Solid-State NMR Spectroscopy

Chapter

Abstract

Due to the development of new techniques and further increase of magnetic field strength available for commercial applications, solid-state NMR spectroscopy became a routine method for the characterization of zeolites. As an important advantage, solid-state NMR spectroscopy allows the investigation of the local structure of nuclei in the solids under study. The specific behavior of zeolites often depends on local effects, such as framework defects, the substitution of framework atoms, guest compounds etc. Therefore, solid-state NMR spectroscopy is a widely applied analytical method for delivering structure data, which are complementary to those of diffraction methods suitable for investigating the long-range order. While early solid-state NMR spectroscopic studies often focused on the characterization of the zeolite framework in the as-synthesized and hydrated state, an increasing number of recent works is dealing with the investigation of the framework of dehydrated and calcined zeolites and of surface sites, i.e., on the determination of their concentration, strength, and accessibility. In all these applications, the advantage of solid-state NMR spectroscopy to be a quantitative method is utilized. The present chapter demonstrates the fundamentals, various techniques, and most important applications of solid-state NMR spectroscopy making this method to an important tool of research in zeolite science.

Keywords

Anisotropy Zirconia Hydroxyl Lithium Benzene 

Abbreviations

1D

One-dimensional

2D

Two-dimensional

3Q

Triple-quantum

5Q

Quintuple-quantum

COSY

Correlation spectroscopy

CP

Cross-polarization

CRAMPS

Combined rotational and multiple-pulse spectroscopy

DOR

Double-oriented rotation

INADEQUATE

Incredible natural abundance double quantum transfer experiment

INEPT

Insensitive nuclei enhanced by polarization transfer

MAS

Magic angle spinning

MQMAS

Multiple-quantum MAS

NMR

Nuclear magnetic resonance

NOESY

Nuclear Overhauser exchange spectroscopy

REDOR

Rotational echo double resonance

SOQE

Second-order quadrupole effect

TMP

Trimethylphosphine

TMPO

Trimethylphosphine oxide

TRAPDOR

Transfer of population in double resonance

References

  1. 1.
    Engelhardt G, Michel D (1987) High-resolution solid-state NMR of silicates and zeolites. Wiley, ChichesterGoogle Scholar
  2. 2.
    Klinowski J (1991) Solid-state NMR studies of molecular-sieve catalysts. Chem Rev 91:1459–1479Google Scholar
  3. 3.
    Stoecker M (1994) Review on recent NMR results. In: Jansen JC, Stoecker M, Karge HG, Weitkamp J (eds) Advanced zeolite science and applications. Studies in Surface Science and Catalysis, vol 85. Elsevier, Amsterdam, pp 429–507Google Scholar
  4. 4.
    Hunger M (1997) Brønsted acid sites in zeolites characterized by multi-nuclear solid-state NMR spectroscopy. Catal Rev Sci Eng 39:345–393Google Scholar
  5. 5.
    Karge HG, Hunger M, Beyer H (1999) Characterization of zeolites – infrared and nuclear magnetic resonance spectroscopy and X-ray diffraction. In: Weitkamp J, Puppe L (eds) Catalysis and zeolites – fundamentals and application. Springer, Berlin, pp 198–326Google Scholar
  6. 6.
    Engelhardt G (2001) Solid-state NMR spectroscopy applied to zeolites. In: Van Bekkum H, Flanigen EM, Jacobs PA, Jansen JC (eds) Studies in surface science and catalysis, vol 137, Introduction to zeolite science and practice. Elsevier, Amsterdam, pp 387–418Google Scholar
  7. 7.
    Haw JF (2002) In situ NMR. In: Haw JF (ed) In-situ spectroscopy in heterogeneous catalysis. Wiley-VCH, Weinheim, pp 53–85Google Scholar
  8. 8.
    Hunger M, Brunner E (2004) Characterization I – NMR spectroscopy. In: Karge HG, Weitkamp J (eds) Molecular sieves – science and technology, vol 4. Springer-Verlag, Berlin, Heidelberg, pp 201–293Google Scholar
  9. 9.
    Hunger M, Weitkamp J (2004) In situ magnetic resonance techniques: nuclear magnetic resonance. In: Weckhuysen BM (ed) In situ spectroscopy of catalysts. American Scientific Publishers, Stevenson Ranch, pp 177–218Google Scholar
  10. 10.
    Hunger M, Wang W (2006) Characterization of solid catalysts in the functioning state by nuclear magnetic resonance spectroscopy. Adv Catal 50:149–225Google Scholar
  11. 11.
    Hunger M (2008) In situ flow MAS NMR spectroscopy: state of the art and applications in heterogeneous catalysis. Prog Nucl Magn Reson Spectrosc 53:105–127Google Scholar
  12. 12.
    Hunger M (2008) NMR spectroscopy for the characterization of surface acidity and basicity. In: Ertl G, Knoezinger K, Schueth F, Weitkamp F (eds) Handbook of heterogeneous catalysis, vol 2, chapter 3.2.4.4, 2nd edn. Wiley-VCH, Weinheim, pp 1163–1178Google Scholar
