anderson GS (1999) Wildlife forensic entomology: determining time of death in two illegally killed black bear cubs. J Forensic Sci 44:856–859

    CAS  PubMed  Google Scholar 

  • Anderson GS (2001) Succession on carrion and its relationship to determining time of death. In: Byrd JH, Castner JL (eds) Forensic entomology - the utility of arthropods in legal investigations. CRC, Boca Raton, FL, pp 143–175

    Google Scholar 

  • Anderson GS, Cervenka VJ (2002) Insects associated with the body: Their use and analyses. In: Haglund WD Sorg MH (eds) Advances in forensic taphonomy - method theory and archaeological perspectives. CRC, Boca Raton, London, pp 173–200

    Google Scholar 

  • Anderson GS, Hobischak NR (2004) Decomposition of carrion in the marine environment in British Columbia Canada. Int J Legal Med 118:206–209

    CAS  PubMed  Google Scholar 

  • Anderson S, Howard B, Hobbs GR, Bishop CP (2005) A method for determining the age of a bloodstain. Forensic Sci Int 148:37–45

    Article  CAS  PubMed  Google Scholar 

  • Archer MS (2004) The effect of time after body discovery on the accuracy of retrospective weather station ambient temperature corrections in forensic entomology. J Forensic Sci 49:553–559

    Article  PubMed  Google Scholar 

  • Benecke M (1998) Random amplified polymorphic DNA (RAPD) typing of necrophageous insects (diptera coleoptera) in criminal forensic studies: validation and use in practice. Forensic Sci Int 98:157–168

    Article  CAS  PubMed  Google Scholar 

  • Bernasconi MV, Valsangiacomo C, Piffaretti JC, Ward PI (2000) Phylogenetic relationships among Muscoidea (Diptera: Calyptratae) based on mitochondrial DNA sequences. Insect Mol Biol 9:67–74

    Article  CAS  PubMed  Google Scholar 

  • Birch D (1992) Sought-after forensic entomologist digs deep for clues. The Sun, Baltimore, MD, pp 3A

    Google Scholar 

  • Böhme P (2006) Population genetics of forensically important North American blow flies (Diptera: Calliphoridae) using the A+T-Rich region of mitochondrial DNA diploma. Thesis Ăśniversität Bonn

    Google Scholar 

  • Butler JM (2003) Recent developments in Y-short tandem repeat and Y-single nucleotide ­polymorphism analysis. Forensic Sci Rev 15:91–111

    Google Scholar 

  • Butler JM (2005). Forensic DNA Typing. The Biology & Technology Behind STR Markers. New York: Elsevier. 660 pp

    Google Scholar 

  • Byrd JH, Allen JC (2001) Computer modeling of insect growth and its application to forensic entomology. In: Byrd JH, Castner JL (eds) Forensic entomology: the utility of arthropods in legal investigations, CRC, Boca Raton, FL, pp 303–330

    Google Scholar 

  • Campobasso CP, Linville JG, Wells JD, Introna F (2005) Forensic genetic analysis on insect gut contents. Am J Forensic Med Pathol 26:161–165

    PubMed  Google Scholar 

  • Carlson DA, Geden CJ, Bernier UR (1999) Identification of pupal exuviae of Nasonia vitripennis and Muscidifurax raptorellus parasitoids using cuticular hydrocarbons. Biol. Control 15: 97–106

    Article  Google Scholar 

  • Carvalho F, Dadour IR, Groth DM, Harvey ML (2005) Isolation and detection of ingested DNA from the immature stages of Calliphora dubia (Diptera: Calliphoridae): a forensically important blowfly. For Sci Med Path 1:261–265

    Article  CAS  Google Scholar 

  • Catts EP, Haskell NH (1990) Entomology and death: a procedural guide. Joyce’s Print Shop Inc, Clemson, SC

    Google Scholar 

  • Chen W-Y, Hung T-H, Shiao S-F (2004) Molecular identification of forensically important blow fly species (Diptera: Calliphoridae) in Taiwan. J Med Entomol 41:47–57

    Article  CAS  PubMed  Google Scholar 

  • Clery JM (2001) Stability of prostate specific antigen (PSA) and subsequent Y-STR typing of Lucilia (Phaenicia) sericata (Meigen) (Diptera: Calliphoridae) maggots reared from a simulated postmortem sexual assault. Forensic Sci Int 120:72–76

    Article  CAS  PubMed  Google Scholar 

  • Cornwell P (2003) Blow fly. Penguin Group (USA)

