Skip to main content

Mineral Nutrition for Legume-Rhizobia Symbiosis: B, Ca, N, P, S, K, Fe, Mo, Co, and Ni: A Review

  • Chapter
  • First Online:
Organic Farming, Pest Control and Remediation of Soil Pollutants

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 1))

Abstract

The intensification and expansion of modern agriculture starting in the middle of the 20th century accounted for a substantial increase in crop yield. However, productivity growth has led to an extraordinary simplification of farming systems and greater reliance on external inputs. The extensive use of pesticides and fertilizers are the cause of frequent health problems and pollution of natural ecosystems. Such evidence has led to debate about the sustainability of current intensive agricultural practices. Organic farming, which aims to produce healthy food and to respect the environment, emerges as an alternative to the negative consequences of conventional farming. In the context of sustainable organic agriculture, the successful use of biological nitrogen fixation without a decrease in productivity will reduce chemical fertilization. For that, it is important to have previous knowledge of mineral nutrient requirements to optimize symbiotic nitrogen fixation and legume crop production. Here, we first review the basic concepts of mineral nutrition, as well as the importance of mineral nutrients specifically for biological nitrogen fixation in the legume-rhizobia symbiosis. Second, a broad summary of the roles of boron and calcium in plants, with special attention to their key functions in nitrogen fixation and legume-rhizobia symbiosis, will be the central topic of this review. Symbiotic nitrogen fixation is an optimal alternative to reducing the application of chemical N-fertilizer, but demand for some nutrients is higher for legume nodule development and function than for non-nodulated legumes, and corrections of nutrient deficiencies are sometimes needed to ensure crop success. Phosphorus is a common limiting nutrient of nodulated legume growth, because of phosphate requirements for nodulation and for the very energy-expensive nitrogen fixation reaction. The enhancement of the association of nodulated-legumes with vesicular-arbuscular mycorhizas, improving phosphorus uptake, is an ecological and cheap way to correct P limitation. Sulphur and potassium are not usually limiting nutrients for nodulated legumes, although a K+ supplement for osmoadaptation has to be considered for growth in saline soils. Similarly, although demand for cobalt or nickel is higher with nodulated than with non-nodulated legumes, the soil limitations of these micronutrients are unclear. Conversely, iron and molybdenum limitations for nodulated legumes are common, even in soil with sufficient Fe and Mo, because of the anaerobic and acidic environment inside the nodule that limits the availability of these micronutrients. Therefore, Fe and Mo fertilization cannot be ruled out in sustainable agriculture based on nodulated legumes. Among mineral nutrients, B and Ca are undoubtedly the nutrients with a major effect on legume symbiosis. Both nodulation and nitrogen fixation depend on B and Ca2+, with calcium more necessary for early symbiotic events and B for nodule maturation. Boron deficiency is very common, and there is a risk of toxicity following B fertilization because it appears at concentrations close to sufficiency; and, in boron-deficient soils, an early small supplement of calcium prevents the effects of B limitation during nodulation. Therefore, a proper B–Ca feeding will greatly correct boron deficiency and improve crop production. Overall, improvement of symbiotic nitrogen fixation in legumes, combined with mycorhizal associations, is a natural fertilizing alternative to conventional chemical fertilizers. Nevertheless, small and controlled application of conventional farming practices has to be considered to correct nutrient limitations, increase crop production, and satisfy the high demand of agriculturally derived food.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Wahab A.M., Abd-Alla M.H. (1995) Nodulation and nitrogenase activity of Vicia faba and Glycine max in relation to rhizobia strain, form and level of combined nitrogen, Phyton 35, 177–187.

    CAS  Google Scholar 

  • Ahmed S., Evans H.J. (1960) Cobalt: a micronutrient element for the growth of soybean plants under symbiotic conditions, Soil Sci. 90, 205–210.

    CAS  Google Scholar 

  • Atkins C.A. (1987) Metabolism and translocation of fixed nitrogen in the nodulated legume, Plant Soil 100, 157–169.

    CAS  Google Scholar 

  • Becana M., Sprent J.I. (1987) Nitrogen fixation and nitrate reduction in the root nodules of legumes, Physiol. Plant. 70, 757–765.