  13. 13.
    Hunger M, Wang W (2008) Solid-state NMR spectroscopy. In: Ertl G, Knoezinger K, Schueth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, vol 2, chapter 3.1.3.7, 2nd edn.Wiley-VH, Weinheim, pp 912–932Google Scholar
  14. 14.
    Harris RK (1986) Nuclear magnetic resonance spectroscopy. Longman, EssexGoogle Scholar
  15. 15.
    Abragam A (1994) Principles of nuclear magnetism. Clarendom Press, OxfordGoogle Scholar
  16. 16.
    Rahman AU, Choudhary MI (1995) Solving problems with NMR spectroscopy. Academic Press, New YorkGoogle Scholar
  17. 17.
    Slichter CP (1996) Principles of magnetic resonance. Springer-Verlag, Berlin, HeidelbergGoogle Scholar
  18. 18.
    Freeman R (1997) Nuclear magnetic resonance. Longman, EssexGoogle Scholar
  19. 19.
    Haeberlen U (1976) High resolution NMR in solids. Academic Press, New YorkGoogle Scholar
  20. 20.
    Mehring M (1983) Principles of high-resolution NMR in solids. Springer, Berlin, HeidelbergGoogle Scholar
  21. 21.
    Stejskal EO, Memory JD (1994) High resolution NMR in the solid state. Oxford University Press, OxfordGoogle Scholar
  22. 22.
    Andrew ER, Bradbury A, Eades RG (1958) Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature (London) 182:1659–1659Google Scholar
  23. 23.
    Andrew ER, Jasinski A (1971) Nuclear magnetic resonance spectra of rapidly-rotated solids containing reorienting molecular groups. J Phys C:Solid State Phys 4:391–400Google Scholar
  24. 24.
    Maricq MM, Waugh JS (1979) NMR in rotating solids. J Chem Phys 70:3300–3316Google Scholar
  25. 25.
    Haeberlen U, Waugh JS (1968) Coherent averaging effects in magnetic resonance. Phys Rev 175:453–467Google Scholar
  26. 26.
    Scheler G, Haubenreisser U, Rosenberger H (1981) High-resolution 1H NMR in solids with multiple-pulse sequences and magic-angle sample spinning at 270 MHz. J Magn Reson 44:134–144Google Scholar
  27. 27.
    Freude D (2000) Quadrupolar nuclei in solid-state nuclear magnetic resonance. In: Meyers RA (ed) Encylopedia of analytical chemistry. Wiley, New York, pp 12188–12225Google Scholar
  28. 28.
    Samoson A, Lippmaa E, Pines A (1988) High resolution solid-state N.M.R. – averaging of second-order effects by means of a double rotor. Mol Phys 65:1013–1018Google Scholar
  29. 29.
    Rocha J, Morais CM, Fernandez C (2004) Progress in multiple-quantum magic-angle spinning NMR spectroscopy. Topics Curr Chem 246:141–194Google Scholar
  30. 30.
    Samoson A (1993) Aproximate approach to DOR sideband suppression. Chem Phys Lett 214:456–458Google Scholar
  31. 31.
    Samoson A, Tegenfeldt J (1994) Suppression of DOR sidebands. J Magn Reson A 110: 238–244Google Scholar
  32. 32.
    Amoureux JP (1993) High-resolution solid-state NMR for spin 3/2 and 9/2: the multiple-quantum transition method. Solid State Nucl Magn Reson 2:83–88Google Scholar
  33. 33.
    Smith ME, van Eck ERH (1999) Recent advances in experimental solid state NMR methodology for half-integer spin quadrupolar nuclei. Progr NMR Spectros 34:159–201Google Scholar
  34. 34.
    Fernandez C, Delevoye L, Amoureux JP, Lang DP, Pruski M (1997) 27Al{1H} cross polarization triple-quantum magic angle spinning NMR. J Am Chem Soc 119:6858–6862Google Scholar
  35. 35.
    Michel D, Engelke F (1994) Cross-polarization, relaxation times and spin-diffusion in rotating solids. In: Diehl P, Fluck E, Guenther H, Kosfeld R, Seelig J, Bluemich B (eds) NMR basic principles and progress, vol 32. Springer-Verlag, Berlin, Heidelberg, pp 69–125Google Scholar
  36. 36.
    Gullion T, Schaefer J (1989) Rotational-echo double-resonance NMR. J Magn Reson 81:196–200Google Scholar
  37. 37.
    Van Eck ERH, Veeman WS (1993) Spin-density description of rotational-echo double-resonance, transferred-echo double-resonance and 2-dimensional transferred-echo double-resonance solid-state nuclear-magnetic-resonance. Solid State Nucl Magn Reson 2:307–315Google Scholar
  38. 38.
    Peng L, Huo H, Liu Y, Grey CP (2007) 17O magic angle spinning NMR studies of Broensted acid sites in zeolites HY and HZSM-5. J Am Chem Soc 129:335–346Google Scholar
  39. 39.
    Huang Y, Yan Z, Richer R (2005) Characterization of BAPO- and SAPO-based mesoporous materials by solid-state NMR spectroscopy. Chem Mater 17:6545–6554Google Scholar
  40. 40.
    Van Eck ERH, Janssen R, Maas WEJR, Veeman WS (1990) A novel application of nuclear spin-echo double-resonance to aluminophosphates and aluminosilicates. Chem Phys Lett 174:428–432Google Scholar
  41. 41.