    Google Scholar 

  • Davis JB, Goff ML (2000) Decomposition patterns in terrestrial and intertidal habitats on Oahu Island and Coconut Island Hawaii. J Forensic Sci 45:836–842

    CAS  PubMed  Google Scholar 

  • De Jong GD, Hoback WW (2006) Effect of investigator disturbance in experimental forensic entomology: Succession and community composition. Med Vet Entomol 20:248–258

    Article  PubMed  Google Scholar 

  • Disney RHL, Munk T (2004) Potential use of Braconidae (Hymenoptera) in forensic cases. Med Vet Entomol 18:442–444

    Article  CAS  PubMed  Google Scholar 

  • DiZinno JA, Lord WD, Collins-Morton MB, Wilson MR, Goff ML (2002) Mitochondrial DNA sequencing of beetle larvae (Nitidulidae: Omosita) recovered from human bone. J Forensic Sci 47:1337–1339

    CAS  PubMed  Google Scholar 

  • Erzinçlioglu Z (1990) On the interpretation of maggot evidence in forensic cases. Med Sci Law 30:65–66

    PubMed  Google Scholar 

  • Erzinçlioglu Z (2000) Maggots, murder and men: memories and reflections of a forensic entomologist. Harley Books, Colchester, England

    Google Scholar 

  • Evett IW, Weir BS (1998) Interpreting DNA evidence. Sinauer, Sunderland, MA

    Google Scholar 

  • Fabritius K, Klunker R (1991) Die Larven- und Puparienparasitoide von synanthropen Fliegen. Angewandte Parasitologie 32: 1–20

    Google Scholar 

  • Florin AB, Gyllenstrand N (2002) Isolation and characterization of polymorphic microsatellite markers in the blowflies Lucilia illustris and Lucilia sericata. Mol Ecol Notes 2:113–116

    Article  CAS  Google Scholar 

  • Galloway A, Walsh-Haney H, Byrd JH (2001) Recovering buried bodies and surface scatter: the associated anthropological botanical and entomological evidence In: Byrd JH Castner JL (eds) Forensic entomology: the utility of arthropods in legal investigations. CRC, Boca Raton, pp 223–262

    Google Scholar 

  • Gannon R (1997) The Body farm. In: Popular Science (September) 76–82.

    Google Scholar 

  • Gaudry E, Myskowiak J-B, Chauvet B, Pasquerault T, Lefebvre F, Malgorn Y (2001) Activity of the forensic entomology department of the French Gendarmerie. Forensic Sci Int 120:68–71

    Article  CAS  PubMed  Google Scholar 

  • Geden CJ (1997) Development models for the filth fly parasitoids Spalangia gemina, S cameroni, and Muscidifurax raptor (Hymenoptera: Pteromalidae) under constant and variable temperatures. Biol Control 9:185–192

    Article  Google Scholar 

  • Goff ML (2000) A fly for the prosecution: how insect evidence helps solve crimes. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Goff ML, Odom CB (1987) Forensic entomology in the Hawaiian Islands: three case studies. Am J Foren Med Pathol 8:45–50

    Article  CAS  Google Scholar 

  • Godfray HCJ (1994) Parasitoids - behavioral and evolutionary ecology. Princeton University Press, Princeton New Jersey

    Google Scholar 

  • Grassberger M, Frank C (2003) Temperature-related development of the parasitoid wasp Nasonia vitripennis as forensic indicator. Med Vet Entomol 17:257–262

    Article  CAS  PubMed  Google Scholar 

  • Grassberger M, Frank C (2004) Initial study of arthropod succession on pig carrion in a central European urban habitat. J Med Entomol 41:511–523

    Article  CAS  PubMed  Google Scholar 

  • Grassberger M, Reiter C (2002) Effect of temperature on development of the forensically important holarctic blowfly Protophormia terraenovae (Robineau-Desvoidy) (Diptera: Calliphoridae). Forensic Sci Int 128:177–182

    Article  PubMed  Google Scholar 

  • Haefner JN, Wallace JR, Merritt RW (2004) Pig decomposition in lotic aquatic systems: the potential use of algal growth in establishing a postmortem submersion interval (PMSI). J Forensic Sci 49:1–7

    Article  Google Scholar 

  • Harvey ML (2005) An alternative for the extraction and storage of DNA from insects in forensic entomology. J Forensic Sci 50:1–3

    Article  Google Scholar 

  • Harvey ML, Dadour IR, Gaudieri S (2003) Mitochondrial DNA cytochrome oxidase I gene: potential for distinction between stages of some forensically important fly species (Diptera) in Western Australia. Forensic Sci Int 131:134–139

