Skip to main content

Plant Nematode Surfaces

  • Chapter
  • First Online:
Book cover Biological Control of Plant-Parasitic Nematodes:

Part of the book series: Progress in Biological Control ((PIBC,volume 11))

Abstract

The outer surface of nematodes act as an external skeleton and is covered by a tough, but flexible, multi-layered, extracellular cuticle which protects them from the external environment, maintains body shape and is involved in locomotion and defence against their host or microorganism attack. This chapter highlights the role of the nematode surface cuticle, during the various life-stages, with their environment, including their host and other microorganism. A comprehensive appraisal is presented of the complex interactions between nematodes and microbial antagonists, as the surface cuticle is believed to be involved in the host-recognition events determining the specificity of such interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad P, Gouzy J, Aury JM et al (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26:909–915

    PubMed  CAS  Google Scholar 

  • Agudelo P, Robbins RT, JMcD S et al (2004) Glycoproteins in the gelatinous matrix of Rotylenchulus reniformis. Nematropica 34:229–234

    Google Scholar 

  • Åhman J, Johansson T, Olsson M et al (2002) Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Appl Environ Microbiol 68:3408–3415

    PubMed  Google Scholar 

  • Akhkha A, Kusel J, Kennedy M et al (2002) Effects of phytohormones on the surfaces of plant-parasitic nematodes. Parasitology 125:165–175

    PubMed  CAS  Google Scholar 

  • Akhkha A, Curtis R, Kennedy M et al (2004) The potential signalling pathways which regulate surface changes induced by phytohormones in the potato cyst nematode (Globodera rostochiensis). Parasitology 128:533–539

    PubMed  CAS  Google Scholar 

  • Atkinson HJ, Taylor JD, Fowler M (1987) Changes in the 2nd stage juveniles of Globodera rostochiensis prior to hatching in response to potato root diffusate. Ann Appl Biol 110:105–114

    Google Scholar 

  • Auriault C, Ouaissi MA, Torpier G et al (1981) Proteolytic cleavage of IgG bound to the Fc receptor of Schistosoma mansoni schistosomula. Parasite Immunol 3:33–44

    PubMed  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG et al (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    PubMed  CAS  Google Scholar 

  • Bird AF (2004) Surface adhesion to nematodes and its consequences. In: Chen ZX, Chen SY, Dickson DW (eds) Nematology: advances and perspectives, vol I, Nematode morphology, physiology and ecology. CABI Publishing, Cambridge

    Google Scholar 

  • Bird AF, Bird J (1991) The structure of nematodes, 2nd edn. Academic, San Diego

    Google Scholar 

  • Bird AF, McClure MA (1976) Tylenchid (Nematoda) egg-shell, structure, composition and permeability. Parasitology 72:19–27

    Google Scholar 

  • Bird AF, Rogers GE (1965) Ultrastructure of the cuticle and its formation in Meloidogyne javanica. Nematologica 11:224–230

    Google Scholar 

  • Bird DM, Wilson MA (1994) Plant molecular and cellular responses to nematode infection. In: Lamberti F (ed) Advances in molecular plant nematology. Plenum Press, New York

    Google Scholar 

  • Bird AF, Bonig I, Bacic A (1988) A role for the excretory-secretory in senernentean nematodes. J Nematol 20:493–496

    PubMed  CAS  Google Scholar 

  • Blaxter ML, Robertson WM (1998) The cuticle. In: Perry RN, Wright DJ (eds) The physiology and biochemistry of free-living and plant-parasitic nematodes. CABI Publishing, Wallingford

    Google Scholar 

  • Blaxter ML, Page AP, Rudin W et al (1992) Nematode surface coats, actively evading immunity. Parasitol Today 8:243–247

    PubMed  CAS  Google Scholar 

  • Bordallo JJ, Lopez-Llorca LV, Jansson H-B et al (2002) Colonization of plant roots by egg-parasitic and nematode-trapping fungi. New Phytol 154:491–499

    Google Scholar 

  • Borrebaeck CA, Mattlasson B, Nordbring-Hertz B (1984) Isolation and partial characterization of a carbohydrate-binding protein from a nematode-trapping fungus. J Bacteriol 159:53–56