    Grey CP, Vega AJ (1995) Determination of the quadrupole coupling constant of the invisible aluminum spins in zeolite HY with 1H/27Al TRAPDOR NMR. J Am Chem Soc 117:8232–8242Google Scholar
  42. 42.
    Gullion T (1995) Measurement of dipolar interactions between spin-1/2 and quadrupolar nuclei by rotational-echo, adiabatic-passage, double-resonance NMR. Chem Phys Lett 246:325–330Google Scholar
  43. 43.
    Li X, Zhang W, Liu SB, Han X, Xu L, Bao X (2006) A high-resolution MAS NMR study on the potential catalysts Mo/HBeta for olefin metathesis: The interaction of Mo species with HBeta zeolite. J Mol Catal A: Chem 250:94–99Google Scholar
  44. 44.
    Hu W, Luo Q, Su Y, Chen L, Yue Y, Ye C, Deng F (2006) Acid sites in mesoporous Al-SBA-15 materials as revealed by solid-state NMR spectroscopy. Micropor Mesopor Mater 92:22–30Google Scholar
  45. 45.
    Van Wuellen L, Koller H, Kalwei M (2002) Modern solid state double resonance NMR strategie for the structural characterization of adsorbate complexes involved in the MTG process. Phys Chem Chem Phys 4:1665–1674Google Scholar
  46. 46.
    Amoureux JP, Trebosc J, Wiench JW, Massiot D, Pruski M (2005) Measurement of J-coupling between spin-1/2 and quadrupolar nuclei by frequency selective solid-state NMR. Solid State Magn Reson 27:228–232Google Scholar
  47. 47.
    Amoureux JP, Flambard A, Delevoye L, Montagne L (2005) A very sensitive high-resolution NMR method for quadrupolar nuclei: SPAM-DQF-STMAS. Chem Commun 27:3472–3474Google Scholar
  48. 48.
    Brouwer DH, Kristiansen PE, Fyfe CA, Levitt MH (2005) Symmetry-based 29Si dipolar recoupling magic angle spinning NMR spectroscopy: A new method for investigating three-dimensional structures of zeolite frameworks. J Am Chem Soc 127:542–543Google Scholar
  49. 49.
    Fyfe CA, Brouwer DH, Lewis AR, Chezeau JM (2001) Location of the fluoride ion in tetrapropylammonium fluoride silicalite-1 determined by 1H/19F/29Si triple resonance CP, REDOR, and TEDOR NMR experiments. J Am Chem Soc 123:6882–6891Google Scholar
  50. 50.
    Fyfe CA, Diaz AC, Grondey H, Lewis AR, Foerster H (2005) Solid state NMR method for the determination of 3D zeolite framework/sorbate structures: 1H/29Si CP MAS NMR study of the high-loaded form of p-xylene in ZSM-5 and determination of the unknown structure of the low-loaded form. J Am Chem Soc 127:7543–7558Google Scholar
  51. 51.
    Camblor MA, Davis ME (1994) 29Si MAS NMR spectroscopy of tectozincosilicates. J Phys Chem 98:13151–1356Google Scholar
  52. 52.
    Arnold A, Steuernagel S, Hunger M, Weitkamp J (2003) Insight into the dry-gel synthesis of gallium-rich zeolite [Ga]Beta. Micropor Mesopor Mater 62:97–106Google Scholar
  53. 53.
    Engelhardt G, Lohse U, Samoson A, Magi M, Tarmak M, Lippmaa E (1982) High-resolution 29Si NMR of dealuminated and ultrastable Y-zeolites. Zeolites 2:59–62Google Scholar
  54. 54.
    Jiao J, Wang W, Sulikowski B, Weitkamp J, Hunger M (2006) 29Si and 27Al MAS NMR characterization of non-hydrated zeolites Y upon adsorption of ammonia. Micropor Mesopor Mater 90:246–250Google Scholar
  55. 55.
    Thomas JM, Klinowski J, Ramdas S, Hunter BK, Tennakoon DTB (1983) The evaluation of non-equivalent tetrahedral sites in zeolites and related aluminosilicates. Chem Phys Lett 102:158–162Google Scholar
  56. 56.
    Radeglia R, Engelhardt G (1985) Correlation of Si-O-Si or Si-O-Al angles and 29Si NMR chemical shifts in silicates and aluminosilicates - interpretation by semi-empirical quantum-chemical considerations. Chem Phys Lett 114:28–30Google Scholar
  57. 57.
    Engelhardt G, Luger S, Buhl JC, Felsche J (1989) 29Si MAS NMR of aluminosilicate sodalites – correlations between chemical-shifts and structure parameters. Zeolites 9:182–186Google Scholar
  58. 58.
    Fyfe CA, Feng Y, Grondey H (1993) Evaluation of chemical shift-structure correlations from a combination of X-ray diffraction and 2D MAS NMR data for highly siliceous frameworks. Micropor Mater 1:393–400Google Scholar
  59. 59.
    Fyfe CA, Feng Y, Gies H, Grondey H, Kokotailo GT (1990) Natural-abundance two-dimensional solid-state 29Si NMR investigations of three-dimensional lattice connectivities in zeolite structures. J Am Chem Soc 112:3264–3270Google Scholar
  60. 60.
    Fyfe CA, Grondey H, Feng Y, Kokotailo GT (1990) Natural-abundance two-dimensional 29Si MAS NMR investigation of the three-dimensional bonding connectivities in the zeolite catalyst ZSM-5. J Am Chem Soc 112:8812–8820Google Scholar
  61. 61.
    Fyfe CA, Grondey H, Feng Y, Kokotailo GT, Ernst S, Weitkamp J (1992) Two-dimensional solid-state 29Si n.m.r. investigation of the three-dimensional bonding connectivities and structure of zeolite ZSM-23. Zeolites 12:50–53Google Scholar
  62. 62.
