Cadmium Phytotoxicity: Responses, Mechanisms and Mitigation Strategies: A Review

  • Abdul Wahid
  • Muhammad Arshad
  • Muhammad Farooq
Part of the Sustainable Agriculture Reviews book series (SARV, volume 1)


Contamination of soils with cadmium is a critical factor affecting soil properties and plant growth. Cadmium is toxic to most plants in trace amounts, while other plants show varying tendencies to grow under relatively high cadmium levels. Some plants can bind the absorbed cadmium to their cell walls. Roots, being directly exposed, always accumulate greater amounts of cadmium than shoots. Effects of cadmium toxicity on above-ground parts include plant stunting, leaf rolling, chlorosis and necrosis, diminished stomatal conductance and gas exchange, perturbed leaf water and nutrient status, hormonal imbalance, production of oxidative stress, and enhanced peroxidation of membrane lipids. Plants use various mechanisms to cope with cadmium, which include synthesis of metal chelating proteins, expression of enzymatic and nonenzymatic antioxidants, organic acids, and plant root–mycorrhizal association. Cadmium toxicity can be alleviated by the exogenous use of metal chelators, and organic and inorganic sources. Finding strategies to bind cadmium in soil systems and better understanding of species diversity for cadmium tolerance, cadmium-responsive genes, and the molecular basis of cadmium-tolerance may be important strategies for coping with this ever-increasing problem.


Cadmium Phytoavailability Oxidative stress Chelation Genotypic variability Nutrients 


  1. Adhikari T., Tel-Or E., Libal Y., Shenker M. (2006) Effect of cadmium and iron on rice (Oryza sativa L.) plant in chelator buffered nutrient solution. J. Plant Nur. 29, 1919–1940.Google Scholar
  2. Alcantara E., Romera F.J., Canete M., Delaguardia M.D. (1994) Effect of heavy metals on both induction and function of root Fe(III) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. J. Exp. Bot. 45, 1889–1893.Google Scholar
  3. Anonymous (2006) Public Health Goal for Cadmium in Drinking Water. Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, California.Google Scholar
  4. Arao T., Ishikawa S. (2006) Genotypic differences in cadmium concentration and distribution of soybean and rice. Jpn. Agri. Res. Quart. 40, 21–30.Google Scholar
  5. Asada K. (1999) The water–water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 601–639.PubMedGoogle Scholar
  6. Asada K., Takahashi M. (1987) Production and scavenging of active oxygen in photosynthesis. In: Photoinhibition. D.J. Kyle, C. Osmond and C.J. Arntzen (eds.), pp. 227–97. Elsevier, New York.Google Scholar
  7. Astolfi S., Zuchi S., Passera C. (2005) Effect of cadmium on H+-ATPase activity of plasma membrane vesicles isolated from roots of different S-supplied maize (Zea mays L.) plants. Plant Sci. 169: 361–368.Google Scholar
  8. Azevedo H., Gloria Pinto C.G., Santos C. (2005a) Cadmium effect in sunflower: membrane permeability and changes in catalase and pewroxidase activity in leaves and calluses. J. Plant Nutr. 28: 2333–2341.Google Scholar
  9. Azevedo H., Gloria Pinto C.G., Fernendes J., Loureiro S., Santos C. (2005b) Cadmium effect on sunflower growth and photosynthesis. J. Plant Nutr. 28: 2211–2220.Google Scholar
  10. Baker A.J.M., Reeves R.D., Hajar A.S.M. (1994) Phytoremediation potential of T. caerulescens and bladder campion for zinc- and cadmium-contaminated soil. J. Environ. Qual. 23: 1151–1157.Google Scholar
  11. Balakhnina T., Kosobryukhov A.,  Ivanov A., Kreslavskii V.  (2005) The effect of cadmium on CO2 exchange, variable fluorescence of chlorophyll, and the level of antioxidant enzymes in pea leaves. Russ. J. Plant Physiol. 52, 15–20.Google Scholar
  12. Balestrasse K.B., Gallego S.M., Tomaro M.L. (2004) Cadmium-induced senescence in nodules of soybean (Glycine max L.) plants. Plant Soil 262, 373–381.Google Scholar
  13. Barcelo J., Vazquez M., Poschenrieder Ch. (1988) Structural and ultrastructural disorders in cadmium-treated bush bean plants (Phaseolus vulgaris L.). New Phytol. 108, 37–49.Google Scholar
  14. Baryla A., Carrier P., Franck F., Coulomb C., Sahut C., Havaux M. (2001) Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Planta 212, 696–709.PubMedGoogle Scholar
  15. Benavides M.P., Gallego S.M., Tomaro M.L. (2005) Cadmium toxicity in plants. Braz. J. Plant Physiol. 17, 49–55.Google Scholar
  16. Bindhu S.J., Bera A.K. (2001) Impact of cadmium toxicity on leaf area, stomatal frequency, stomatal index and pigment content in mungbean seedlings. J. Environ. Biol. 22: 307–309.PubMedGoogle Scholar
  17. Blaudez D., Botton B., Chalot M. (2000) Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus. Microbiology 146, 1109–1117.PubMedGoogle Scholar
  18. Blaylock, M.J., Salt D.E., Dushenkov S., Zaharov O., Gussman C., Kapulnik Y., Ensley B.D., Raskin I. (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 31, 860–865.Google Scholar