    CAS  Google Scholar 

  • Bergersen F.J. (1991) Physiological control of nitrogenase and uptake hydrogenase, in: Dilworth M.J., Glen A.R. (Eds), Biology and Biochemistry of Nitrogen Fixation. Elsevier, Amsterdam, pp. 76–102.

    Google Scholar 

  • Bisseling T., van dem Boss R.C., van Kammen A. (1978) The effect of ammonium nitrate on the synthesis of nitrogenase and the concentration of leghemoglobin in pearoot nodules induced by Rhizobium leguminosarum, Biochim. Biophys. Acta 539, 1–11.

    PubMed  CAS  Google Scholar 

  • Blevins D.G., Lukaszewski K.M. (1998) Boron in plant structure and function, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 481–500.

    CAS  Google Scholar 

  • Bolaños L., Brewin N.J., Bonilla I. (1996) Effects of boron on Rhizobium-legume cell-surface interactions and nodule development, Plant Physiol. 110, 1249–1256.

    PubMed  Google Scholar 

  • Bolaños L., Cebrián A., Redondo-Nieto M., Rivilla R, Bonilla I. (2001) Lectin-like glycoprotein PsNLEC-1 is not correctly glycosylated and targeted in boron deficient pea nodules, Mol. Plant Microbe Interact. 14, 663–670.

    Google Scholar 

  • Bolaños L., Esteban E., de Lorenzo C., Fernández-Pascual M., de Felipe M.R., Gárate A., Bonilla, I. (1994) Essentiality of boron for symbiotic dinitrogen fixation in pea (Pisum sativum)-Rhizobium nodules, Plant Physiol. 104, 85–90.

    PubMed  Google Scholar 

  • Bolaños L., Mateo P., Bonilla, I. (1993) Calcium-mediated recovery of boron deficient Anabaena sp. PCC7119 grown under nitrogen fixing conditions. J. Plant Physiol. 142, 513–517.

    Google Scholar 

  • Bolaños L., Redondo-Nieto M., Rivilla R., Brewin N.J., Bonilla I. (2004b) Cell surface interactions of Rhizobium bacteroids and other bacterial strains with symbiosomal and peribacteroid membrane components from pea nodules, Mol. Plant-Microbe Interact. 17, 216–223.

    Google Scholar 

  • Bonilla I., Bolaños L., Mateo P. (1995) Interaction of boron and calcium in the cyanobacteria Anabaena and Synechococcus, Physiol. Plant. 94, 31–36.

    CAS  Google Scholar 

  • Bonilla I., García-González M., Mateo P. (1990) Boron requirement in Cyanobacteria. Its possible role in the early evolution of photosynthetic organisms, Plant Physiol. 94, 1554–1560.

    PubMed  CAS  Google Scholar 

  • Bonilla I., Mergold-Villaseñor C., Campos M.E., Sánchez N., Pérez H., López L., Castrejón L., Sánchez F., Cassab G. I. (1997a) The aberrant cell walls of boron-deficient bean root nodules have no covalently bound hydroxyprolin-/proline-rich proteins, Plant Physiol. 115, 1329–1340.

    PubMed  CAS  Google Scholar 

  • Bonilla I., Pérez H., Cassab G.I., Lara M., Sánchez F. (1997b) The effects of boron deficiency on development in indeterminate nodules: changes in cell wall pectin contents and nodule polypeptide expression, in: Bell R.W., Rerkasem B. (Eds), Boron in Soils and Plants. Kluwer Academic Publ., Dordrecht, pp. 213–220.

    Google Scholar 

  • Brenchley W., Thornton H. (1925) The relation between the development, structure and functioning of the nodules on Vicia faba, as influenced by the presence or absence in the nutrient medium, Proc. R. Soc. Lond. B. Biol. Sci. 98, 373–398.

    CAS  Google Scholar 

  • Brewin N.J. (1991) Development of the legume root nodule, Annu. Rev. Cell Biol. 7, 191–226.