    PubMed  CAS  Google Scholar 

  • Bowman JP, Sly LI, Hayward AC et al (1993) Telluria mixta (Pseudomonas mixta Bowman, Sly, and Hayward 1988) gen. nov., comb. nov., and Telluria chitinolytica sp. nov., soil-dwelling organisms which actively degrade polysaccharides. Int J Syst Bacteriol 43:120–124

    PubMed  CAS  Google Scholar 

  • Casas-Flores S, Herrera-Estrella A (2007) Antagonism of plant parasitic nematodes by fungi. In: Kubicek CP, Druzhinina IS (eds) The mycota IV: environmental and microbial relationships, 2nd edn. Springer, Berlin

    Google Scholar 

  • Chen S, Dickson DW (2004) Biological control of nematodes by fungal antagonists. In: Chen ZX, Chen SY, Dickson DW (eds) Nematology: advances and perspectives, vol II, Nematode management and utilization. CABI Publishing, Cambridge

    Google Scholar 

  • Clarke AJ, Cox PM, Shepherd AM (1967) Chemical composition of egg shells of potato cyst-nematode Heterodera rostochiensis woll. Biochem J 104:1056–1060

    PubMed  CAS  Google Scholar 

  • Cookson E, Blaxter ML, Selkirk ME (1992) Identification of the major soluble cuticular glycoprotein of lymphatic filarial nematode parasites (gp29) as a secretory homolog of glutathione peroxidase. Proc Natl Acad Sci USA 89:5837–5841

    PubMed  CAS  Google Scholar 

  • Couillault C, Ewbank JJ (2002) Diverse bacteria are pathogens of Caenorhabditis elegans. Infect Immun 70:4705–4707

    PubMed  CAS  Google Scholar 

  • Curtis RHC (1996) Identification and in vitro and in vivo characterisation of secreted proteins produced by plant-parasitic nematodes. Parasitology 113:589–597

    PubMed  CAS  Google Scholar 

  • Curtis RHC (2007a) Do phytohormones influence nematode invasion and feeding site establishment? Nematology 9:155–160

    CAS  Google Scholar 

  • Curtis RHC (2007b) Plant-parasitic nematodes and the host-parasite interactions. Brief Funct Genomics Proteomics 6:50–58

    CAS  Google Scholar 

  • Davies KG (2005) Interactions between nematodes and microorganisms: bridging ecological and molecular approaches. Adv Appl Microbiol 57:53–78

    PubMed  CAS  Google Scholar 

  • Davies KG (2009) Understanding the interaction between an obligate hyperparasitic bacterium, Pasteuria penetrans and its obligate plant-parasitic nematode host, Meloidogyne spp. Adv Parasitol 68:211–245

    PubMed  Google Scholar 

  • Davies KG, Danks C (1992) Interspecific differences in the nematode surface coat between Meloidogyne incognita and M. arenaria related to the adhesion of the bacterium Pasteuria penetrans. Parasitology 105:475–480

    Google Scholar 

  • Davies KG, Danks C (1993) Carbohydrate/protein interactions between the cuticle of infective juveniles of Meloidogyne incognita and spores of the obligate hyperparasite Pasteuria penetrans. Nematologica 39:53–64

    Google Scholar 

  • Davies KG, Opperman CH (2006) A potential role for collagen in the attachment of Pasteuria penetrans to nematode cuticle. In: Raaijmakers JM, Sikora RA (eds) Multitrophic interactions in the soil. IOBC/WPRS Bull 29:11–16

    Google Scholar 

  • Davies KG, Redden M (1997) Diversity and partial characterization of putative virulence determinants in Pasteuria penetrans, the hyperparasitic bacterium of root-knot nematodes (Meloidogyne spp.). J Appl Microbiol 83:227–235

    PubMed  CAS  Google Scholar 

  • Davies KG, Spiegel Y (2011) Biological control of plant parasitic nematodes: towards understanding field variation through molecular mechanisms. In: Jones J, Gheysen G, Fenoll C (eds) Exploiting genomics to understand plant-nematode interactions. Springer (in press)

    Google Scholar 

  • Davies KG, Fargette M, Balla G et al (2000) Cuticle heterogeneity as exhibited by Pasteuria spore attachment is not linked to the phylogeny of parthenogenetic root-knot nematode (Meloidogyne spp.). Parasitology 122:111–120