    Ernst RR, Bodenhausen G, Wokaun A (1994) Principles of nuclear magnetic resonance in one and two dimensions. Clarendon Press, OxfordGoogle Scholar
  63. 63.
    Friebolin H (1991) Basic one and two dimensional NMR-spectroscopy. Wiley, WeinheimGoogle Scholar
  64. 64.
    Jiao J, Kanellopoulos J, Wang W, Ray SS, Foerster H, Freude D, Hunger M (2005) Characterization of framework and extra-framework aluminum species in non-hydrated zeolites Y by 27Al spin-echo, high-speed MAS, and MQMAS NMR spectroscopy at B0 = 9.4 to 17.6 T. Phys Chem Chem Phys 7:3221–3226Google Scholar
  65. 65.
    Pyykko P (2001) Spectroscopic nuclear quadrupole moments. Mol Phys 99:1617–1629Google Scholar
  66. 66.
    Altwasser S, Jiao J, Steuernagel S, Weitkamp J, Hunger M (2004) Elucidating the dealumination mechanism of zeolite H-Y by solid-state NMR spectroscopy. In: Van Steen E, Callanan LH, Claeys M (eds) Recent advances in the science and technology of zeolites and related materials. Stud Surf Sci Catal, vol 154. Elsevier, Amsterdam, pp 3098–3105Google Scholar
  67. 67.
    Rocha J, Carr SW, Klinowski J (1991) 27Al quadrupole nutation and 1H/27Al cross-polarization solid-state NMR-studies of ultrastable zeolite-Y with fast magic-angle spinning. Chem Phys Lett 187:401–408Google Scholar
  68. 68.
    Chen TH, Houthoofd K, Grobet PJ (2005) Toward the aluminum coordination in dealuminated mordenite and amorphous silica-alumina: A high resolution 27Al MAS and MQMAS NMR study. Micropor Mesopor Mater 86:31–37Google Scholar
  69. 69.
    Lippmaa E, Samoson A, Magi M (1986) High-resolution 27Al NMR of aluminosilicates. J Am Chem Soc 108:1730–1735Google Scholar
  70. 70.
    Jacobsen HS, Norby P, Bildsøe JHJ (1989) 1–1 Correlation between 27Al and 29Si chemical-shifts and correlations with lattice structures for some aluminosilicate sodalites. Zeolites 9:491–495Google Scholar
  71. 71.
    Klinowski J, Anderson MW, Thomas JM (1983) On the siting of aluminum in zeolite omega. J Chem Soc Chem Commun 525–526Google Scholar
  72. 72.
    Massiani P, Fajula F, Figueras F (1988) 29Si and 27Al MAS NMR-study of the distribution of Si and Al atoms in various forms of synthetic zeolite omega. Zeolites 8:332–337Google Scholar
  73. 73.
    Hunger M, Ernst S, Weitkamp J (1995) Multi-nuclear solid-state NMR investigation of zeolite MCM-22. Zeolites 15:188–192Google Scholar
  74. 74.
    Freude D, Haase J (1993) Quadrupole effects in solid-state nuclear magnetic resonance. In: Diehl P, Fluck E, Guenther H, Kosfeld R, Seelig J (eds) NMR, basic principles and progress, vol 29. Springer, Berlin, Heidelberg, pp 1–90Google Scholar
  75. 75.
    Reiss G (1994) Status and development of oxygen generation processes on molecular-sieve zeolites. Gas Sep Purif 8:95–99Google Scholar
  76. 76.
    Gaffney TR (1996) Porous solids for air separation. Curr Opin Solid State Mater Sci 1:69–75Google Scholar
  77. 77.
    Barthomeuf D (1994) Basicity in zeolites. In: Fraissard J, Petrakis L (eds) Acidity and basicity of solids. Kluwer Academic Publishers, Dordrecht, Boston, pp 181–197Google Scholar
  78. 78.
    Weitkamp J, Hunger M, Rymsa U (2001) Base catalysis on microporous and mesoporous materials: recent progress and perspectives. Micropor Mesopor Mater 48:255–270Google Scholar
  79. 79.
    Feuerstein M, Lobo RF (1998) Influence of oxygen and nitrogen on 7Li MAS NMR spectra of zeolite LiX-1.0. Chem Commun 1647–1648Google Scholar
  80. 80.
    Feuerstein M, Engelhardt G, McDaniel PL, MacDougall JE, Gaffney TR (1998) Solid-state nuclear magnetic resonance investigation of cation siting in LiNaLSX zeolites. Micropor Mesopor Mater 26:27–35Google Scholar
  81. 81.
    Feuerstein M, Lobo RF (1998) Characterization of Li cations in zeolite LiX by solid-state NMR spectroscopy and neutron diffraction. Chem Mater 10:2197–2204Google Scholar
  82. 82.
    Feuerstein M, Lobo RF (1999) Mobility of Li cations in X zeolites studied by solid-state NMR spectroscopy. Solid State Ionics 118:135–139Google Scholar
  83. 83.
    Feuerstein M, Accardi RJ, Lobo RJ (2000) Adsorption of nitrogen and oxygen in the zeolites LiA and LiX investigated by 6Li and 7Li MAS NMR spectroscopy. J Phys Chem B 104:10282–10287Google Scholar
  84. 84.
    Smith LJ, Eckert H, Cheetham AK (2000) Site preferences in the mixed cation zeolite Li, Na-chabazite: a combined solid-state NMR and neutron diffraction study. J Am Chem Soc 122:1700–1708Google Scholar
  85. 85.
    Accardi RJ, Lobo RF (2000) Accessibility of lithium cations in high-silica zeolites investigated using the NMR paramagnetic shift effect of adsorbed oxygen. Micropor Mesopor Mater 40:25–34Google Scholar
  86. 86.