    PubMed  CAS  Google Scholar 

  • Brewin N.J. (2004) Plant cell wall remodeling in the Rhizobium–legume symbiosis, Crit. Rev. Plant Sci. 25, 1–24.

    Google Scholar 

  • Brown P.H., Bellaloui, N.,Wimmer, M.A., Bassil, E.S., Ruiz, J., Hu, H., Pfeffer, H., Dannel F., Römheld V. (2002) Boron in plant biology, Plant Biol. 4, 205–223.

    CAS  Google Scholar 

  • Bucher M. (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces, New Phytol. 173, 11–26.

    PubMed  CAS  Google Scholar 

  • Burris, R.H. (1994) Biological nitrogen fixation – past and future, in: Hegazi N.A., Fayez M., Monib M. (Eds.), Nitrogen fixation with non-legumes. The American University in Cairo Press, pp. 1–11.

    Google Scholar 

  • Bush D. (1995) Calcium regulation in plant cells and its role in signalling, Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 95–122.

    CAS  Google Scholar 

  • Cárdenas L., Feijó J.A., Kunkel J.G., Sánchez F., Holdaway-Clarke T., Hepler P.K., Quinto C. (1999) Rhizobium Nod factors induce increases in intracellular calcium and extracellular calcium influxes in bean root hairs, Plant J. 19, 347–352.

    PubMed  Google Scholar 

  • Cárdenas L., Holdaway-Clarke T., Sánchez F., Quinto C., Feijó J., Kunkel J., Hepler, P. (2000) Ion changes in legume root hairs responding to Nod factors, Plant Physiol. 123, 443–451.

    PubMed  Google Scholar 

  • Cárdenas L., Vidali L., Domínguez J., Pérez H., Sánchez F., Hepler P.K., Quinto C. (1998) Rearrangements of actin microfilaments in plant root hairs responding to Rhizobium etli nodulation signals, Plant Physiol. 116, 871–877.

    Google Scholar 

  • Carpena R., Esteban E., Sarro M., Peñalosa J., Gárate A., Lucena J., Zornoza P. (2000) Boron and calcium distribution in nitrogen-fixing pea plants, Plant Sci. 151, 163–170.

    PubMed  CAS  Google Scholar 

  • Cassman K.G., Munns D.N., Beck D.P. (1981a) Phosphorus nutrition of Rhizobium japonicum: strain differences in phosphate storage and utilization, Soil Sci. Soc. Am. J. 45, 517–520.

    CAS  Google Scholar 

  • Cassman K.G., Witney A.S., Fox R.L. (1981b) Phosphorus requirements of soybean and cowpea as affected by mode of N nutrition, Agron. J. 73, 17–22.

    CAS  Google Scholar 

  • Castañeda P., Pérez L. (1996) Calcium ions promote the response of citrus limon against fungal elicitors or wounding, Phytochem. 42, 595–598.

    Google Scholar 

  • Charron D., Pingret J.L., Chabaud M., Journet E.P., Barker D.G. (2004) Pharmacological evidence that multiple phospholipid signaling pathways link Rhizobium nodulation factor perception in Medicago truncatula root hairs to intracellular responses, including Ca2+ spiking and specific ENOD gene expression, Plant Physiol. 136, 1–12.

    Google Scholar 

  • Dahiya P., Kardailsky I.V., Brewin N.J. (1997) Immunolocalization of PsNLEC-1, a lectin-like glycoprotein expressed in developing pea nodules, Plant Physiol. 115, 1431–1442.

    PubMed  CAS  Google Scholar 

  • Dahiya P., Sherrier D.J., Kardailsky I.V., Borisov A.Y., Brewin, N.J. (1998) Symbiotic gene sym31 controls the presence of a lectin-like glycoprotein in the symbiosome compartment of nitrogen-fixing pea nodules, Mol. Plant-Microbe Interact. 11, 915–923.

    CAS  Google Scholar 

  • Dalton D.A., Russell S.S., Evans H.J. (1988) Nickel as a micronutrient for plants, Biofactors 1, 11–16.

    PubMed  CAS  Google Scholar 

  • Dénarié J., Cullimore J. (1993) Lipo-oligosaccharide nodulation factors: a minireview new class of signaling molecules mediating recognition and morphogenesis, Cell 74, 951–954.