  19. Blum W.H. (1997) Cadmium uptake by higher plants. In: Proceedings of extended abstracts from the Fourth International Conference on the Biogeochemistry of Trace Elements, pp. 109–110, University of California, Berkeley, USA.Google Scholar
  20. Bolan N.S., Adriano D.C., Duriasamy P., Mani A., Arulmozhiselvan K. (2003) Immobilization and phytoavailability of cadmium in variable charge soils. I. Effect of phosphate addition. Plant Soil 250, 83–94.Google Scholar
  21. Bovet L., Eggmann T., Meylan-Bettex M., Polier J., Kammer P., Marin E., Feller U., Martinoia E. (2003) Transcript levels of AtMRPs after cadmium treatment: induction of AtMRP3. Plant Cell Environ. 26, 371–381.Google Scholar
  22. Bovet L., Rossi L., Lugon-Moulin N. (2006) Cadmium partitioning and gene expression studies in Nicotiana tabacum and Nicotiana rustica. Physiol. Plant. 128, 466–475.Google Scholar
  23. Bowler C., Van Montagu M., Inze D. (1992) Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 83–116.Google Scholar
  24. Brennan R.F., Mann S.S. (2005) Accumulation of cadmium by lupin species as affected by Cd application to acidic yellow sand. Water Air Soil Pollut. 167, 243–258.Google Scholar
  25. Cao H., Wang J., Zhang X. (2007) Ecotoxicity of cadmium to maize and soybean seedlings in black soil. Chin. Geograph. Sci. 17, 270–274.Google Scholar
  26. Cataldo D.A. (1981) Cadmium uptake kinetics in intact soybean plants. Plant Physiol. Biochem. 73, 844–848.Google Scholar
  27. Chaney W.R., Strickland R.C., Lamoreaux R.J. (1977) Phytotoxicity of cadmium inhibited by lime. Plant Soil 47, 275–278.Google Scholar
  28. Chen F., Wang F., Zhang G., Wu F. (2007a) Identification of barley varieties tolerant to cadmium toxicity. Biol. Trace Elem. Res. 121, 171–179.PubMedGoogle Scholar
  29. Chen F., Wu F., Dong J., Vincze E., Zhang G., Wang F., Huang Y., Wei K. (2007b) Cadmium translocation and accumulation in developing barley grains. Planta 227, 223–232.PubMedGoogle Scholar
  30. Cho U., Seo N. (2004) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci. 168, 113–120.Google Scholar
  31. Chugh L.K., Sawhney S.K. (1999) Photosynthetic activities of Pisum sativium seedlings grown in presence of cadmium. Plant Physiol. Biochem. 37, 297–303.Google Scholar
  32. Clemens S. (2006) Function and evolution of phytochelatin synthease. J. Plant Physiol. 163, 319–332.PubMedGoogle Scholar
  33. Clemens S., Simm C. (2003) Schizocaccharomyces pombe as a model for metal homeostasis in plant cells: the phytochelatin-dependent pathway is the main cadmium detoxification mechanism. New Phytol. 159, 323–330.Google Scholar
  34. Clemens S.M., Palmgreen G., Kramer U. (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci. 7, 309–315.PubMedGoogle Scholar
  35. Cobbett C.S. (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 123, 825–832.PubMedGoogle Scholar
  36. Collins R.N., Merrington G., McLaughlin M.J., Morel J.-L. (2003) Organic ligand and pH effects on isotopically exchangeable cadmium in polluted soils. Soil Sci. Soc. Amer. J. 67, 112–121.Google Scholar
  37. Costa G., Morel J.L. (1993) Cadmium uptake by Lupinus albus (L.): cadmium excretion, a possible mechanism of cadmium tolerance. J. Plant Nutr. 16, 1921–1929.Google Scholar
  38. Dan T.V., Krishnaraj S., Saxena P.K. (2002) Cadmium and nickel uptake and accumulation in scented geranium (Pelargonium sp. ‘Frensham’). Water Air Soil Pollut. 137, 355–364.Google Scholar
  39. Das P., Samantaray S., Rout G.R. (1997) Studies on cadmium toxicity in plants: A review. Environ. Pollut. 98, 29–36.Google Scholar
  40. de Filippis L.F., Zeigler H. (1993) Effect of sub lethal concentrations of zinc, cadmium and mercury on the photosynthetic carbon reduction cycle of Euglena. J. Plant Physiol. 142, 167–172.Google Scholar
  41. Dhir B., Sharmila P., Saradhi P.P. (2004) Hydrophytes lack potential to exhibit cadmium stress induced enhancement in lipid peroxidation and accumulation of proline. Aquat. Toxicol. 66, 141–147.PubMedGoogle Scholar
  42. Di Cagno R., Guidi L., Stefani A., Soldatini G.F. (1999) Effects of cadmium on growth of Helianthus annuus seedlings: physiological aspects. New Phytol. 144, 65–71.Google Scholar
  43. Di Cagno R., Guidi L., De Gara L., Soldatini G.F. (2001) Combined cadmium and ozone treatments affect photosynthesis and ascorbate-dependent defences in sunflower. New Phytol. 151, 627–636.Google Scholar
  44. Dominguez-Soils J.R., Lopez-Martin M.C., Ager F.J., Ynsa M.D., Romero L.C., Gotor C. (2004) Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnol. J. 2, 469–476.Google Scholar
  45. Drazic G., Mihailovic N. (2005) Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant Sci. 168, 511–517.Google Scholar
  46. Drazic G., Mihailovic N., Lojic M. (2006) Cadmium accumulation in Medicago sativa seedlings treated with salicylic acid. Biol. Plant. 50, 239–244.Google Scholar