    Barich DH, Xu T, Zhang J, Haw JF (1998) Modeling of benzene adsorption in metal-exchanged zeolites by calculation of 7Li chemical shifts. Angew Chem Int Ed 37:2530–2531Google Scholar
  87. 87.
    Malek A, Ozin GA, Macdonald PM (1996) Probing cation sites in cesium-exchanged zeolite Y via 133Cs MAS NMR. J Phys Chem 100:16662–16666Google Scholar
  88. 88.
    Norby P, Poshni FI, Gualtieri AF, Hanson JC, Grey CP (1998) Cation migration in zeolites: An in situ powder diffraction and MAS NMR study of the structure of zeolite Cs(Na)-Y during dehydration. J Phys Chem B 102:839–856Google Scholar
  89. 89.
    Hunger M, Schenk U, Buchholz A (2000) Mobility of cations and guest compounds in cesium-exchanged and impregnated zeolites Y and X investigated by high-temperature MAS NMR spectroscopy. J Phys Chem B 104:12230–12236Google Scholar
  90. 90.
    Hunger M, Schenk U, Burger B, Weitkamp J (1997) Synergism of guest compounds and host framework in basic zeolites. Angew Chem Int Ed 36:2504–2506Google Scholar
  91. 91.
    Hunger M, Schenk U, Weitkamp J (1998) Mechanistic studies of the side-chain alkylation of toluene with methanol on basic zeolites Y by multi-nuclear NMR spectroscopy. J Mol Catal A: Chem 134:97–109Google Scholar
  92. 92.
    Hunger M, Engelhardt G, Koller H, Weitkamp J (1993) Characterization of sodium cations in dehydrated faujasites and zeolite EMT by 23Na DOR, 2D nutation, and MAS NMR. Solid State Nucl Magn Reson 2:111–120Google Scholar
  93. 93.
    Feuerstein M, Hunger M, Engelhardt G, Amoureux JP (1996) Characterization of sodium ations in dehydrated zeolite NaX by 23Na NMR spectroscopy. Solid State Nucl Magn Reson 7:95–103Google Scholar
  94. 94.
    Hunger M, Sarv P, Samoson A (1997) Two-dimensional triple-quantum 23Na MAS NMR spectroscopy of sodium cations in dehydrated zeolites. Solid State Nucl Magn Reson 9:115–120Google Scholar
  95. 95.
    Lim KH, Grey CP (2000) Characterization of extra-framework cation positions in zeolites NaX and NaY with very fast 23Na MAS and multiple quantum MAS NMR spectroscopy. J Am Chem Soc 122:9768–9780Google Scholar
  96. 96.
    Caldarelli S, Buchholz A, Hunger M (2001) Investigation of sodium cations in dehydrated zeolites LSX, X, and Y by 23Na off-resonance RIACT triple-quantum and high speed MAS NMR spectroscopy. J Am Chem Soc 123:7118–7123Google Scholar
  97. 97.
    Ganapathy S, Das TK, Vetrivel R, Ray SS, Sen T, Sivasanker S, Delevoye L, Fernandez C, Amoureux JP (1998) Anisotropic chemical shielding, M-site ordering, and characterization of extra-framework cations in ETS-10 studied through MAS/MQ-MAS NMR and molecular modelling techniques. J Am Chem Soc 120:4752–4762Google Scholar
  98. 98.
    Anderson MW, Agger JR, Luigi DP, Baggaley AK, Rocha J (1999) Cation sites in ETS-10: 23Na 3Q MAS NMR and lattice energy minimisation calculations. Phys Chem Chem Phys 1:2287–2292Google Scholar
  99. 99.
    Matijasic A, Lewis AR, Marichal C, Delmotte L, Chezeau JM, Patarin J (2000) Structural characterization of the new porous sodium silicate Mu-11 by 29Si and 23Na solid-state NMR. Phys Chem Chem Phys 2:2807–2813Google Scholar
  100. 100.
    Lim KH, Grey CP (2000) Characterization of extra-framework cation positions in zeolites NaX and NaY with very fast 23Na MAS and multiple quantum MAS NMR spectroscopy. J Am Chem Soc 122:9768–9790Google Scholar
  101. 101.
    Massiot D, Bessada C, Coutures JP, Taulelle F (1990) A quantitative study of 27Al MAS NMR in crystalline YAG. J Magn Reson 90:231–242Google Scholar
  102. 102.
    Accardi RJ, Lobo RF, Kalwei M (2001) Paramagnetic effect of oxygen in the 23Na MAS NMR and 23Na MQMAS NMR spectroscopy of zeolite LiNaX. J Phys Chem B 105:5883–5886Google Scholar
  103. 103.
    Freude D, Hunger M, Pfeifer H (1987) Investigation of acidic properties of zeolites by MAS NMR. Z Phys Chem (NF) 152:171–182Google Scholar
  104. 104.
    Hunger M (1996) Multinuclear solid-state NMR studies of acidic and non-acidic hydroxyl protons in zeolites. Solid State Nucl Magn Reson 6:1–29Google Scholar
  105. 105.
    Hunger M, Freude D, Pfeifer H, Prager D, Reschetilowski W (1989) Proton MAS NMR studies of hydroxyl groups in alkaline earth cation-exchanged zeolites Y. Chem Phys Lett 163:221–224Google Scholar
  106. 106.
    Mastikhin VM, Mudrakovsky IL, Nosov AV (1991) 1H NMR magic angle spinning (MAS) studies of heterogeneous catalysis. Prog NMR Spectrosc 23:259–299Google Scholar
  107. 107.
    Rachwalik R, Olejniczak Z, Jiao J, Huang J, Hunger M, Sulikowski B (2007) Isomerization of α-pinene over dealuminated ferrierite-type zeolites. J Catal 252:161–170Google Scholar
  108. 108.