    PubMed  Google Scholar 

  • Dilworth M.J., Bisseling T. (1984) Cobalt and nitrogen fixation in Lupinus angustifolius L. III. DNA and methionine in bacteroids. New Phytol. 98, 311–316.

    CAS  Google Scholar 

  • Dilworth M.J., Robson A.D., Chatel D.L. (1979) Cobalt and nitrogen fixation in Lupinus angustifolius L. II. Nodule formation and functions, New Phytol. 83, 63–79.

    CAS  Google Scholar 

  • Doerge T.A., Bottomley P.J., Gardner E.H. (1985) Molybdenum limitations to alfalfa growth and nitrogen content on a moderately acid high-phosphorus soil, Agron. J. 77, 895–901.

    CAS  Google Scholar 

  • Downie J.A., Walker S.A. (1999) Plant responses to nodulation factors, Curr. Opinion Cell Biol. 2, 483–489.

    CAS  Google Scholar 

  • Eckhert C., Barranco W., Kim D. (2007) Boron and prostate cancer a model for understanding boron biology, in Xu F., Goldbach H.E., Brown P.H., Bell R.W., Fujiwara T., Hunt C.D., Goldberg S., Shi L. (Eds.), Advances in Plant and Animal Boron Nutrition, Springer, Dordrecht, pp. 291–298.

    Google Scholar 

  • Ehrhardt D.W., Wais R., Long S.R. (1996) Calcium spiking in plant root hairs responding to Rhizobium nodulation signals, Cell 85, 673–681.

    PubMed  CAS  Google Scholar 

  • El-Hamdaoui A., Redondo-Nieto M., Torralba B., Rivilla R., Bonilla I., Bolaños L. (2003) Influence of boron calcium on the tolerance to salinity of nitrogen-fixing pea plants, Plant Soil 251, 93–103.

    CAS  Google Scholar 

  • Epstein E., Bloom A.J. (2005) Mineral Nutrition of Plants: Principles and Perspectives, 2nd Edition, Sinauer Associates, Sunderland, Massachusetts, USA.

    Google Scholar 

  • Eurostat (2006) Agricultural Statistics. Data 1995–2004. European Communities, Luxembourg.

    Google Scholar 

  • Felle H.H., Kondorosi E., Kondorosi A., Schultze M. (1998) The role of ion fluxes in Nod factor signalling in Medicago sativa, Plant J. 13, 455–463.

    CAS  Google Scholar 

  • Felle H.H., Kondorosi E., Kondorosi A., Schultze M. (1999) Elevation of the cytosolic free [Ca2+] is indispensable for the transduction of the Nod factor signal in alfalfa, Plant Physiol. 121, 273–279.

    PubMed  CAS  Google Scholar 

  • Fernández-Piñas F., Mateo P., Bonilla I. (1995) Cadmium toxicity in Nostoc UAM208: protection by calcium, New Phytol. 131, 403–407.

    Google Scholar 

  • Greenwood E., Hallsworth E. (1960) Studies on the nutrition of forage legumes. II. Some interactions of Ca, P, Cu and Mo on the growth and chemical composition of Trifolium subterraneum L, Plant Soil 12, 97–127.

    CAS  Google Scholar 

  • Hellriegel H., and Wilfarth H. (1888) Untersuchungen uber die Stickstoffnahrung der Gramineen und Leguminosen, Beilageheft zu der Zeitschrift des Vereins fur Rubenzucker-Industrie Deutschen Reichs

    Google Scholar 

  • Kannenberg E.L., Brewin N.J. (1994) Host-plant invasion by Rhizobium: the role of cell-surface components, Trends Microbiol. 2, 277–283.

    PubMed  CAS  Google Scholar 

  • Kliewer M., Evans H.J. (1963) Cobamyde coenzyme contents of soybean nodules and nitrogen fixing bacteria in relation to physiological conditions, Plan Physiol. 38, 99–104.