  47. Drazic, G., Mihailovic N., Stojanovic Z. (2004) Cadmium toxicity: the effect on macro and micro-nutrient content in soybean seedlings. Biol. Plant. 48, 605–607.Google Scholar
  48. Drazkiewicz M., Tukendorf A., Baszynski T. (2003) Age-dependent response of maize leaf segments to cadmium treatment: effect of chlorophyll fluorescence and phytochelatin accumulation. J. Plant Physiol. 160, 247–254.PubMedGoogle Scholar
  49. Durcekova K., Huttova J., Mistrik I., Olle M., Tamas L. (2007) Cadmium induces premature xylogenesis in barley roots. Plant Soil 290, 61–68.Google Scholar
  50. Ederli L., Reale L., Ferranti F., Pasqualini S. (2004) Responses induced by high concentration of cadmium in Phragmites australis roots. Physiol. Plant. 121: 66–74.PubMedGoogle Scholar
  51. Ekmekci Y., Tanyolac D., Ayhan B. (2008) Effect of cadmium on antioxidant enzyume and photosynthetic activities in leaves of two maize cultivars. J. Plant Physiol. 165, 600–611.PubMedGoogle Scholar
  52. EL-Naggar A.H., EL-Sheekh M.M. (1998) Abolishing cadmium toxicity in Chlorella vulgaris by ascorbic acid, calcium, glucose and reduced glutathione. Environ. Pollut. 101, 169–174.PubMedGoogle Scholar
  53. Epstein E., Bloom A.J. (2005) Mineral Nutrition of Plants: Principles and Perspectives, 2nd edition. Sinauer Associates, Massachusetts.Google Scholar
  54. Ernst W.H.O., Verkleij J.A.C., Schat H. (1992) Metal tolerance in plants. Acta Bot. Neerl. 41, 229–248.Google Scholar
  55. Ewais E.A. (1997) Effect of cadmium, nickel and lead on growth, chlorophyll content and proteins of weeds. Biol. Plant. 39, 403–410.Google Scholar
  56. Florijin P.J., Van Beusichem M.L. (1993) Uptake and distribution of cadmium in maize inbred line. Plant Soil 150, 25–32.Google Scholar
  57. Fodor E., Szabo-Nagy A., Erdei L. (1995) The effects of cadmium on the fluidity and H+-ATPase activity of plasma membrane from sunflower and wheat roots. J. Plant Physiol. 147, 87–92.Google Scholar
  58. Foranzier R.F., Ferreira R.R., Vitoria A.P., Molina S.M.G., Lea P.J., Azevedo R.A. (2002) Effects of cadmium on antioxidant enzyme activities in sugar cane. Biol. Plant. 45, 91–97.Google Scholar
  59. Foyer C.H., Noctor G. (2005) Redox homeostasis and antioxidant signalling: a metabolic interface between stress perception and physiological responses. Plant Cell 17, 1866–1875.PubMedGoogle Scholar
  60. Gadapati W.R., Macfie S.M. (2006) Phytochelatins are only partially correlated with Cd-stress in two species of Brassica. Plant Sci. 170, 471–480.Google Scholar
  61. Garnier L., Simon-Plas F., Thuleau P., Angel J.-P., Blein J.-P., Ranjeva R., Montillet J.-L. (2006) Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ. 29, 1956–1969.PubMedGoogle Scholar
  62. Geiken B., Masojidek J., Rizzuto M., Pompili M.L., Giardi M.T. (1998) Incorporation of [35S]methionine in higher plants reveals that stimulation of the D1 reaction center II protein turnover accompanies tolerance to heavy metal. Plant Cell Environ. 21, 1265–1273.Google Scholar
  63. Ghafoor A. (2000) Soil and plant health irrigated with Paharang drain sewage effleuent at Faisalabad. Pak. J. Agri. Sci. 33, 73–76.Google Scholar
  64. Ghafoor A., Rauf A., Muzaffar W. (1997) Metal ion contamination in vegetables and soils irrigated with city effluents. In: Proceedings of Environmental Pollution: Third National Symposium on Modern Trends in Contemporary Chemistry, Islamabad.Google Scholar
  65. Ghani A., Wahid A. (2007) Varietal differences in cadmium-induced seedling mortality and foliar toxicity symptoms in mungbean (Vigna radiata). Int. J. Agri. Biol. 9: 555–558.Google Scholar
  66. Ghnaya T., Slama I., Messedi D., Grignon C., Ghorbel M.H., Abdelly C. (2007) Effects of Cd2+ on K+, Ca2+ and N uptake in two halophytes Sesuvium portulacastrum and Mesembryanthemum crystallinum: consequences on growth. Chemosphere 67, 72–79.PubMedGoogle Scholar
  67. Godbold D.L., Hüttermann A. (1985) Effect of zinc, cadmium and mercury on root elongation of Picea abies (Karst.) seedlings, and the significance of these metals to forest die-back. Environ. Pollut. 38, 375–381.Google Scholar
  68. Gray C.W., Mclaren R.G., Roberts A.H.C., Condron L.M. (1999) Solubility, sorption and desorption of native and added cadmium in relation to properties of soil in New Zealand. Eur. J. Soil Sci. 50, 127–137.Google Scholar
  69. Groppa M.D., Ianuzzo M.P., Tomaro M.L., Benavides M.P. (2007) Polyamine metabolism in sunflower plants under long-term cadmium or copper stress. Amino Acids 32, 265–275.PubMedGoogle Scholar
  70. Guo T.R., Zhang G.P., Zhang Y.H. (2007) Physiological changes in barley plant under combined toxicity of aluminum, copper and cadmium. Colloid. Surf. 57, 182–188.Google Scholar
  71. Guo Y., George E., Marschner H. (1996) Conribution of arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants. Plant Soil 184, 195–205.Google Scholar