    Huang J, Jiang Y, Reddy Marthala VR, Ooi YS, Weitkamp J, Hunger M (2007) Concentration and acid strength of hydroxyl groups in zeolites La, Na-X and La, Na-Y with different lanthanum exchange degrees studied by solid-state NMR spectroscopy. Micropor Mesopor Mater 104:129–136Google Scholar
  109. 109.
    Huang J, Jiang Y, Reddy Marthala VR, Thomas B, Romanova E, Hunger M (2008) Characterization and acidic properties of aluminum-exchanged zeolites X and Y. J Phys Chem C 112:3811–3818Google Scholar
  110. 110.
    Hunger M, Anderson MW, Ojo A, Pfeifer H (1993) Study of the geometry and location of the bridging OH groups in aluminosilicate and silicoaluminophosphate type zeolites using 1H MAS NMR sideband analysis and CP/MAS NMR. Micropor Mater 1:17–32Google Scholar
  111. 111.
    Deng F, Yue Y, Ye C (1998) 1H/27Al TRAPDOR NMR studies on aluminum species in dealuminated zeolites. Solid State Nucl Magn Reson 10:151–160Google Scholar
  112. 112.
    Zhang W, Ma D, Liu X, Liu X, Bao X (1999) Perfluorotributylamine as a probe molecule for distinguishing internal and external acidic sites in zeolites by high-resolution 1H MAS NMR spectroscopy. Chem Commun 12:1091–1092Google Scholar
  113. 113.
    Zhang W, Bao X, Guo X, Wang X (1999) A high-resolution solid-state NMR study on nano-structured HZSM-5 zeolite. Catal Lett 60:89–94Google Scholar
  114. 114.
    Simon A, Gougeon RD, Paillaud JL, Valtchev V, Kessler H (2001) Characterization of the acidity of Mu-14 by solid-state NMR and NH3-STD. Phys Chem Chem Phys 3:867–872Google Scholar
  115. 115.
    Kao HM, Grey CP, Pitchumani K, Lakshminarasimhan PH, Ramamurthy V (1998) Activation conditions play a key role in the activity of zeolite CaY: NMR and product studies of Bronsted acidity. J Phys Chem A 102:5627–5638Google Scholar
  116. 116.
    Beck LW, Haw JF (1995) Multinuclear NMR-studies reveal a complex acid function for zeolite Beta. J Phys Chem 99:1076–1079Google Scholar
  117. 117.
    Brunner E, Beck K, Koch M, Heeribout L, Karge HG (1995) Verification and quantitative determination of a new type of Broensted acid sites in H-ZSM-5 by 1H magic-angle spinning nuclear magnetic resonance spectroscopy. Micropor Mater 3:395–399Google Scholar
  118. 118.
    Freude D (1995) Enhanced resolution in the 1H NMR spectra of zeolite H-ZSM-5 by heteronuclear dipolar dephasing spin-echo MAS. Chem Phys Lett 235:69–75Google Scholar
  119. 119.
    Hunger M, Ernst S, Steuernagel S, Weitkamp J (1996) High-field 1H MAS NMR investigations of acidic and non-acidic hydroxyl groups in zeolites H-Beta, H-ZSM-5, H-ZSM-58 and H-MCM-22. Micropor Mater 6:349–353Google Scholar
  120. 120.
    Koller H, Lobo RF, Burkett SL, Davis ME (1995) SiO…HSiO hydrogen bonds in as-synthesized high-silica zeolites. J Phys Chem 99:12588–12596Google Scholar
  121. 121.
    Wolf I, Gies H, Fyfe CA (1999) Ordering of silicate layers by hydrogen-bonding networks: solid state NMR investigation of the perfect three-dimensional registration in the layer silicate RUB-18. J Phys Chem B 103:5933–5938Google Scholar
  122. 122.
    Ma D, Deng F, Fu R, Han X, Bao X (2001) MAS NMR studies om the dealumination of zeolite MCM-22. J Phys Chem B 105:1770–1779Google Scholar
  123. 123.
    Isobe T, Watanabe T, d’Espinose de la Caillerie JB, Legrand AP, Massiot D (2003) Solid-state 1H and 27Al NMR studies of amorphous aluminum hydroxides. J Coll Int Sci 261:320–324Google Scholar
  124. 124.
    Nesterenko NS, Thibault-Starzyk F, Montouillout V, Yuschenko VV, Fernandez C, Gilson JP, Fajula F, Ivanova II (2004) Accessibility of the acid sites in dealuminated small-port mordenites studied by FTIR of co-adsorbed alkylpyridines and CO. Micropor Mesopor Mater 71:157–166Google Scholar
  125. 125.
    Kennedy GJ, Afeworki M, Calabro DC, Chase CE, Smiley RJ Jr (2004) 1H MAS NMR (magic-angle spinning nuclear magnetic resonance) techniques for the quantitative determination of hydrogen types in solid catalysts and supports. Appl Spec 58:698–704Google Scholar
  126. 126.
    Omegna A, Vasic M, van Bokhoven RA, Pirngruber G, Prins R (2004) Dealumination and realumination of microcrystalline zeolite beta: an XRD, FTIR and quantitative multinuclear (MQ) MAS NMR study. Phys Chem Chem Phys 6:447–452Google Scholar
  127. 127.
    Sanderson RT (1976) Chemical bonds and bond energy, 2nd edn. Academic Press, New YorkGoogle Scholar
  128. 128.
    Mortier WJ (1978) Zeolite electronegativity related to physicochemical properties. J Catal 55:138–145Google Scholar
  129. 129.
    Yesinowski JP, Eckert H, Rossman GR (1988) Characterization of hydrous species in minerals by high-speed 1H MAS NMR. J Am Chem Soc 110:1367–1375Google Scholar
  130. 130.