    CAS  Google Scholar 

  • Kobayashi M., Nakagawa H., Asaka T., Matoh T. (1999) Borate-rhamnogalacturonan II bonding reinforced by Ca2+ retains pectic polysaccharides in higher-plant cell walls, Plant Physiol. 119, 199–203.

    PubMed  CAS  Google Scholar 

  • Krogmeier M.J., McCarty G.W., Shogren D.R., Bremmer J.M. (1991) Effect of nickel deficiency in soybeans on the phytotoxicity of foliar-applied urea, Plant Soil 135, 283–286.

    CAS  Google Scholar 

  • Lal R. (2004) Soil carbon sequestration impacts on global climate change and food security, Science 304, 1623–1627.

    PubMed  CAS  Google Scholar 

  • Leonard R., Hepler P. (1990) Calcium in plant growth and development, American Society of Plant Physiologists, Rockville, Maryland, USA.

    Google Scholar 

  • Liebman M. (2001) Weed Management: a Need for Ecological Approaches, in: Liebman M., Mohler C.L., Staver C.P. (Eds.), Ecological Management of Agricultural Weeds. Cambridge University Press, Cambridge, UK, pp. 1–39.

    Google Scholar 

  • Lhuissier F.G.P., De Ruijter N.C.A., Sieberer B.J., Esseling J.J., Emons A.M.C. (2001) Time course of cell biological events evoked in legume root hairs by Rhizobium Nod factors: state of the art, Ann. Botany 87, 289–302.

    CAS  Google Scholar 

  • Lodeiro R., Lagares A., Martínez E., Favelukes G. (1995) Early interactions of Rhizobium leguminosarum bv. phaseoli and bean roots: specificity in the process of adsorption and its requirement of Ca2+ and Mg2+ ions, Appl. Environ. Microbiol. 61, 1571–1579.

    PubMed  CAS  Google Scholar 

  • Lowter W., Loneragan J. (1968) Effects of calcium deficiency on symbiotic nitrogen fixation, Plant Physiol. 43, 1362–1366.

    Google Scholar 

  • Maier R.J., Triplett, E.W. (1996) Towards more productive, efficient and competitive nitrogen-fixation symbiotic bacteria, Crit. Rev. Plant Sci. 15, 191–234.

    Google Scholar 

  • Marschner H. (1995) Mineral Nutrition of Higher Plants, Academic Press Limited, London, U K.

    Google Scholar 

  • Matson P.A., Parton W.J., Power A.G. Swift, M.J. (1997) Agricultural intensification and ecosystem properties. Science 277, 504–509.

    PubMed  CAS  Google Scholar 

  • Memon A.R., Aktoprakligül D., Zdemür A., Vertii A. (2001) Heavy metal accumulation and detoxification mechanisms in plants, Turk. J. Bot. 25, 111–121.

    Google Scholar 

  • Morris W.J., Brownsey G.J., Harris J.E., Gunning A.P., Stevens B.J.H. (1989) Cation-dependent gelation of the acidic extracellular polysaccharide of Rhizobium leguminosarum: a non-specific mechanism for the attachment of bacteria to plant roots, Carbohydrate Res. 191, 315–320.

    CAS  Google Scholar 

  • Munns D.N. (1968) Nodulation of Medicago sativa in solution culture. III. Effects of nitrate on root hairs and infection, Plant Soil 29, 33–49.

    CAS  Google Scholar 

  • Munns D.N. (1970) Nodulation of Medicago sativa in solution culture. V. Calcium and pH requirements during infection, Plant Soil 32, 90–102.

    CAS  Google Scholar 

  • O’Hara G.W. (2001) Nutritional constraints on root nodule bacteria affectin symbiotic nitrogen fixation: a review, Aust. J. Exp. Agr. 41, 417–433.

    Google Scholar 

  • O’Hara G.W., Dilworth M.J., Boonkerd N., Parkpian P. (1988) Iron deficiency specifically limits nodule development in peanut inoculated with Bradyrhizobium sp, New Phytol. 108, 51–57.

    Google Scholar 

  • Peoples M.B., Craswell E.T. (1992) Biological nitrogen fixation: investments, expectations and actual contributions to agriculture. Plant Soil 141, 13–39.