  72. Gussarson M., Asp H., Adalsteinsson S., Jensen P. (1996) Enhancement of cadmium effects on growth and nutrient composition of birch (Betula pendula) by buthionine sulphoximine (BSO). J. Exp. Bot. 47, 211–219.Google Scholar
  73. Hall J.L. (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 53, 1–11.PubMedGoogle Scholar
  74. Hart J.J., Welch R.M., Norvell W.A., Kochian L.V. (2006) Characterization of cadmium uptake, translocation and storage in near-isogenic lines of durum wheat that differ in grain cadmium accumulation. New Phytol. 172, 261–271.PubMedGoogle Scholar
  75. Hassan, M.J., Wang Z., Zhang G. (2005) Sulfur alleviates growth inhibition and oxidative stress caused by cadmium toxicity in rice. J. Plant Nutr. 28, 1785–1800.Google Scholar
  76. Hayat S., Ali B., Hasan S.A., Ahmad A. (2007) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ. Exp. Bot. 60, 33–41.Google Scholar
  77. Heggo A., Angle J.S., Chaney R.L. (1990) Effects of vesicular-arbuscular mycorrhizal fungi on heavy metal uptake by soybeans. Soil Biol. Biochem. 22, 865–869.Google Scholar
  78. Helal M., Baibagyshew E., Saber S. (1998) Uptake of Cd and Ni by spinach, Spinacea oleracea (L.) from polluted soil under field conditions as affected by salt water irrigation. Agronomie 18, 443–448.Google Scholar
  79. Hernandez L.E., Carpena-Riuz R., Garate A. (1996) Alterations in the mineral nutrition of pea seedlings exposed to cadmium. J. Plant Nutr. 19, 1581–1598.Google Scholar
  80. Higgins C.F. (1992) ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol. 8, 67–113.Google Scholar
  81. Himly A.M., Sabana M.B., Oaabees A.Y. (1985) Bioaccumulation of cadmium: toxicity in Megul cephalus. Comp. Biochem. Physiol. 81, 139–140.Google Scholar
  82. Hsu Y.T., Kao C.H. (2004) Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul. 42, 227–238.Google Scholar
  83. Hsu Y.T., Kao C.H. (2007a). Cadmium-induced oxidative damage in rice leaves in reduced by polyamines. Plant Soil 291, 27–37.Google Scholar
  84. Hsu Y.T., Kao C.H. (2007b). Toxicity in leaves of rice exposed to cadmium is due to hydrogen peroxide accumulation. Plant Soil 298, 231–241.Google Scholar
  85. Isaure M.P., Fayard B., Sarret G., Pairis S., Bourguignon J. (2006) Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy. Spectrochim. Acta 61, 1242–1252.Google Scholar
  86. Jackson A.P., Alloway B.J. (1991) The transfer of cadmium from sewage sludge amended soils into the edible component of food crops. Water Air Soil Pollut. 57, 873–881.Google Scholar
  87. Jamali M.K., Kazi T.G., Arain M.B., Afridi H.I., Jalbani N., Memon A.R. (2007) Heavy metal contents of vegetables grown in soil, irrigated with mixtures of wastewater and sewage sludge in Pakistan, using Ultrasonic-assisted Pseudo-digestion. J, Agron. Crop Sci. 193, 218–228.Google Scholar
  88. Jones K.C., Symon C.J., Johnston A.E. (1987) Retrospective analysis of an archived soil collection. II. Cadmium. Sci. Tot. Environ. 67, 75–89.Google Scholar
  89. Jorgenson S.E. (1993) Removal of heavy metals from copost and soil by ecotechnological  methods. Ecol. Eng. 2, 89–100.Google Scholar
  90. Kahn D.H., Duckett J.G., Frankland B., Kirkham J.B. (1984) An X-ray microanalytical study of the  distribution of Cd in roots of  Zea mays L. Plant Physiol. 115, 19–28.Google Scholar
  91. Kashem A.A., Kawai S. (2007) Alleviation of cadmium phytotoxicity by magnesium in Japanese mustard spinach. Soil Sci. Plant Nutr. 53, 246–251.Google Scholar
  92. Kashem M.A., Singh B.R. (1999) Heavy metal contamination of soil and vegetation in the vicinity of industries in Bangladesh. Water Air Soil Pollut. 115, 347–361.Google Scholar
  93. Kevresan S., Cirin-novta V., Kuhajda K., Kandrac J.,  Petrovic N., Grbovic L.J., Kevresan Z. (2004) Alleviation of cadmium toxicity by naphthenate treatment. Biol. Plant. 48, 453–455.Google Scholar
  94. Khan N.A., Samiullah, Singh S., Nazar R. (2007) Activities of antioxidant enzymes, sulfur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. J. Agron. Crop Sci. 193, 435–444.Google Scholar
  95. Kim D.-Y., Bovet L., Kushnir S., Noh E.W., Martinoia E. and Lee Y. (2006) AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol. 140, 922–932.PubMedGoogle Scholar
  96. Kim D.-Y., Bovet L., Maeshima M., Martinoia E., Lee Y. (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J. 50, 207–218.PubMedGoogle Scholar
  97. Koleli N., Eker S., Cakmak I. (2004) Effect of zinc fertilization on cadmium toxicity in durum and bread wheat grown in zinc-deficient soil. Environ. Pollut. 131, 453–459.PubMedGoogle Scholar
  98. Kovacik J., Tomko J., Backor M., Repcak M. (2006) Matricaria chamomilla is not as hyperaccumulator, but tolerant to cadmium stress. Plant Growth Regul. 50, 239–247.Google Scholar