    Hunger M, Schenk U, Breuninger M, Glaeser R, Weitkamp J (1999) Characterization of the acid sites in MCM-41-type materials by spectroscopic and catalytic techniques. Micropor Mesopor Mater 27:261–271Google Scholar
  131. 131.
    Weihe M, Hunger M, Breuninger M, Karge HG, Weitkamp J (2001) Influence of the nature of residual alkali cations on the catalytic activity of zeolites X, Y, and EMT in their Brønsted acid forms. J Catal 198:256–265Google Scholar
  132. 132.
    Jaenchen J, van Wolput JHMC, van de Ven LJM, de Haan JW, van Santen RA (1996) FTIR spectroscopic and 1H MAS NMR studies of the influence of lattice chemistry and structure on Bronsted acidity in zeolites. Catal Lett 39:147–152Google Scholar
  133. 133.
    Paze C, Zecchina A, Spera S, Cosma A, Merlo E, Spano G, Girotti G (1999) Comparative IR and 1H MAS NMR study of adsorption of CD3CN on zeolite H-beta: evidence of the presence of two families of bridged Brønsted sites. Phys Chem Chem Phys 1:2627–2629Google Scholar
  134. 134.
    Huang J, Jiang Y, Reddy Marthala VR, Wang W, Sulikowski B, Hunger M (2007) In situ 1H MAS NMR investigations of the H/D exchange of alkylaromatic hydrocarbons on zeolites H-Y, La, Na-Y, and H-ZSM-5. Micropor Mesopor Mater 99:86–90Google Scholar
  135. 135.
    White JL, Beck LW, Haw JF (1992) Characterization of hydrogen bonding in zeolites by proton solid-state NMR spectroscopy. J Am Chem Soc 114:6182–6189Google Scholar
  136. 136.
    Beck LW, Xu T, Nicholas JB, Haw JF (1995) Kinetic NMR and density-functional study of benzene H/D exchange in zeolites, the most simple aromatic substitution. J Am Chem Soc 117:11594–11595Google Scholar
  137. 137.
    Ernst H, Freude D, Mildner T, Pfeifer H (1999) High temperature 1H MAS NMR studies of the proton mobility in zeolites. In: Treacy MMJ, Marcus BK, Bisher ME, Higgins JB (eds) Proceedings of the 12th International Zeolite Conference. Materials Research Society, Warrendale, Pennsylvania, pp 2955–2962Google Scholar
  138. 138.
    Haw JF (2002) Zeolite acid strength and reaction mechanisms in catalysis. Phys Chem Chem Phys 4:5431–5441Google Scholar
  139. 139.
    Biaglow AI, Gorte RJ, Kokotailo GT, White D (1994) A probe of Brønsted sites acidity in zeolites–13C chemical shift of acetone. J Catal 148:779–786Google Scholar
  140. 140.
    Biaglow AI, Gorte RJ, White D (1994) 13C NMR studies of acetone in dealuminated faujasites–a probe for nonframework alumina. J Catal 150:221–224Google Scholar
  141. 141.
    Xu T, Munson EJ, Haw JF (1994) Towards a systematic chemistry of organic reactions in zeolites–in-situ NMR studies of ketones. J Am Chem Soc 116:1962–1972Google Scholar
  142. 142.
    Xu M, Arnold A, Buchholz A, Wang W, Hunger M (2002) Low-temperature modification of mesoporous MCM-41 material with sublimated aluminum chloride in vacuum. J Phys Chem B 106:12140–12143Google Scholar
  143. 143.
    Ma D, Han X, Xie S, Bao X, Hu H, Au-Yeung SCF (2002) An investigation of the roles of surface aluminum and acid sites in the zeolite MCM-22. Chem Eur J 8:162–170Google Scholar
  144. 144.
    Lunsford JH, Rothwell WP, Shen W (1985) Acid sites in zeolites–a solid-state NMR and infrared study using trimethylphosphine as a probe molecules. J Am Chem Soc 107:1540–1547Google Scholar
  145. 145.
    Lunsford JH, Tutunjian PN, Chu PJ, Yeh EB, Zalewski DJ (1989) Solid-state NMR study using trimethylphosphine as a probe of acid sites in normal and dealuminated zeolite Y. J Phys Chem 93:2590–2595Google Scholar
  146. 146.
    Lunsford JH, Sang H, Campbell SM, Liang CH, Anthony RG (1994) An NMR study of acid sites on sulphated zirconia catalysts using trimethylphosphine as a probe. Catal Lett 27:305–314Google Scholar
  147. 147.
    Luo Q, Deng F, Yuan Z, Yang J, Zhang M, Yue Y, Ye C (2003) Using trimethylphosphine as a probe molecule to study the acid states in Al-MCM-41 materials by solid-state NMR spectroscopy. J Phys Chem B 107:2435–2442Google Scholar
  148. 148.
    Zhang W, Han X, Liu X, Bao X (2003) Characterization of the acid sites in dealuminated nanosized HZSM-5 zeolite with the probe molecule trimethylphosphine. J Mol Catal A 194:107–113Google Scholar
  149. 149.
    Alonso B, Klur I, Massiot D (2002) Studies of surfaces through molecular probe adsorption and solid-state NMR. Chem Commun 804–805Google Scholar
  150. 150.
    Sutovich KJ, Peters AW, Rakiewicz EF, Wormsbecher RF, Mattingly SM, Mueller KT (1999) Simultaneous quantification of Brønsted- and Lewis-acid sites in a USY zeolite. J Catal 183:155–158Google Scholar
  151. 151.
    Karra MD, Sutovich KJ, Mueller KT (2002) NMR characterization of Brønsted acid sites in faujasitic zeolites with use of perdeuterated trimethylphosphine oxide. J Am Chem Soc 124:902–903Google Scholar
