Skip to main content

Aerosol Concentrations and Remote Sources of Airborne Elements Over Pico Mountain, Azores, Portugal

  • Chapter

Abstract

Aerosol samples (PM10) were collected using an aethalometer from 15 July 2001 to 18 April 2004 at the PICO-NARE site in Pico island, Azores, Portugal. The aethalometer is at an altitude of 2225 m AMSL, and sampled for 24 h in most cases, and for a few periods continuously. Samples were assessed through instrumental neutron activation analysis (k 0-variant), and concentrations of up to 15 airborne elements were determined. Concentrations are in the order of magnitude of a moderately polluted urban-industrial site. Elements are predominantly entrained by air masses from North-Central America, and to a lesser extent from Europe and North Africa. PCA and PMF assigned sources related to pollution (traffic, fossil-fuel combustion, mining, industrial processing) and to natural occurrences (crustal, Saharan episodes, marine). Although data uncertainties are relatively high due to the small masses collected in the filters and impurities in them, PMF – which includes the uncertainty – did not prove better than PCA when missing data are replaced by arithmetic means of the determined values for each element.

Keywords

  • keywords Aerosol concentrations
  • Airborne elements
  • Air-mass trajectories
  • Azores archipelago
  • Cluster analysis
  • Enrichment factors
  • Free troposphere
  • HYSPLIT model
  • k 0-INAA
  • Pico mountain
  • PICO-NARE observatory
  • PM10
  • Positive matrix factorization (PMF)
  • Principal-components analysis (PCA)
  • Remote sources
  • Seven-wavelength aethalometer
  • Source attribution

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4020-9674-7_9
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-1-4020-9674-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht BA, Bretherton CS, Johnson D, Scubert WH, Frisch AS (1995) The Atlantic Stratocumulus Transition Experiment – ASTEX. Bull Am Meteorol Soc 76: 889–904

    CrossRef  Google Scholar 

  • Almeida SM, Pio CA, Freitas MC, Reis MA, Trancoso MA (2005) Source apportionment of fine and coarse particulate matter in a sub-urban area at the Western European Coast. Atmos Environ 39: 3127–3138

    CrossRef  Google Scholar 

  • Almeida SM, Freitas MC, Reis MA, Pio CA, Trancoso MA (2006a) Combined application of multielement analysis – k 0-INAA and PIXE – and classical techniques for source apportionment in aerosol studies. Nucl Instrum Meth A 564: 752–760

    Google Scholar 

  • Almeida SM, Pio CA, Freitas MC, Reis MA, Trancoso MA (2006b) Source apportionment of atmospheric urban aerosol based on weekdays/weekend variability: Evaluation of road re-suspended dust contribution. Atmos Environ 40: 2058–2067

    Google Scholar 

  • Almeida SM, Freitas MC, Pio CA (2008) Neutron activation analysis for identification of African mineral dust transport. J Radioanal Nucl Chem 276: 161–165

    CrossRef  Google Scholar 

  • Almeida SM, Freitas MC, Repolho C, Dionísio I, Dung HM, Pio CA, Alves C, Caseiro A, Pacheco AMG (2009) Evaluating children exposure to air pollutants for an epidemiological study. J Radioanal Nucl Chem (accepted)

    Google Scholar 

  • Alves C, Oliveira T, Pio C, Silvestre AJD, Fialho P, Barata F, Legrand M (2007) Characterisation of carbonaceous aerosols from the Azorean Island of Terceira. Atmos Environ 41: 1359–1373

    CrossRef  Google Scholar 

  • Anttila P, Paatero P, Tapper U, Järvinen O (1995) Source identification of bulk wet deposition in Finland by positive matrix factorization. Atmos Environ 29: 1705–1718

    CrossRef  Google Scholar 

  • Artíñano B, Querol X, Salvador P, Rodríguez S, Alonso DG, Alastuey A (2001) Assessment of airborne particulate levels in Spain in relation to the new EU-directive. Atmos Environ 35, Suppl 1: 43–53

    CrossRef  Google Scholar 

  • Bargagli R, Brown DH, Nelli L (1995) Metal biomonitoring with mosses: Procedures for correcting for soil contamination. Environ Pollut 89: 169–175

    CrossRef  Google Scholar 

  • Baumann K, Jayanty RKM, Flanagan JB (2008) Fine particulate matter source apportionment for the chemical speciation trends network site at Birmingham, Alabama, using positive matrix factorization. J Air Waste Manage 58: 27–44