  99. Kupper H., Parameswaran A., Leitenmaier B., Trtilek M., Setlik I. (2007) Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescence. New Phytol. 175, 655–674.PubMedGoogle Scholar
  100. Larsen P.B., Degenhardt J., Stenzler L.M., Howell S.H., Kochian L.V. (1998) Aluminum-resistant Arabidopsis mutant that exhibit altered patterns of aluminum accumulation and organic acid release from roots. Plant Physiol. 117, 9–18.PubMedGoogle Scholar
  101. Leita L., De Nobili M., Cesco S., Mondini C. (1996) Analysis of intercellular cadmium forms in roots and leaves of bush bean. J. Plant Nutr. 19, 527–533.Google Scholar
  102. Leon A.M., Palma J.M., Corpas F.J., Gómez M., Romero-Puertas M.C., Chatterjee D.O., Mateos R.M., del Río L.A. and Sandalio L.M. (2002) Antioxidative enzymes in cultivars of pepper plants with different sensitivity to cadmium. Plant Physiol. Biochem. 40, 813–820.Google Scholar
  103. Li Y.-M., Chaney R.L., Schneiter A.A., Miller J.F. (1995) Genotypic variation in kernel cadmium concentration in sunflower germplasm under varying soil conditions. Crop. Sci. 35, 137–141.Google Scholar
  104. Li Z.S., Lu, Y.P., Zhen, R.G., Szczypka, M., Thiele, D.J. and Rea, P.A. (1997) A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato) cadmium. Proc. Natl Acad. Sci. USA 94, 42–47.PubMedGoogle Scholar
  105. Lorenz T.H. (1994) Applications of fertilzer cations effect Cd and Zn concentration in soil and plant uptake. Eur. J. Soil Sci. 45, 159–164.Google Scholar
  106. Lothenbach B., Furrer G., Schaerli H.; Schulin R. (1999) Immobilization of zinc and cadmium by montmorillonite compounds: effects of aging and subsequent acidification. Environ. Sci. Technol. 33, 2945–2952.Google Scholar
  107. Lugon-Moulin N., Ryan L., Donini P., Rossi L. (2006) Cadmium content of phosphate fertilizers used for tobacco production. Agron. Sustain. Dev. 26, 151–155.Google Scholar
  108. Maiti I.B., Wagner G.J., Yeargen R., Hunt A.G. (1989) Inheritance and expression of the mouse  metallothionein gene in tobacco. Impact on Cd tolerance and tissue Cd distribution in seedlings. Plant Physiol. 91, 1020–1024.PubMedGoogle Scholar
  109. Marseille F., Tiffreau C., Laboudigue A., Lecomte P. (2000) Impact of vegetation on the mobility and bioavailability of trace elements in dredged sediment deposits: a greenhouse study. Agronomie 20, 547–556.Google Scholar
  110. McCarthy I., Romero-Puertas M.C., Palma J., andalio L.M., Corpas F.J., Gomez M., Del Rio L.A. (2001) Cadmium induces senescence symptoms in leaf peroxysomes of pea plant. Plant Cell Environ. 24, 1065–1073.Google Scholar
  111. McGrath S.P., Zhao F.J., Lombi E. (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil, 232, 207–214.Google Scholar
  112. Mediouni C., Benzarti O., Tray B., Ghorbel M.H., Jemal F. (2006) Cadmium and copper toxicity for tomato seedlings. Agron. Sustain Dev. 26, 227–232.Google Scholar
  113. Mengel K., Kirkby E.A., Kosegarten H., Appel T. (2001) Principles of Plant Nutrition, 5th edition. Springer, Heidelberg.Google Scholar
  114. Metwally A., Finkemeier I., Georgi M., Dietz K.-J. (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol., 132: 272–281.PubMedGoogle Scholar
  115. Metwally A., Safronova V.I., Bellimov A.A., Dietz K.-J. 2005. Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J. Exp. Bot. 56, 167–178.Google Scholar
  116. Mishra S., Srivastava S., Tripathi R.D., Govindrajan R., Kuriakose S.V., Prasad M.N.V. (2006). Phytochelatin synthesis and response to antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol. Biochem. 44, 25–37.PubMedGoogle Scholar
  117. Mittler R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405–410.PubMedGoogle Scholar
  118. Mobin M., Khan N.A. (2007) Photosynthetic activity, pigment composition and antioxidant response of two mustard (Brassica juncea) cultivars differening in photosynthetic capacity subjected to cadmium stress. J. Plant Physiol. 164, 601–610.PubMedGoogle Scholar
  119. Moral R., Palacios G., Gómez I., Navarro-Pedreno J., Mataix J. (1994) Distribution and accumulation of heavy metals (Cd, Ni and Cr) in tomato plant. Fresenius Environ. Bull. 3, 395–399.Google Scholar
  120. Nada E., Ferjani B.A., Ali R., Bechit B.R., Imed M., Makki B. (2007) Cadmium-induced growth inhibition and alteration of biochemical parameters in almond seedlings grown in solution culture. Acta Physiol. Plant. 29, 57–62.Google Scholar
  121. Naidu, C.K., Reddy T.K.R.. (1988) Effect of cadmium on microorganisms and microbe-mediated mineralization process in the soil. Bull. Environ. Contam. Toxicol. 41, 657–663.PubMedGoogle Scholar
  122. Nishizono H., Kubota K., Suzuki S., Ishii F. (1989) Accumulation of heavy metals in cell walls of Polygonum cuspidatum roots from metalliferous habitats. Plant Cell Physiol. 30, 595–598.Google Scholar
  123. Noctor G., Foyer C.H. (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 249–279.Google Scholar