    CAS  Google Scholar 

  • Peoples, M.B., Herridge D.F., Ladha J.K. (1995). Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production. Plant Soil 174, 3–28.

    CAS  Google Scholar 

  • Pereira P.A.A., Bliss F.A. (1989) Selection of common bean (Phaseolus vulgaris L.) for N2 fixation at different levels of available phosphorus under field and environmentally-controlled conditions, Plant Soil 115, 75–82.

    CAS  Google Scholar 

  • Perotto S., Brewin N.J., Kannenberg E.L. (1994) Cytological evidencefor a host defense response that reduces cell and tissue invasion in pea nodules by lipopolysaccharide-defective mutants of Rhizobium leguminosartim strain 3841, Mo1. Plant-Microbe Interact. 7, 99–112.

    CAS  Google Scholar 

  • Perotto S., VandenBosch K.A., Butcher G.W., Brewin N.J. (1991) Molecular composition and development of the plant glycocalyx associated with the peribacteroid membrane of pea root nodules, Development 112, 763–773.

    CAS  Google Scholar 

  • Pimentel, D. (2005) Environmental and economic costs of the application of pesticides primarily in the United States. Environm. Dev. Sust. 7, 229–252.

    Google Scholar 

  • Pimentel D., Harvey C., Resosudarmo P., Sinclair K., Kurz D., McNair M., Crist S., Sphritz L., Fitton L., Saffouri R., Blair R. (1995) Environmental and economic costs of soil erosion and conservation benefits. Science 267, 1117–1123.

    PubMed  CAS  Google Scholar 

  • Pingret J.L., Journet E.P., Baker D.G. (1998) Rhizobium Nod factor signalling: evidence for a G protein-mediated transduction mechanism, Plant Cell 10, 659–671.

    PubMed  CAS  Google Scholar 

  • Rae A.L., Bonfante Fasolo P., Brewin N.J. (1992) Structure and growth of infection threads in the legume symbiosis with Rhizobium leguminosarum, Plant J. 2, 385–395.

    Google Scholar 

  • Ramón A., Carpena, R., Gárate, A. (1990) The effects od short-term deficiency of boron on K, Ca and Mg distribution in leaves and roots of tomato (Lycopersicon esculentum) plants, in van Beusichem M. (Ed.), Plant nutrition physiology and applications. Kluwer, Dordrecht, pp. 287–290.

    Google Scholar 

  • Rathbun E.A., Naldrett M.J., Brewin N.J. (2002) Identification of a family of extensin-like glycoproteins in the lumen of Rhizobium-induced infection threads in pea root infection nodules, Mol. Plant-Microbe Interact. 15, 350–359.

    PubMed  CAS  Google Scholar 

  • Redondo-Nieto M. (2002) Boron and Calcium Relationship in Rhizobium-Legumes Symbioses, PhD Thesis, Universidad Autónoma de Madrid, Madrid.

    Google Scholar 

  • Redondo-Nieto M., Mergaert P., Kondorosi A., Kondorosi E., Bonilla I., Bolaños L. (2002) Nutritional influence of boron and Ca2+ on nodule organogenesis in legumes, 5th European Nitrogen Fixation Conference, Norwich, Abstract 8.22.

    Google Scholar 

  • Redondo-Nieto M., Pulido L., Reguera M., Bonilla I., Bolaños L. (2007) Developmentally regulated membrane glycoproteins sharing antigenicity with rhamnogalacturonan II are not detected in nodulated boron deficient Pisum sativum, Plant Cell Environm. 30, 1436–1443.

    CAS  Google Scholar 

  • Redondo-Nieto M., Rivilla R., El-Hamdaoui A., Bonilla I., Bolaños L. (2001) Boron deficiency affects early infection events in the pea-Rhizobium symbiotic interaction, Aust. J. Plant Physiol. 28, 819–823.

    Google Scholar 

  • Redondo-Nieto M., Wilmot A., El-Hamdaoui A., Bonilla I., Bolaños L. (2003) Relationship between boron and calcium in the N2-fixing legume-rhizobia symbiosis, Plant Cell Environm. 26, 1905–1915.