    CrossRef  Google Scholar 

  • Blaauw M (2007) Software for single-comparator instrumental neutron activation analysis – The k 0-IAEA program manual for version 3.21. International Atomic Energy Agency, Vienna, Austria, and Delft University of Technology, Delft, The Netherlands. http://www.tudelft.nl/live/binaries/8bba6542-6c38-468d-8f15-b98f0fc23a70/doc/k0IAEAmanual.pdf. Accessed 20 January 2008

    Google Scholar 

  • Bowen HJM (1979) Environmental chemistry of the elements. Academic Press, London

    Google Scholar 

  • Buhr MP, Hsu K-J, Liu CM, Liu R, Wei L, Liu Y-C, Kuo Y-S (1996) Trace gas measurements and air mass classification from a ground station in Taiwan during the PEM-West A experiment (1991). J Geophys Res 101: 2025–2035

    CrossRef  Google Scholar 

  • Buzcu-Guven B, Brown SG, Frankel A, Hafner HR, Roberts PT (2007) Analysis and apportionment of organic carbon and fine particulate matter sources at multiple sites in the Midwestern United States. J Air Waste Manage 57: 606–619

    Google Scholar 

  • Cao L, Tian W, Ni B, Zhang Y, Wang P (2002) Preliminary study of airborne particulate matter in a Beijing sampling station by instrumental neutron activation analysis. Atmos Environ 36: 1951–1956

    CrossRef  Google Scholar 

  • Chan Y-C, Cohen DD, Hawas O, Stelcer E, Simpson R, Denison L, Wong N, Hodge M, Comino E, Carswell S (2008) Apportionment of sources of fine and coarse particles in four major Australian cities by positive matrix factorisation. Atmos Environ 42: 374–389

    CrossRef  Google Scholar 

  • Chazette P, Pelon J, Moulin C, Dulac F, Carrasco I, Guelle W, Bousquet P, Flamant P-H (2001) Lidar and satellite retrieval of dust aerosols over the Azores during SOFIA/ASTEX. Atmos Environ 35: 4297–4304

    CrossRef  Google Scholar 

  • Chueinta W, Hopke PK, Paatero P (2000) Investigation of sources of atmospheric aerosol at urban and suburban residential areas in Thailand by positive matrix factorization. Atmos Environ 34: 3319–3329

    CrossRef  Google Scholar 

  • De Corte F (1987) The k 0-standardization method – A move to the optimization of neutron activation analysis (Aggrégé Thesis). Institute for Nuclear Sciences, University of Gent, Gent

    Google Scholar 

  • De Corte F (2001) The standardization of standardless NAA. J Radioanal Nucl Chem 248: 13–20

    CrossRef  Google Scholar 

  • Desboeufs KV, Cautenet G (2005) Transport and mixing zone of desert dust and sulphate over Tropical Africa and the Atlantic Ocean region. Atmos Chem Phys Discuss 5: 5615–5644

    CrossRef  Google Scholar 

  • Draxler RR, Rolph GD (2003) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model. NOAA Air Resources Laboratory, Silver Spring, MD; access via NOAA ARL READY Website. http://www.arl.noaa.gov/ready/hysplit4.html. Accessed 24 January 2008

  • Erdtmann G, Petri H (1986) Nuclear activation analysis: Fundamentals and techniques. In: Elving PJ, Krivan V, Kolthoff IM (eds) Treatise on analytical chemistry, Part I – Theory and practice (Volume 14, Section K), 2nd edn. Wiley Interscience, New York

    Google Scholar 

  • Fernandes RMS, Bastos L, Miranda JM, Lourenço N, Ambrosius BAC, Noomen R, Simons W (2006) Defining the plate boundaries in the Azores region. J Volcanol Geoth Res 156: 1–9

    CrossRef  Google Scholar 

  • Fialho P, Hansen ADA, Honrath RE (2005) Absorption coefficients by aerosols in remote areas: A new approach to decouple dust and black carbon absorption coefficients using seven-wavelength Aethalometer data. J Aerosol Sci 36: 267–282

    CrossRef  Google Scholar 

  • Fialho P, Freitas MC, Barata F, Vieira B, Hansen ADA, Honrath RE (2006) The Aethalometer calibration and determination of iron concentration in dust aerosols. J Aerosol Sci 37: 1497–1506

    CrossRef  Google Scholar 

  • Flower MFJ, Schmincke H-U, Bowman H (1976) Rare earth and other trace elements in historic azorean lavas. J Volcanol Geoth Res 1: 127–147

    CrossRef  Google Scholar 

  • Freitas MC, Martinho E (1989a) Neutron activation analysis of reference materials by the k 0-standardization and relative methods. Anal Chim Acta 219: 317–322