  124. Noriega G., Balestrasse K.B., Batlle A., Tomaro M.L. (2007) Cadmium induced oxidative stress in soybean plants also by the accumulation of δ-aminolevunic acid. Biometals 20, 841–851.PubMedGoogle Scholar
  125. Obata H., Umebayashi M. (1997) Effects of Cadmium on mineral nutrient concentrations in plants differing in tolerance for cadmium. J. Plant Nutr. 20, 97–105.Google Scholar
  126. Ortiz D.F., Kreppel L., Spaser D.M. (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J. Biol. Chem. 270, 4721–4727.PubMedGoogle Scholar
  127. Ouariti O., Boussama N., Zarrrrouk M., Cherif A., Gobral M.H. (1997) Cadmium and copper induced changes in tomato membrane lipids. Phytochemistry 45, 1343–1350.PubMedGoogle Scholar
  128. Panda S.K., Patra H.K. (2007) Effect of salicylic acid potentiates cadmium-induced oxidative damage in Oryza sativa L. leaves. Acta Physiol. Plant. 29, 567–575.Google Scholar
  129. Panwar B.S., Singh J.P., Laura R.D. (1999) Cadmium uptake by cowpea and mungbean as affected by Cd and P application. Water Air Soil Pollut. 112, 163–169.Google Scholar
  130. Perfus-Barbeoch L., Leonhardt N., Vavasseur A., Forestier C. (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J. 32, 539–548.PubMedGoogle Scholar
  131. Pinto A.P., Mota A.M., de Varennes A., Pinto F.C. (2004) Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Sci. Total Environ. 326, 239–247.PubMedGoogle Scholar
  132. Polle A. (2001) Dissecting the superoxide dismutase–ascorbate peroxidase–glutathione pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol. 126, 445–462.PubMedGoogle Scholar
  133. Poschernirieder C., Gunse B., Barcelo J. (1989) Influence of cadmium on water relations, stomatal resistance, and abscisic acid contents in expanding bean leaves. Plant Physiol. 90, 1365–1371.Google Scholar
  134. Prasad M.N.V. (1995) Cadmium toxicity and tolerance in vascular plants. Environ. Exp. Bot.  35, 525–545.Google Scholar
  135. Prasad M.S., Dwivedi R., Zeeshan M., Singh R. (2004) UV-B and cadmium induced changes in pigments, photosynthetic electro transport activity, antioxidants levels and antioxidative enzyme activities of Riccia sp. Acta Phyiol. Plant. 26, 423–430.Google Scholar
  136. Rai V., Khatoon S., Bisht S.S., Mehrotra S. (2005) Effect of cadmium on growth, ultramorphology of leaf and secondary metabolites of Phyllanthus amarus Schum. and Thonn. Chemosphere 61, 1644–1650.PubMedGoogle Scholar
  137. Rauser W.E. (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin and metallothioneins. Cell Biochem. Biophys. 31, 19–48.PubMedGoogle Scholar
  138. Rauser W.E. (2003) Phytochelatin-based complexes bind various amounts of cadmium in maize seedlings depending on the time of exposure, the concentration of cadmium and the tissue. New Phytol. 158, 269–278.Google Scholar
  139. Reid R.J., Dunbar K.R., McLaughlin M.J. (2003) Cadmium loading into potato tubers: the roles of the periderm, xylem and phloem. Plant Cell Environ. 26, 201–205.Google Scholar
  140. Rivai I.F., Koyama H., Suzuki S. (1990) Cadmium content in rice and rice field soils in China, Indonesia and Japan, with special reference to soil type and daily intake from rice. Jpn. J. Health Human Ecol. 56, 168–177.Google Scholar
  141. Robinson N.J., Tommey A.M., Kuske C., Jackson P.J. (1993) Plant metallothioneins. Biochem. J. 295, 1–10.PubMedGoogle Scholar
  142. Rodriguez-Serrano M., Romero-Puertas M.C., Zabalza A., Corpas F.J., Gomez M., Del Rio L.A., Sandalio L.M. (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ. 29, 1532–1544.PubMedGoogle Scholar
  143. Romero-Puertas M.C., Rodriguez-Serrano M., Corpas F.J., Gomez M., Del Rio L.A., Sandalio L.M. (2004) Cadmium-induced subcellular accumulation of O2– and H2O2 in pea leaves. Plant Cell Environ. 27, 1122–1134.Google Scholar
  144. Rother J.A., Millbank J.W., Thornton I. (1982) Effect of heavy metal addition on ammonification and nitrification in soil contaminated with cadmium, lead and zinc. Plant Soil 69, 239–258.Google Scholar
  145. Salt D.E., Wagner R.J. (1993) Cadmium transport across the tonoplast of vesicles from oat roots.  Evidence for a Cd2+/H+ antiport activity. J. Biol. Chem. 268, 1297–1307.Google Scholar
  146. Salt D.E., Smith R.D., Raskin I. (1998) Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 643–668.Google Scholar
  147. Sandalio L.M., Dalurzo H.C., Gomez M., Romero-Puertas M.C., Del Rio L.A. (2001) Cadmium induced changes in growth and oxidative metabolism of pea plants. J Exp Bot 52, 2115–2126.PubMedGoogle Scholar
  148. Sanita di Toppi L., Gabbrielli R. (1999) Responses to cadmium in higher plants. Environ. Exp. Bot. 41, 105–130.Google Scholar
  149. Sanita di Toppi L.S., Lambardi M., Pazzagli L., Cappugi G., Durante M., Gabbrielli R. (1999) Response to cadmium in carrot in vitro plants and cell suspension cultures. Plant Sci. 137, 119–129.Google Scholar