    Article  CAS  PubMed  Google Scholar 

  • Haskell NH, Hall RD, Cervenka VJ, Clark MA (1997) On the body: insect’s life stage presence, their postmortem artifacts. In: Haglund WD, Sorg MH (eds) Forensic Taphonomy: The postmortem fate of human remains. CRC Press, Boca Raton. pp 415–448

    Google Scholar 

  • Haskell NH, Williams RE (1990) Collection of entomological evidence at the death scene. In: Catts EP, Haskell NH (eds) Entomology and death: a procedural guide. Joyce’s Print Shop Inc, Clemson, SC

    Google Scholar 

  • Haskell NH, Lord WD, Byrd JH (2000) Collection of entomological evidence during death investigations. In: Byrd JH, Castner JL (eds) Forensic entomology: the utility of arthropods in legal investigations. CRC, Boca Raton, FL

    Google Scholar 

  • Haskell NH, McShaffrey DG, Hawley DA, Williams RE, Pless JE (1989) Use of aquatic insects in determining submersion interval. J Forens Sci 34:622–632

    CAS  Google Scholar 

  • Hewadikaram KA, Goff ML (1991) Effect of carcass size on rate of decomposition and arthropod succession patterns. Am J Forensic Med Pathol 12:235–240

    Article  CAS  PubMed  Google Scholar 

  • Hobischak NR, Anderson GS (2002) Time of submergence using aquatic invertebrate succession and decompositional changes. J Forensic Sci 47:142–151

    PubMed  Google Scholar 

  • Hobischak NR, VanLaerhoven SL, Anderson GS (2006) Successional patterns of diversity in insect fauna on carrion in sun and shade in the Boreal Forest Region of Canada near Edmonton, Alberta. Can Entomol 138:376–383

    Article  Google Scholar 

  • Holdaway FG, Evans AC (1930) Parasitism a stimulus to pupation: Alysia manducator in relation to the host Lucilia sericata. Nature 125: 598–599

    Article  Google Scholar 

  • Hunt P (2005) Third Annual North American Forensic Entomology Association Conference, Orlando, FL

    Google Scholar 

  • Ireland S, Turner B (2006) The effects of larval crowding and food type on the size and development of the blowfly Calliphora vomitoria. Forensic Sci Int 159:175–181

    Article  PubMed  Google Scholar 

  • Ji YJ, Zhang DX, Hewitt GM, Kang L, Li DM (2003) Polymorphic microsatellite loci for the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) and some remarks on their isolation. Mol Ecol Notes 3:102–104

    Article  CAS  Google Scholar 

  • Jones SW, Dobson ME, Francesconi SC, Schoske R, Crawford R (2005) DNA assays for detection identification and individualization of select agent microorganisms. Croat Med J 46:522–529

    PubMed  Google Scholar 

  • Joy JE, Liette NL, Harrah HL (2006) Carrion fly (Diptera: Calliphoridae) larval colonization of sunlit and shaded pig carcasses in West Virginia, USA. Forensic Sci Int 164:183–192

    Article  PubMed  Google Scholar 

  • Junqueira ACM, Lessinger AC, Torres TT, da Silva FR, Vettore AL, Arruda PA, Espin MLA (2004) The mitochondrial genome of the blowfly Chrysomya chloropyga (Diptera: Calliphoridae). Gene 339:7–15

    Article  CAS  PubMed  Google Scholar 

  • Keiper JB, Chapman EG, Foote BA (1997) Midge larvae (Diptera: Chironomidae) as indicators of postmortem submersion interval of carcasses in a woodland stream: a preliminary report. J Forensic Sci 42:1074–1079

    CAS  PubMed  Google Scholar 

  • Kreike J, Kampfer S (1999) Isolation and characterization of human DNA from mosquitoes (Culicdae). Int J Legal Med 112:380–382

    Article  CAS  PubMed  Google Scholar 

  • LaMotte LR, Wells JD (2000) p-Values for postmortem intervals from arthropod succession data. J Agric Biol Environ Stat 5:58–68

    Article  Google Scholar 

  • LaSalle J, Gauld ID (1991) Parasitic Hymenoptera and the biodiversity crisis. Redia 74: 315–334

    Google Scholar 

  • Lenstra JA (2003) DNA methods for identifying plant and animal species in food. In: Lees M (ed) Food authenticity and traceability. CRC, Boca Raton