    Google Scholar 

  • De Giorgi C, De Luca F, Di Vito D et al (1997) Modulation of expression at the level of splicing of cut-1 RNA in the infective second stage juvenile of the plant parasitic nematode Meloidogyne artiella. Mol Gen Genet 253:589–598

    PubMed  Google Scholar 

  • De Mendoza MEL, Curtis RHC, Gowen S (1999) Identification and characterization of excreted–secreted products and surface coat antigens of animal and plant-parasitic nematodes. Parasitology 118:397–405

    Google Scholar 

  • De Mendoza MEL, Modha J, Roberts MC et al (2000) Changes in the lipophilicity of the surfaces of Meloidogyne incognita and Haemonchus contortus during exposure to host signals. Parasitology 120:203–209

    Google Scholar 

  • De Mendoza MEL, Abrantes IMO, Rowe J et al (2002) Immunolocalisation in planta of secretions from parasitic stages of Meloidogyne incognita and M. hispanica. Int J Nematol 12:149–154

    Google Scholar 

  • Deehan MR, Frame MJ, Parkhouse RME et al (1998) A phosphorylcholine-containing filarial nematode-secreted product disrupts B lymphocyte activation by targeting key proliferative signaling pathways. J Immunol 160:2692–2699

    PubMed  CAS  Google Scholar 

  • Dijksterhuis J, Veenhuis M, Harder W et al (1994) Nematophagous fungi: Physiological aspects and structure-function relationships. In: Rose AH, Tempest DW (eds) Advances in microbial physiology, vol 36. Academic, New York

    Google Scholar 

  • Dubinsky P, Rybos M, Turcekova L (1986a) Properties and localization of chitin synthase in Ascaris suum eggs. Parasitology 92:219–225

    PubMed  CAS  Google Scholar 

  • Dubinsky P, Rybos M, Turcekova L et al (1986b) Chitin synthesis in zygotes of Ascaris suum. J Helminthol 60:187–192

    PubMed  CAS  Google Scholar 

  • Ewbank JJ (2002) Tackling both sides of the host-pathogen equation with Caenorhabditis elegans. Microb Infect 4:247–256

    Google Scholar 

  • Fanelli E, Di Vito M, Jones JT et al (2005) Analysis of chitin synthase function in a plant parasitic nematode, Meloidogyne artiellia, using RNAi. Gene 349:87–95

    PubMed  CAS  Google Scholar 

  • Fekete C, Tholander M, Rajashekar B et al (2008) Paralysis of nematodes: shifts in the transcriptome of the nematode-trapping fungus Monacrosporium haptotylum during infection of Caenorhabditis elegans. Environ Microbiol 10:364–375

    PubMed  CAS  Google Scholar 

  • Fioretti L, Porter A, Haydock PJ et al (2002) Monoclonal antibodies reactive with secreted-excreted products from the amphids and the cuticle surface of Globodera pallida affect nematode movement and delay invasion of potato roots. Int J Parasitol 32:1709–1718

    PubMed  CAS  Google Scholar 

  • Galper S, Cohn E, Spiegel Y et al (1991) A collagenolytic fungus, Cunninghamella elegans, for biological control of plant-parasitic nematodes. J Nematol 23:269–274

    PubMed  CAS  Google Scholar 

  • Gems D, Maizels RM (1996) An abundantly expressed mucin-like protein from Toxocara canis infective larvae: The precursor of the larval surface coat glycoproteins. Proc Natl Acad Sci USA 93:1665–1670

    PubMed  CAS  Google Scholar 

  • Geng JM, Plenefisch J, Komuniecki PR et al (2002) Secretion of a novel developmentally regulated chitinase (family 19 glycosyl hydrolase) into the perivitelline fluid of the parasitic nematode, Ascaris suum. Mol Biochem Parasitol 124:11–21

    PubMed  CAS  Google Scholar 

  • Gortari MC, Hours RA (2008) Fungal chitinases and their biological role in the antagonism onto nematode eggs. Annu Rev Mycol Prog 7:221–238