  150. Schat H., Llugany M., Vooijs R., Hartley-Whitaker J., Bleeker P.M. (2002) The role of phytochelatins in constitutive and adaptive heavy met al tolerances in hyperaccumulator and non-hyper accumulator metallophytes. J. Exp. Bot. 53, 2381–2392.PubMedGoogle Scholar
  151. Schützendübel A., Polle A. (2001) Plant responses to abiotic stress: heavy metal induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53, 1351–1365.Google Scholar
  152. Schützendübel A., Schwanz P., Teichmann T., Gross K., Langenfeld-Heyser R., Goldbold D.L., Polle A. (2001) Cadmium induced changes in antioxidant systems, hydrogen peroxide content and differentiation in Scot pine roots. Plant Physiol. 127, 887–898.PubMedGoogle Scholar
  153. Senden M.H.M.N., Van Paassen F.J.M., Van Der Meer A.J.G.M., Wolterbeek H.T.H. (1990) Cadmium-citirc acid-xylem cell wall interactions in tomato plants. Plant Cell Environ. 15, 71–79.Google Scholar
  154. Semer R., Reddy K.J. (1996) Evaluation of soil washing process to remove mixed contaminants from a sandy loam. Hazard. Mater. 45, 45–57.Google Scholar
  155. Shanti S.S., Kumar V. (2002) Responses of wild type and abscisic acid mutants of Arabidopsis thaliana to cadmium. J. Plant Physiol. 159, 1323–1327.Google Scholar
  156. Sharma S.S., Kumar V. (2002) Responses of wild type and abscisic acid mutants of Arabidopsis thaliana to cadmium. J. Plant Physiol. 159, 1323–1327.Google Scholar
  157. Sharma R., Rensing C., Rosen B.P., Mitra B. (2000) The ATP hydrolytic activity of purified ZntA, a Pb(II)/Cd(II)/Zn(II)-translocating ATPase from Escherichia coli. J. Biol. Chem. 275, 3873–3878.PubMedGoogle Scholar
  158. Sharma S.S., Kaul S., Metwally A., Goyal K.C., Finkemeier I., Dietz K.-J. (2004) Cadmium toxicity to barley (Hordeum vulgare) as affected by varying Fe nutritional status. Plant Sci. 166, 1287–1295.Google Scholar
  159. Shukla U.C.,  Singh J., Joshi P.C., Kakkar P. (2003) Effect of bioaccumulation of cadmium on biomass productivity, essential trace elements, chlorophyll biosynthesis, and macromolecules of wheat seedlings. Biol. Trace Elem. Res. 92, 257–274.PubMedGoogle Scholar
  160. Smeets K., Cypers A., Lamrechts A., Semane B., Hoet P., Laere A.V., Vangronsveld J. (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol. Biochem. 43, 437–444.PubMedGoogle Scholar
  161. Stroinski A. (1999) Some physiological and biochemical aspects of plant resistance to cadmium effect. I. Antioxidative system. Acta Physiol. Plant. 21, 175–188.Google Scholar
  162. Stroinski A., Kubis J., Zeilezinska M. (1999) Effect of cadmium on glutathione reductase in potato tubers. Acta Physiol. Plant. 21, 201–207.Google Scholar
  163. Sun Q., Ye Z.H., Wang X.R., Wong M.H. (2007) Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. J. Plant Physiol. 164, 1489–1498.PubMedGoogle Scholar
  164. Suzuki N. (2005) Alleviation by calcium of cadmium-induced root growth inhibition in Arabidopsis seedlings. Plant Biotechnol. 22, 19–25.Google Scholar
  165. Taiz L., Zeiger E. (2006) Plant Physiology. 4th edition. Sinauer Associates Inc. Publishers, Sunderland, Massachusetts.Google Scholar
  166. Teresa Milone M., Sgherri C., Clijsters H., Navari-Izzo F. (2003) Antioxidative responses of wheat treated with realistic concentration of cadmium. Environ. Exp. Bot. 50, 265–276.Google Scholar
  167. Thiebeauld O., Soler S., Raigon M., Prohens J., Nuez F. (2005) Variation among Solanaceae crops in cadmium tolerance and accumulation. Agron. Sustain. Dev. 25, 237–241.Google Scholar
  168. Tiryakioglu M., Eker S., Ozkutlu F., Husted S., Cakmak I. (2006) Antioxidative defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. J. Trace Elements Med. Biol. 20, 181–189.Google Scholar
  169. Tlustos P., Szakova J., Vyslouzilova M., Pavlikova D., Wagner J., Javorska H. (2007) Cariation in the uptake of arsenic, cadmium, lead and zinc by different species of willow, Salix spp. grown in contaminated soils. Cent. Eur. J. Biol. 2, 254–275.Google Scholar
  170. Uraguchi S., Watanabe I., Yoshitomi A., Kiyono M., Kuno K. (2006) Characteristics of cadmium accumulation and tolerance in novel Cd-accumulating crops, Avena strigosa and Crotalaria juncea. J. Exp. Bot. 57: 2955–2965.PubMedGoogle Scholar
  171. Van Belleghem F., Cuypers A., Semane B., Smeets K, Vangronsveld J., d’Haen J., Valcke R. (2007) Subcellular localization of cadmium in roots and leaves of Arabidopsis thaliana. New Phytol. 173, 495–508.PubMedGoogle Scholar
  172. Vassilev A., Lidor F., Campos P.S., Ramalho J.C., Barreiro M.G., Yordanov I. (2003) Copper induced changes in chloroplast lipids and photosystem II activity in barley plants. Belg. J. Plant Physiol. 29, 33–43.Google Scholar
  173. Vassilev A., Perez-Sanz A., Semane B., Carleer R., Vangronsveld J. (2005) Cadmium accumulation and tolerance of two salix genotypes hydroponically grown in presence of cadmium. J. Plant Nutr. 28, 2159–2177.Google Scholar