    Google Scholar 

  • Linville JG, Wells JD (2002) Surface sterilization of a maggot using bleach does not interfere with mitochondrial DNA analysis of crop contents. J Forensic Sci 47:1–5

    Google Scholar 

  • Linville JG, Hayes J, Wells JD (2004) Mitochondrial DNA and STR analyses of maggot crop contents: effect of specimen preservation technique. J Forensic Sci 49:1–4

    Article  Google Scholar 

  • Lord WD, DiZinno JA, Wilson MR, Budlowle B, Taplin D, Meinking TL (1998) Isolation amplification and sequencing of human mitochondrial DNA obtained from human crab louse Pthirus pubis (L) blood meals. J Forensic Sci 43:1097–1100

    CAS  PubMed  Google Scholar 

  • Malgorn Y, Coquoz R (1999) DNA typing for identification of some species of Calliphoridae: an interest in forensic entomology. Forensic Sci Int 102:111–119

    Article  CAS  PubMed  Google Scholar 

  • Marchenko MJ (2001) Medicolegal relevance of cadaver entomofauna for the determination of time since death. Forensic Sci Int 120:89–109

    Article  CAS  PubMed  Google Scholar 

  • Melbye J, Jimenez S (1997) Chain of custody from the field to the courtroom. In: Haglund WD, Sorg MH (eds) Forensic taphonomy: the post-mortem fate of human remains. CRC, Boca Raton, pp 65–75

    Google Scholar 

  • Merck MD (2007) Veterinary forensics. Animal cruelty investigations. Blackell, Oxford 368

    Google Scholar 

  • Merrit RW, Wallace JR (2001) The role of aquatic insects in forensic investigations In: Byrd JH Castner JL (eds) Forensic entomology - the utility of arthropods in legal investigations. CRC, Boca Raton, London, pp 177–222

    Google Scholar 

  • Mukabana W, Takken RW, Knols BGJ (2002) Analysis of arthropod bloodmeals using molecular genetic markers. Trends Parasitol 18:505–509

    Article  CAS  PubMed  Google Scholar 

  • Mumcuoglu K, Gallili YN, Reshef A, Brauner P (2004) Use of human lice in forensic entomology. J Med Entomol 41:803–806

    Article  PubMed  Google Scholar 

  • Norris KR 1965 The bionomics of blow flies. Ann Rev Entomol 10: 47–68

    Article  Google Scholar 

  • Nuorteva P (1977) Sarcosaprophagous insects as forensic indicators. In: Tedeschi CG, Eckert WG, Tedeschi LG (eds) Forensic medicine: a study in trauma and environmental hazards. Saunders, Philadelphia, pp 1072–1095

    Google Scholar 

  • Nuorteva P, Schumann H, Isokoski M, Laiho K (1974) Studies on the possibilities of using blowflies (Diptera: Calliphoridae) as medicolegal indicators in Finland. Ann Entomol Fenn 40:70–74

    Google Scholar 

  • Ratcliffe ST, Webb DW, Weinzievr RA, Robertson HM (2003) PCR-RFLP identification of Diptera (Calliphoridae Muscidae and Sarcophagidae) - a generally applicable method. J Forensic Sci 48:1–3

    Google Scholar 

  • Replogle J, Lord WD, Budlowle B, Meinking TL, Taplin D (1994) Identification of host DNA by amplified fragment length polymorphism analysis: preliminary analysis of human crab louse (Anoplura: Pediculidae) exreta. J Med Entomol 31:686–690

    CAS  PubMed  Google Scholar 

  • Reznik SY, Chernoguz DG, Zinovjeva KB (1992) Host searching, oviposition preferences and optimal synchronization in Alysia manducator (Hymenoptera: Braconidae), a parasitoid of the blowfly, Calliphora vicina. Oikos 65:81–88

    Article  Google Scholar 

  • Romano A (2004) American Society of Crime Laboratory Directors/Laboratory Accreditation Board (http://wwwascld-laborg/)

  • Sachs JS (1998) A maggot for the prosecution. In: Discover Magazine, pp 103–108

    Google Scholar 

  • Sachs JS (2001) Corpse: nature forensics and the struggle to pinpoint time of death. Perseus Books Group, Cambridge, MA

    Google Scholar 

  • Scala JR, Wallace JR (2005) Case study: the uncertainty of establishing a post-mortem (PMI) interval based on entomological evidence incorporating the influence of elevation on ambient temperature reconstruction. Proceedings of the American Academic Forensic Science 58th Annual Meeting. Seattle, WA