    CAS  Google Scholar 

  • Reeve E., Shive J.W. (1944) K-B y Ca-B relationships in plant nutrition, Soil Sci. 57, 1–6.

    CAS  Google Scholar 

  • Rhoades J.D., Loveday J. (1990) Salinity in irrigated agriculture, in: Stewart B.A., Nielsen D.R. (Eds), American Society of Civil Engineers, Irrigation of Agricultural Crops (Monograph 30). American Society of Agronomists, Madison, pp. 1089–1142.

    Google Scholar 

  • Richardson A.E., Djordjevic M.A., Rolfe B.G., Simpson R.J. (1988) Effects of pH, Ca and Al on the exudation from clover seedlings of compounds that induce the expression of nodulation genes in Rhizobium trifolii, Plant Soil 109, 37–47.

    CAS  Google Scholar 

  • Riley I.T., Dilworth M.J. (1985) Cobalt requirement for nodule development and function in Lupinus angustifolius L, New Phytol. 100, 347–359.

    CAS  Google Scholar 

  • Robertson J.G., Lyttleton P. (1984) Division of peribacteroid membranes in root nodules of white clover, J. Cell Sci. 69, 147–157.

    PubMed  CAS  Google Scholar 

  • Romera F.J., Morales M., Lucena C., Alcántara E., Pérez-Vicente R. (2004) Interaction of bicarbonate and anaerobiosis with the responses to Fe-deficiency in dicotyledonous plants, Acta Physiol. Plant. 26(3 Supplement), 113.

    Google Scholar 

  • Rudd J.J., Franklin-Tong, V.E. (2001) Unravelling response-specificity in Ca2+ signaling pathways in plant cells, New Phytol. 151, 7–33.

    CAS  Google Scholar 

  • Ruiz J., Bretones G., Baghour M., Belakbir A., Romero L. (1998) Relationship between boron and phenolic metabolism in tobacco leaves, Phytochem. 48, 269–272.

    CAS  Google Scholar 

  • Sanders D., Pelloux J., Brownlee C., Harper J.F. (2002) Calcium at the crossroads of signalling, Plant Cell Suppl. 2002, 401–417.

    Google Scholar 

  • Sangakkara U.R., Hartwig U.A., Noesberger J. (1996) Soil moisture and potassium affect the performance of symbiotic nitrogen fixation in faba bean and common bean, Plant Soil 184, 123–130.

    CAS  Google Scholar 

  • Schultze M., Kondorosi A. (1998) Regulation of symbiotic root nodule development, Annu. Rev. Gen. 32, 33–57.

    CAS  Google Scholar 

  • Sherrier D.J., Borisov A.Y., Tikhonovich I.A., Brewin N.J. (1997) Immunocytological evidence for abnormal symbiosome development in nodules of the pea mutant line Sprint2Fix¯ (sym31), Protoplasma 199, 57–68.

    Google Scholar 

  • Singh B., Dang Y.P., Mehta S.C. (1990) Influence of nitrogen on the behaviour of nickel in wheat, Plant Soil 127, 213–218.

    CAS  Google Scholar 

  • Smit G., Kijne J.W., Lugtenberg B.J.J. (1989) Roles of flagella, lipopolysaccharide, and a Ca2+-dependent cell surface protein in attachment of Rhizobium leguminosarum biovar viciae to pea root hair tips, J. Bacteriol. 171, 569–572.

    PubMed  CAS  Google Scholar 

  • Shorrocks V.M. (1997) The occurrence and correction of boron deficiency, Plant Soil 193, 121–148.

    CAS  Google Scholar 

  • Spaink H.P. (2000) Root nodulation and infection factors produced by rhizobial bacteria, Annu. Rev. Microbiol. 54, 257–288.

    PubMed  CAS  Google Scholar 

  • Sprent J.I., Sprent P. (1990) Nitrogen Fixing Organisms. Pure and Applied Aspects, Chapman and Hall, London.

    Google Scholar 

  • Ssali H., Keya S.O. (1983) The effect of phosphorus on nodulation, growth and dinitrogen fixation by beans, Biol. Agric. Hortic. 1, 135–144.