  174. Vazquez S., Goldsbrough P., Carpena R.O. (2006) Assessing the relative contribution of phytochelatins and the cell wall to cadmium resistance in white lupin. Physiol. Plant. 128, 487–495.Google Scholar
  175. Verma S., Dubey R.S. (2002) Influence of lead toxicity on photosynthetic pigments, lipid peroxidation and activities of antioxidant enzymes in rice plants. Ind. J. Agri. Biochem. 15, 17–22.Google Scholar
  176. Vernoux T., Wilson R.C., Seeley K.A., Reichheld J.P., Muroy S., Brown S., Maughan S.C., Cobbett C.S., Van Montagu M., Inze D., May M.J., Sung Z.R. (2000) The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12, 97–110.PubMedGoogle Scholar
  177. Vollenweider P., Cosio C, Gunthardt-George M.S., Keller C. (2006) Localization and effects of cadmium in leaves of cadmium-tolerant willow (Salix viminalis L.). Part II Microlocalization and cellular effects of cadmium. Environ. Exp. Bot. 58, 25–40.Google Scholar
  178. Wagner G.J. (1993) Accumulation of heavy metals in crop plants and its consequence to human health. Adv. Agron. 51, 173–177.Google Scholar
  179. Wahid A. (2008) Effect of cadmium on soil properties and plant growth. In: Proceedings of the National Seminar on the Soil Care for Sustainable Environment. M. Arshad and A.S Bhatti (Eds). ISES, University of Agriculture, Faisalabad, Pakistan. pp. 67–84.Google Scholar
  180. Wahid A., Ghani A. (2008) Varietal differences in mungbean (Vigna radiata) for growth, yield, toxicity symptoms and cadmium accumulation. Ann. Appl. Biol., 152, 59–69.Google Scholar
  181. Wahid A., Gelani S., Ashraf M., Foolad M.R. (2007a) Heat tolerance in plants: An overview. Environ. Exp. Bot. 61, 199–223.Google Scholar
  182. Wahid A., Ghani A., Ali I., Ashraf M.Y. (2007b) Effects of cadmium on carbon and nitrogen assimilation in shoots of mungbean [Vigna radiata (L.) Wilczek] seedlings. J. Agron. Crop Sci. 194, 357–365.Google Scholar
  183. Wahid A., Ghani A., Javed F. (2008) Effect of cadmium on photosynthesis, nutrition and growth of mungbean. Agron. Sustain. Dev., 28, 273–280.Google Scholar
  184. Wang X.-F., Zhou Q.-X. (2005) Ecotoxicological effects of cadmium on three ornamental plants. Chemosphere 60, 16–21.PubMedGoogle Scholar
  185. Wani P., Khan M.S., Zaidi A. (2007) Cadmium, chromium and copper in greengram plants. Agron. Sustain. Dev. 27, 145–153.Google Scholar
  186. Wojcik M., Tukiendorf A. (2004) Phytochelatin synthesis and cadmium localization in wild type Arabidopsis thaliana. Plant Growth Regul. 44, 71–80.Google Scholar
  187. Wojcik M., Tukiendorf A. (2005) Cadmium uptake, localization, and detoxification in Zea mays. Biol. Plant. 49, 237–245.Google Scholar
  188. Wu F., Zhang G. (2004) Alleviation of cadmium-toxicity by application of zinc and ascorbic acid in barley. 2004. J. Plant Nutr. 25, 2745–2761.Google Scholar
  189. Wu F.-B., Dong J., Jia G., Zheng S., Zhang G.-P. (2006) Genotypic difference in the responses of seedling growth and Cd toxicity in rice (Oryza sativa L.). Agri. Sci. China 5, 68–76.Google Scholar
  190. Wu F.-B., Wu H., Zhang G., Bachir D.M.L. (2004) Differences in growth and yield in response to cadmium toxicity in cotton genotypes. J. Plant Nutr. Soil Sci. 167, 85–90.Google Scholar
  191. Xiaohua H., Qing Z. (2006) Alleviation effect of lanthanum on cadmium stress in seedling hydroponic culture of Kinney bean and corn. J. Rare Earths 24, 248–252.Google Scholar
  192. Yagdi K., Kacar O., Azkan N. (2000) Heavy metal contamination in soils and its effects in agriculture. Ondokuz Mayis Univ. Ziraat Fak. Dergisi 15, 109–115.Google Scholar
  193. Yannarelli G.G., Fernandez-Alvarez A.J., Santa-Cruz D.M., Tomaro M.L. (2007) Glutathione reductase activity and isoforms in leaves and roots of wheat plants subjected to cadmium stress. Phytochemistry 68, 505–512.PubMedGoogle Scholar
  194. Ye Z.H., Wong J.W.C., Wong M.H. (2000) Vegetation response to lime and manure compost amendments on acid lead/zinc mine tailings: a greenhouse study. Restor. Ecol. 8, 289–295.Google Scholar
  195. Zhang G., Fukami M., Sekimoto H. (2002) Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crops Res. 77, 93–98.Google Scholar
  196. Zhao F.J., Jiang R.F., Dunham S.J., McGrath S.P. (2006) Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol. 172, 646–654.PubMedGoogle Scholar
  197. Zhao Z., Zhu Y., Kneer R., Smith S. (2005) Effect of Zn on cadmium toxicity-induced oxidative stress in winter wheat seedlings. J. Plant Nutr. 28, 1947–1959.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Abdul Wahid
    • 1
  • Muhammad Arshad
    • 2
  • Muhammad Farooq
    • 3
    • 4
  1. 1.Department of BotanyUniversity of AgricultureFaisalabadPakistan
  2. 2.Institute of Soil and Environmental Sciences, University of AgricultureFaisalabadPakistan
  3. 3.Department of AgronomyUniversity of AgricultureFaisalabadPakistan
  4. 4.International Rice Research Institute (IRRI)Metro ManilaPhilippines

Personalised recommendations