    Google Scholar 

  • Schiro G J (2001) Extraction and quantification of human deoxyribonucleic acid and the amplification of human short tandem repeats and a sex identification marker from fly larvae found on decomposing tissue. MS Thesis University of Central Florida

    Google Scholar 

  • Schoenly K (1992) A statistical analysis of successional patterns in carrion-arthropod assemblages: implications for forensic entomology and the determination of the postmortem interval. J Forensic Sci 37:1489–1513

    CAS  PubMed  Google Scholar 

  • Schoenly K, Griest K, Rhine S (1991) An experimental field protocol for investigating the postmortem interval using multidisciplinary indicators. J Forensic Sci 36:1395–1415

    CAS  PubMed  Google Scholar 

  • Singh D, Greenberg B (1994) Survival after submergence in the pupae of five species of blow flies (Diptera: Calliphoridae). J Med Entomol 31:757–759

    CAS  PubMed  Google Scholar 

  • Smith KGV (1986) A manual of forensic entomology. The Trustees British Museum, London

    Google Scholar 

  • Sorg MH, Dearborn JH, Monahan EI, Ryan HF, Sweeney KG, David E (1997) Forensic taphonomy in marine contexts. In: Haglund WD, Sorg MH (eds) Forensic taphonomy: the postmortem fate of human remains. CRC, LLC, Boca Raton, pp 567–604

    Google Scholar 

  • Sperling FAH, Anderson GS, Hickey DA (1994) A DNA-bases approach to the identification of insect species used for postmortem interval estimation. J Forensic Sci 39:418–427

    CAS  PubMed  Google Scholar 

  • Staff (2005) Love of bugs gives edge to death determinations. St Croix Source

    Google Scholar 

  • Statheropoulos M, Spiliopoulou C, Agapiou A (2005) A study of volatile organic compounds evolved from the decaying human body. Forensic Sci Int 153:147–155

    Article  CAS  PubMed  Google Scholar 

  • Stevens J, Wall R, Wells JD (2002) Paraphyly in Hawaiian hybrid blowfly populations and the evolutionary history of anthropophilic species. Insect Mol Biol 11:141–148

    Article  CAS  PubMed  Google Scholar 

  • Stevens J, Wall R (1996) Species sub-species and hybrid populations of the blowflies Lucilia cuprina and Lucilia sericata (Diptera: Calliphoridae). Proc R Soc Lond B 263: 1335–1341

    Article  CAS  Google Scholar 

  • Stevens J, Wall R (1997) The evolution of ectoparasitism in the genus Lucilia (Diptera: Calliphoridae). Int J Parasitol 27:51–59

    Article  CAS  PubMed  Google Scholar 

  • Stevens J, Wall R (2001) Genetic relationships between blowflies (Calliphoridae) of forensic importance. Forensic Sci Int 120:116–123

    Article  CAS  PubMed  Google Scholar 

  • Tabor KL, Brewster CC, Fell RD (2004) Analysis of the successional patterns of insects on carrion in southwest Virginia. J Med Entomol 41:785–795

    Article  PubMed  Google Scholar 

  • Thyssen PJ, Lessinger AJ, Azeredo-Espin AML, Linhares AX (2005) The value of PCR-RFLP molecular markers for the differentiation of immature stages of two necrophagous flies (Diptera: Calliphoridae) of potential forensic importance. Neotrop Entomol 34:777–783

    Article  CAS  Google Scholar 

  • Torres TT, Azeredo-Espin AML (2005) Development of new polymorphic microsatellite markers for the New World screw-worm Cochliomyia hominivorax (Diptera: Calliphoridae). Mol Ecol Notes 5:815–817

    Article  CAS  Google Scholar 

  • Torres TT, Brondani RPV, Garcia JE, Azeredo-Espin AML (2004) Isolation and characterization of microsatellite markers in the New World screw-worm Cochliomyia hominivorax (Diptera: Calliphoridae). Mol Ecol Notes 4:182–184

    Article  CAS  Google Scholar 

  • Turner B, Howard T (1992) Metabolic heat generation in dipteran larval aggregations: a consideration for forensic entomology. Med Vet Ent 6:179–181

    Article  CAS  Google Scholar 

  • Vance GM, VanDyk JK, Rowley WA (1995) A device for sampling aquatic insects associated with carrion in water. J Forens Sci 40:479–482

    Google Scholar 

  • Voss SC, Spafford H, Dadour IR (2009) Annual and seasonal patterns of insect succession on decomposing remains at two locations in Western Australia, Forensic Sci. Int. doi:10.1016/j.forsciint.2009.08.014