    Google Scholar 

  • Freitas MC, Martinho E (1989b) Accuracy and precision in instrumental neutron activation analysis of reference materials and lake sediments. Anal Chim Acta 223: 287–292

    Google Scholar 

  • Freitas MC (1993) The development of k 0-standardized neutron activation analysis with counting using a low energy photon detector (PhD Thesis). Institute for Nuclear Sciences, University of Gent, Gent

    Google Scholar 

  • Freitas MC, Pacheco AMG (2004) Bioaccumulation of cobalt in Parmelia sulcata. J Atmos Chem 49: 67–82

    CrossRef  Google Scholar 

  • Freitas MC, Pacheco AMG, Dionísio I, Sarmento S, Baptista MS, Vasconcelos MTSD, Cabral JP (2006) Multianalytical determination of trace elements in atmospheric biomonitors by k 0-INAA, ICP-MS and AAS. Nucl Instrum Meth A 564: 733–742

    CrossRef  Google Scholar 

  • Freitas MC, Dionísio I, Fialho P, Barata F (2007) Aerosol chemical elemental mass concentration at lower free troposphere. Nucl Instrum Meth A 579: 507–509

    CrossRef  Google Scholar 

  • Freitas MC, Marques AP, Reis MA, Farinha MM (2008) Atmospheric dispersion of pollutants in Sado estuary (Portugal) using biomonitors. Int J Environ Pollut 32: 434–455

    CrossRef  Google Scholar 

  • Heidam NZ (1985) Crustal enrichments in the Arctic aerosol. Atmos Environ 19: 2083–2097

    CrossRef  Google Scholar 

  • Henry RC (1997) History and fundamentals of multivariate air quality receptor models. Chemometr Intell Lab 37: 37–42

    CrossRef  Google Scholar 

  • Honrath RE, Fialho P (2001) The Azores Islands: A unique location for ground-based measurements in the MBL and FT of the central North Atlantic. IGACtivities Newsletter 24: 20–21

    Google Scholar 

  • Honrath RE, Owen RC, Martín MV, Reid JS, Lapina K, Fialho P, Dziobak MP, Kleissl J, Westphal DL (2004) Regional and hemispheric impacts of anthropogenic and biomass burning emissions on summertime CO and O3 in the North Atlantic lower free troposphere. J Geophys Res 109: D24310 (17 pp)

    Google Scholar 

  • Hopke PK, Paatero P, Jia H, Ross RT, Harshman RA (1998) Three-way (PARAFAC) factor analysis: Examination and comparison of alternative computational methods as applied to ill-conditioned data. Chemometr Intell Lab 43: 25–42

    CrossRef  Google Scholar 

  • Huang X, Olmez I, Aras NK, Gordon GE (1994) Emissions of trace elements from motor vehicles: Potential marker elements and source composition profile. Atmos Environ 28: 1385–1391

    CrossRef  Google Scholar 

  • Juntto S, Paatero P (1994) Analysis of daily precipitation data by positive matrix factorization. Environmetrics 5: 127–144

    CrossRef  Google Scholar 

  • Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23: 187–200

    CrossRef  Google Scholar 

  • Kaiser HF (1959) Computer program for varimax rotation in factor analysis. Educ Psychol Meas 19: 413–420

    CrossRef  Google Scholar 

  • Kim E, Hopke PK, Edgerton ES (2003) Source identification of Atlanta aerosol by positive matrix factorization. J Air Waste Manage 53: 731–739

    Google Scholar 

  • Kim E, Hopke PK, Edgerton ES (2004) Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization. Atmos Environ 38: 3349–3362

    CrossRef  Google Scholar 

  • Kleissl J, Honrath RE, Henriques DV (2006) Analysis and application of Sheppard’s airflow model to predict mechanical orographic lifting and the occurrence of mountain clouds. J Appl Meteorol Clim 45: 1376–1387

    CrossRef  Google Scholar 

  • Kleissl J, Honrath RE, Dziobak MP, Tanner D, Val Martín M, Owen RC, Helmig D (2007) Occurrence of upslope flows at the Pico mountaintop observatory: A case study of orographic flows on a small, volcanic island. J Geophys Res 112: D10S35 (16 pp)

    Google Scholar 

  • Lantzy RJ, Mackenzie FT (1979) Atmospheric trace metals: Global cycles and assessment of man’s impact. Geochim Cosmochim Acta 43: 511–525

    CrossRef  Google Scholar 

  • Lapina K, Honrath RE, Owen RC, Val Martín M, Pfister G (2006) Evidence of significant large-scale impacts of boreal fires on ozone levels in the midlatitude Northern Hemisphere free troposphere. Geophys Res Lett 33: L10815 (4 pp)