  152. 152.
    Wang Y, Zhuang J, Yang G, Zhou D, Ma D, Han X, Bao X (2004) Study on the external surface acidity of MCM-22 zeolite: Theoretical calculation and 31P MAS NMR. J Phys Chem B 108:1386–1391Google Scholar
  153. 153.
    Baerlocher Ch., Meier WM, Olson DH (2001) Atlas of zeolite framework types, 5th revised edn. Elsevier, Amsterdam, p 132, 184Google Scholar
  154. 154.
    Zheng A, Zhang H, Chen L, Yue Y, Ye C, Deng F (2007) Relationship between 1H chemical shifts of deuterated pyridinium ions and Brønsted acid strength of solid acids. J Phys Chem B 111:3085–3089Google Scholar
  155. 155.
    Haw JF, Nicholas JB, Xu T, Beck LW, Ferguson DB (1996) Physical organic chemistry of solid acids: lessons from in situ NMR and theoretical chemistry. Acc Chem Res 29:259–267Google Scholar
  156. 156.
    Bull LM, Cheetham AK, Anupold T, Reinhold A, Samoson A, Sauer J, Bussemer B, Lee Y, Gann S, Shore J, Pines A, Dupree R (1998) A high-resolution 17O NMR study of siliceous zeolite faujasite. J Am Chem Soc 120:3510–3511Google Scholar
  157. 157.
    Pingel UT, Amoureux JP, Anupold T, Bauer F, Ernst H, Fernandez C, Freude D, Samoson A (1998) High-field 17O NMR studies of the SiOAl bond in solids. Chem Phys Lett 294:345–350Google Scholar
  158. 158.
    Freude D, Loeser T, Michel D, Pingel U, Prochnow D (2001) 17O NMR studies of low silicate zeolites. Solid State Nucl Magn Reson 20:46–60Google Scholar
  159. 159.
    Readman JE, Kim N, Ziliox M, Grey CP (2002) 17O MQMAS NMR studies of Na-A and Ca-A. Chem Commun 23:2808–2809Google Scholar
  160. 160.
    Brunner E, Pfeifer H, Wutscherk T, Zscherpel D (1992) 13C NMR investigations on the adsorption of carbon monoxide in H-ZSM-5. Z Phys Chem 178:173–183Google Scholar
  161. 161.
    Zscherpel D, Brunner E, Koch M, Pfeifer H (1995) Variable-temperature 13C magic-angle spinning nuclear magnetic resonance investigations on the interaction between Lewis acid sites and carbon monoxide in H-ZSM-5 zeolites. Microporous Mater 4:141–147Google Scholar
  162. 162.
    Zhao B, Pan H, Lunsford JH (1999) Characterization of [(CH3) 3) P-H] + complexes in normal H-Y, dealuminated H-Y, and H-ZSM-5 zeolites using 31P solid-state NMR spectroscopy. Langmuir 15:2761–2765Google Scholar
  163. 163.
    Rakiewicz EF, Peters AW, Wormsbecher RF, Sutovich KJ, Mueller KT (1998) Characterization of acid sites in zeolitic and other inorganic systems using solid-state 31P NMR of the probe molecule trimethylphosphine oxide. J Phys Chem B 102:2890–2896Google Scholar
  164. 164.
    Bosch E, Huber S, Weitkamp J, Knoezinger H (1999) Adsorption of trichloro- and trifluoromethane in Y-zeolites as studied by IR spectroscopy and multinuclear solid-state NMR. Phys Chem Chem Phys 1:579–584Google Scholar
  165. 165.
    Sánchez-Sánchez M, Blasco T (2000) Pyrrole as an NMR probe molecule to characterise zeolite basicity. Chem Commun 491–492Google Scholar
  166. 166.
    Sánchez-Sánchez M, Blasco T, Rey F (1999) An NMR study on the adsorption and reactivity of chloroform over alkali exchanged zeolites X and Y. Phys Chem Chem Phys 1:4529–4535Google Scholar
  167. 167.
    Bosacek V, Ernst H, Freude D, Mildner T (1997) Surface methoxy groups in zeolites studied by multinuclear MAS nmr spectroscopy. Zeolites 18:196–199Google Scholar
  168. 168.
    Schenk U, Hunger M, Weitkamp J (1999) Characterization of basic guest compounds on solid catalysts by 13C CP/MAS NMR spectroscopy of surface methoxy groups. Magn Reson Chem 37:S75–S78Google Scholar
  169. 169.
    Bosacek V, Klik R, Genoni F, Spano G, Rivetti F, Figueras F (1999) Terminal and bridging methoxyls on zeolites detected by 13C magic angle spinning NMR spectroscopy. Magn Reson Chem 37:S135–S141Google Scholar
  170. 170.
    Lima E, de Menorval LC, Tichit D, Lasperas M, Graffin P, Fajula F (2003) Characterization of the acid-base properties of oxide surfaces by 13C CP/MAS NMR using adsorption of nitromethane. J Phys Chem B 107:4070–4073Google Scholar
  171. 171.
    Kao HM, Grey CP (1997) Determination of the 31P/27Al J-coupling constant for trimethylphosphine bound to the Lewis acid site of zeolite HY. J Am Chem Soc 119:627–628Google Scholar
  172. 172.
    Chu PJ, de Mallmann A, Lunsford JH (1991) A solid-state NMR study of aluminum Lewis acid adducts with trimethylphosphine in zeolite Y–magic angle spinning side-band analysis of dipolar and J-coupled multiple system. J Phys Chem 95:7362–7368Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of Chemical TechnologyUniversity of StuttgartStuttgartGermany

Personalised recommendations