    Google Scholar 

  • Wallman JF, Adams M (2001) The forensic application of allozyme electrophoresis to the identification of blowfly larvae (Diptera: Calliphoridae) in Southern Australia. J Forensic Sci 46:681–684

    CAS  PubMed  Google Scholar 

  • Wallman JF, Donnellan SC (2001) The utility of mitochondrial DNA sequences for the identifcation of forensically important blowflies (Diptera: Calliphoridae) in Southeastern Australia. Forensic Sci Int 120:60–67

    Article  CAS  PubMed  Google Scholar 

  • Wallman JF, Leys R, Hogendoorn K (2005) Molecular systematics of Australian carrion-breeding blowflies (Diptera: Calliphoridae) based on mitochondrial DNA. Invertebr Syst 19:1–15

    Article  CAS  Google Scholar 

  • Wan QH, Fang SG (2003) An extremely sensitive species-specific ARMS PCR test for the presence of tiger bone DNA. Forensic Sci Int 131:75–78

    Article  CAS  PubMed  Google Scholar 

  • Watson EJ, Carlton CE (2003) Spring succession of necrophilous insects on wildlife carcasses in Louisiana. J Med Entomol 40:338–347

    Article  CAS  PubMed  Google Scholar 

  • Watson EJ, Carlton CE (2005) Insect succession and decomposition of wildlife carcasses during fall and winter in Louisiana. J Med Entomol 42:193–203

    Article  CAS  PubMed  Google Scholar 

  • Wells JD, Williams DW (2007) Validation of a DNA-based method for identifying Chrysomyinae (Diptera: Calliphoridae) used in a death investigation. Int J Legal Med 121:1–8

    Article  PubMed  Google Scholar 

  • Wells JD, Sperling FAH (1999) Molecular phylogeny of Chrysomya albiceps and Chrysomya rufifacies (Diptera: Calliphoridae). J Med Entomol 36:222–226

    CAS  PubMed  Google Scholar 

  • Wells JD, Sperling FAH (2001) DNA-based identification of forensically important Chrysomyinae (Diptera: Calliphoridae). Forensic Sci Int 120:110–115

    Article  CAS  PubMed  Google Scholar 

  • Wells JD, LaMotte LR (2001) Estimating the postmortem interval. In: Byrd JH, Castner JL (eds) Forensic entomology: the utility of arthropods in legal investigations. CRC, Boca Raton, FL, pp 263–286

    Google Scholar 

  • Wells JD, Pape T, Sperling FAH (2001a) DNA-Based identification and molecular systematics of forensically important Sarcophagidae (Diptera). J Forensic Sci 46:1098–1102

    CAS  PubMed  Google Scholar 

  • Wells JD, Introna F, Di Vella G, Campobasso CP, Hayes J, Sperling FAH (2001b) Human and insect mitochondrial DNA analysis from maggots. J Forensic Sci 46:685–687

    CAS  PubMed  Google Scholar 

  • Wells JD, Lunt N, Villet MH (2004) Recent African derivation of Chyrsomya putoria from Chrysomya chloropyga and mitochondrial DNA paraphyly of cytochrome oxidase subunit one in blowflies of forensic importance. Med Vet Entomol 18:445–448

    Article  CAS  PubMed  Google Scholar 

  • Wells JD, Wall R, Stevens JR (2007) Phylogenetic analysis of forensically important Lucilia flies based on cytochrome oxidase I sequence: a cautionary tale for forensic species determination. Int J Legal Med 121:229–233

    Article  PubMed  Google Scholar 

  • Whiting AR (1967) The biology of the parasitic wasp Mormoniella vitripennis (Walker). Quarterly review of biology 42:333–406

    Article  Google Scholar 

  • Zehner R, Amendt J, Krettek R (2004a) STR typing of human DNA from fly larvae fed on decomposing bodies. J Forensic Sci 49:1–4

    Article  Google Scholar 

  • Zehner R, Amendt J, SchĂĽtt S, Sauer J, Krettek R, PovolnĂ˝ D (2004b) Genetic identification of forensically important flesh flies (Diptera: Sarcophagidae). Int J Legal Med 118:245–247

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Amendt, J., Zehner, R., Johnson, D.G., Wells, J. (2009). Future Trends in Forensic Entomology. In: Amendt, J., Goff, M., Campobasso, C., Grassberger, M. (eds) Current Concepts in Forensic Entomology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9684-6_16

Download citation

Publish with us

Policies and ethics