    Google Scholar 

  • Lee E, Chan CK, Paatero P (1999) Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmos Environ 33: 3201–3212

    CrossRef  Google Scholar 

  • Li X, Maring H, Savoie D, Voss K, Prospero JM (1996) Dominance of mineral dust in aerosol light-scattering in the North Atlantic trade winds. Nature 380: 416–419

    CrossRef  Google Scholar 

  • Li-Jones X, Prospero JM (1998) Variations in the size distribution of non-sea-salt sulfate aerosol in the marine boundary layer at Barbados: Impact of African dust. J Geophys Res 103: 16073–16084

    CrossRef  Google Scholar 

  • Liu W, Wang Y, Russell A, Edgerton ES (2005) Atmospheric aerosol over two urban-rural pairs in the southeastern United States: Chemical composition and possible sources. Atmos Environ 39: 4453–4470

    CrossRef  Google Scholar 

  • Liu W, Wang Y, Russell A, Edgerton ES (2006) Enhanced source identification of southeast aerosols using temperature-resolved carbon fractions and gas phase components. Atmos Environ 40 (Suppl 2): 445–466

    CrossRef  Google Scholar 

  • Manoli E, Voutsa D, Samara C (2002) Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece. Atmos Environ 36: 949–961

    CrossRef  Google Scholar 

  • Mazzera DM, Lowenthal DH, Chow JC, Watson JG (2001) Sources of PM10 and sulfate aerosol at McMurdo station, Antarctica. Chemosphere 45: 347–356

    CrossRef  Google Scholar 

  • Mishra VK, Kim K-H, Hong S, Lee K (2004) Aerosol composition and its sources at the King Sejong Station, Antarctic peninsula. Atmos Environ 38: 4069–4084

    CrossRef  Google Scholar 

  • Owen RC, Cooper OR, Stohl A, Honrath RE (2006) An analysis of the mechanisms of North American pollutant transport to the central North Atlantic lower free troposphere. J Geophys Res 111: D23S58 (14 pp)

    Google Scholar 

  • Paatero P, Tapper U (1993) Analysis of different modes of factor analysis as least squares fit problems. Chemometr Intell Lab 18: 183–194

    CrossRef  Google Scholar 

  • Paatero P, Tapper U (1994) Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5: 111–126

    CrossRef  Google Scholar 

  • Paatero P (1997) Least squares formulation of robust non-negative factor analysis. Chemometr Intell Lab 37: 23–35

    CrossRef  Google Scholar 

  • Pacheco AMG, Freitas MC, Ventura MG, Dionísio I, Ermakova E (2006) Chemical elements in common vegetable components of Portuguese diets, determined by k 0-INAA. Nucl Instrum Meth A 564: 721–728

    CrossRef  Google Scholar 

  • Pacheco AMG, Freitas MC (2007) Trace-element enrichment in epiphytic lichens and tree bark at Pico island, Azores, Portugal. In: Proceedings of the A& WMA’s 100th Annual Conference and Exhibition (ACE 2007; Pittsburgh PA, June 26–29, 2007; ISBN: 978-092-32049-5-2). Air & Waste Management Association, Pittsburgh

    Google Scholar 

  • Pacyna JM (1998) Source inventories for atmospheric trace metals. In: Harrison RM, Van Grieken R (eds) Atmospheric. particles – IUPAC series on analytical and physical chemistry of environmental systems (Volume 5). Wiley, Chichester

    Google Scholar 

  • Paterson KG, Sagady JL, Hooper DL, Bertman SB, Carroll MA, Shepson PB (1999) Analysis of air quality data using positive matrix factorization. Environ Sci Technol 33: 635–641

    CrossRef  Google Scholar 

  • Perry KD, Cahill TA, Eldred RA, Dutcher DD, Gill TE (1997) Long-range transport of North African dust to the eastern United States. J Geophys Res 102: 11225–11238

    CrossRef  Google Scholar 

  • Polissar AV, Paatero P, Hopke PK, Malm WC, Sisler JF (1998) Atmospheric aerosol over Alaska 2. Elemental composition and sources. J Geophys Res 103: 19045–19057

    CrossRef  Google Scholar 

  • Polissar AV, Hopke PK, Poirot RL (2001) Atmospheric aerosol over Vermont: Chemical composition and sources. Environ Sci Technol 35: 4604–4621

    CrossRef  Google Scholar 

  • Prospero JM (1999a) Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States. Proc Natl Acad Sci USA 96: 3396–3403

    Google Scholar 

  • Prospero JM (1999b) Long-term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality. J Geophys Res 104: 15917–15927