    CAS  Google Scholar 

  • Tang P., De la Fuente R. (1986) The transport of indole-3-acetic acid in boron- and calcium-deficient sunflower hypocotyl segments, Plant Physiol. 81, 646–650.

    PubMed  CAS  Google Scholar 

  • Tate R.L. (1995) Soil microbiology (symbiotic nitrogen fixation), John Wiley & Sons Inc, New York.

    Google Scholar 

  • Teasdale R., Richards D. (1990) Boron deficiency in cultured pine cells. Quantitative studies of the interaction with Ca and Mg, Plant Physiol. 93, 1071–1077.

    PubMed  CAS  Google Scholar 

  • Thomas R.J. (1995) Role of legumes in providing N for sustainable tropical pasture systems, in: Lahda J.K., Peoples M.B. (Eds), Managment of Biological Nitrogen Fixation for the development of more productive and sustainable agricultural systems, Kluwer Academic Publishers, Dordrecht, pp 103–118.

    Google Scholar 

  • Torrecilla I., Leganés F., Bonilla I., Fernández-Piñas F. (2000) Use of recombinant aequorin to study calcium homeostasis and monitor calcium transients in response to heat and cold shock in cyanobacteria, Plant Physiol. 123, 161–175.

    PubMed  CAS  Google Scholar 

  • Torrecilla I., Leganés F., Bonilla I., Fernández-Piñas F. (2001) Calcium transients in response to salinity and osmotic stress in the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120, expressing cytosolic apoaequorin, Plant Cell Environ. 24, 641–648.

    CAS  Google Scholar 

  • Torrecilla I., Leganés F., Bonilla I., Fernández-Piñas F. (2004) A calcium signal is involved in heterocyst differentiation in the cyanobacterium Anabaena sp PCC 7120, Microbiol. 150, 3731–3739.

    CAS  Google Scholar 

  • Trewavas A.J., Malhó R. (1998) Ca2+ signalling in plant cells: the big network!, Curr. Op. Plant Biol. 1, 428–433.

    CAS  Google Scholar 

  • Ureta A.C., Imperial J., Ruiz-Argüeso T., Palacios J.M. (2005) Rhizobium leguminosarum biovar viciae symbiotic hydrogenase activity and processing are limited by the level of nickel in agricultural soils, Appl. Environ. Microbiol. 71, 7603–7606.

    PubMed  CAS  Google Scholar 

  • van Brussel A.A.N., Bakhuizen R., van Spronsen P.C., Spaink H.P., Tak T., Lugtenberg B.J.J., Kijne J.W. (1992) Induction of preinfection thread structures in the leguminous host plant by mitogenic lipooligosaccharides of Rhizobium, Science 257, 70–72.

    PubMed  Google Scholar 

  • Wani SP, Rúpela OP, Lee KK (1995) Sustainable agriculture in the semi-arid tropics through biological nitrogen fixation in grain legumes, in: Lahda J.K., Peoples M.B. (Eds), Managment of Biological Nitrogen Fixation for the development of more productive and sustainable agricultural systems, Kluwer Academic Publishers, Dordrecht, pp. 29–50.

    Google Scholar 

  • Wu Y., Kuzma J., Maréchal E., Graeff R., Lee H.C., Foster R., Chua N.H. (1997) Abscisic acid signaling through cyclic ADP-ribose in plants, Science 278, 2126–2130.

    PubMed  CAS  Google Scholar 

  • Zahran, H.H. (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in arid climate, Microbiol. Mol. Biol. Rev. 63, 968–989.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Ministerio de Educación y Ciencia BIO2005-08691-C02-01, BIO2008-05736-CO2-01, and by the MICROAMBIENTE-CM Program from Comunidad de Madrid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Bolaños .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bonilla, I., Bolaños, L. (2009). Mineral Nutrition for Legume-Rhizobia Symbiosis: B, Ca, N, P, S, K, Fe, Mo, Co, and Ni: A Review. In: Lichtfouse, E. (eds) Organic Farming, Pest Control and Remediation of Soil Pollutants. Sustainable Agriculture Reviews, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9654-9_13

Download citation

Publish with us

Policies and ethics