    Google Scholar 

  • Prospero JM, Nees RT (1986) Impact of the North African drought and El Niño on mineral dust in the Barbados trade winds. Nature 320: 735–738

    CrossRef  Google Scholar 

  • Prospero JM, Olmez I, Ames M (2001) Al and Fe in PM 2.5 and PM 10 suspended particles in south-central Florida: The impact of the long range transport of African mineral dust. Water Air Soil Poll 125: 291–317

    CrossRef  Google Scholar 

  • Prospero JM, Lamb PJ (2003) African droughts and dust transport to the Caribbean: Climate change implications. Science 302: 1024–1027

    CrossRef  Google Scholar 

  • Rahn KA, Huang SA (1999) A graphical technique for distinguishing soil and atmospheric deposition in biomonitors from the plant material. Sci Total Environ 232: 79–104

    CrossRef  Google Scholar 

  • Reff A, Eberly SI, Bhave PV (2007) Receptor modeling of ambient particulate matter data using positive matrix factorization: Review of existing methods. J Air Waste Manage 57: 146–154

    Google Scholar 

  • Reis MA, Oliveira OR, Alves LC, Rita EMC, Rodrigues F, Fialho P, Pio CA, Freitas MC, Soares JC (2002) Comparison of continental Portugal and Azores Islands aerosol during a Sahara dust storm. Nucl Instrum Meth B 189: 272–278

    CrossRef  Google Scholar 

  • Rolph GD (2003) Real-time Environmental Applications and Display sYstem (READY). NOAA Air Resources Laboratory, Silver Spring, MD. http://www.arl.noaa.gov/ ready/hysplit4.html. Accessed 24 January 2008

    Google Scholar 

  • Searle R (1980) Tectonic pattern of the Azores spreading centre and triple junction. Earth Planet Sci Lett 51: 415–434

    CrossRef  Google Scholar 

  • Silveira G, Stutzmann E, Davaille A, Montagner J-P, Mendes-Victor L, Sebai A (2006) Azores hotspot signature in the upper mantle. J Volcanol Geoth Res 156: 23–34

    CrossRef  Google Scholar 

  • Sternbeck J, Sjödin AÅ, Andréasson K (2002) Metal emissions from road traffic and the influence of resuspension – results from two tunnel studies. Atmos Environ 36: 4735–4744

    CrossRef  Google Scholar 

  • Val Martín M, Honrath RE, Owen RC, Pfister G, Fialho P, Barata F (2006) Significant enhancements of nitrogen oxides, black carbon, and ozone in the North Atlantic lower free troposphere resulting from North American boreal wildfires. J Geophys Res 111: D23S60 (17 pp)

    Google Scholar 

  • Vieira BJ, Biegalski SR, Freitas MC, Landsberger S (2006) Atmospheric trace metal characterization in industrial area of Lisbon, Portugal. J Radioanal Nucl Chem 270: 55–62

    CrossRef  Google Scholar 

  • Weingartner E, Saathoff H, Schnaiter M, Streit N, Bitnar B, Baltensperger U (2003) Absorption of light by soot particles: Determination of the absorption coefficient by means of aethalometers. J Aerosol Sci 34: 1445–1463

    CrossRef  Google Scholar 

  • Xie Y-L, Hopke PK, Paatero P, Barrie LA, Li S-M (1999) Identification of source nature and seasonal variations of Arctic aerosol by positive matrix factorization. J Atmos Sci 56: 249–260

    CrossRef  Google Scholar 

  • Yang T, Shen Y, van der Lee S, Solomon SC, Hung S-H (2006) Upper mantle structure beneath the Azores hotspot from finite-frequency seismic tomography. Earth Planet Sci Lett 250: 11–26

    CrossRef  Google Scholar 

  • Yatkin S, Bayram A (2008) Source apportionment of PM10 and PM2.5 using positive matrix factorization and chemical mass balance in Izmir, Turkey. Sci Total Environ 390: 109–123

    CrossRef  Google Scholar 

  • Zoller WH, Gladney ES, Duce RA (1974) Atmospheric concentrations and sources of trace metals at the South Pole. Science 183: 199–201

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria doCarmo Freitas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Freitas, M.d., Pacheco, A.M., Dionísio, I., Vieira, B.J. (2009). Aerosol Concentrations and Remote Sources of Airborne Elements Over Pico Mountain, Azores, Portugal. In: Kim, Y.J., Platt, U., Gu, M.B., Iwahashi, H. (eds) Atmospheric and Biological Environmental Monitoring. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9674-7_9

Download citation