    Google Scholar 

  • Gravato-Nobre MJ, Evans K (1998) Plant and nematode surfaces: Their structure and importance in host-parasite interactions. Nematologica 44:103–124

    Google Scholar 

  • Gravato-Nobre MJ, Hodgkin J (2005) Caenorhabditis elegans as a model for innate immunity to pathogens. Cell Microbiol 7:741–751

    PubMed  CAS  Google Scholar 

  • Gravato-Nobre MJ, McClure MA, Dolan L et al (1999) Meloidogyne incognita surface antigen epitopes in infected Arabidopsis roots. J Nematol 31:212–223

    PubMed  CAS  Google Scholar 

  • Gravato-Nobre MJ, Nicholas HR, Nijland R et al (2005) Multiple genes affect sensitivity of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum. Genetics 171:1033–1045

    PubMed  CAS  Google Scholar 

  • Grenache DG, Caldicott I, Albert PS et al (1996) Environmental induction and genetic control of surface antigen switching in the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 93:12388–12393

    PubMed  CAS  Google Scholar 

  • Guiliano DB, Hong XQ, McKerrow JH et al (2004) A gene family of cathepsin L-like proteases of filarial nematodes are associated with larval molting and cuticle and eggshell remodeling. Mol Biochem Parasitol 136:227–242

    PubMed  CAS  Google Scholar 

  • Hanazawa M, Mochii M, Ueno N et al (2001) Use of cDNA subtraction and RNA interference screens in combination reveals genes required for germ-line development in Caenorhabditis elegans. Proc Natl Acad Sci USA 98:8686–8691

    PubMed  CAS  Google Scholar 

  • Harnett MM, Deehan MR, Williams DM et al (1998) Induction of signalling energy via the T-cell receptor in cultured Jurkat T cells by pre-exposure to a filarial nematode secreted product. Parasite Immunol 20:551–563

    PubMed  CAS  Google Scholar 

  • Harris MT, Fuhrman JA (2002) Structure and expression of chitin synthase in the parasitic nematode Dirofilaria immitis. Mol Biochem Parasitol 122:231–234

    PubMed  CAS  Google Scholar 

  • Hashmi S, Britton C, Liu J et al (2002) Cathepsin L is essential for embryogenesis and development of Caenorhabditis elegans. J Biol Chem 277:3477–3486

    PubMed  CAS  Google Scholar 

  • Hayes DF, Silberstein DS, Rodrique SW et al (1990) DF3 antigen, a human epithelial-cell mucin, inhibits adhesion of eosinophils to antibody-coated targets. J Immunol 145:962–970

    PubMed  CAS  Google Scholar 

  • Hill DE, Fetterer RH, Urban JF (1991) Ascaris suum, stage-specific differences in lectin binding to the larval cuticle. Exp Parasitol 73:376–383

    PubMed  CAS  Google Scholar 

  • Hodgkin J, Kuwabara PE, Corneliussen B (2000) A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans. Curr Biol 10:1615–1618

    PubMed  CAS  Google Scholar 

  • Hu GG, McClure MA, Schmitt ME (2000) Origin of a Meloidogyne incognita surface coat antigen. J Nematol 32:174–182

    PubMed  CAS  Google Scholar 

  • Huang XW, Tian BY, Niu QH et al (2005) An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystal can serve as a pathogenic factor in infection of nematodes. Res Microbiol 156:719–727

    PubMed  CAS  Google Scholar 

  • Jansson H-B (1994) Adhesion of conidia of Drechmeria coniospora to Caenorhabditis elegans wild type and mutants. J Nematol 26:430–435

    PubMed  CAS  Google Scholar 

  • Jansson H-B, Friman E (1999) Infection-related surface proteins on conidia of the nematophagous fungus Drechmeria coniospora. Mycol Res 103:249–256

    Google Scholar 

  • Jansson H-B, Nordbring-Hertz B (1983) The endoparasitic fungus Meria coniospora infects nematodes specifically at the chemosensory organs. J Gen Microbiol 129:1121–1126

    Google Scholar 

  • Jansson H-B, Nordbring-Hertz B (1984) Involvement of sialic acid in nematode chemotaxis and infection by an endoparasitic nematophagous fungus. J Gen Microbiol 130:39–43

    CAS  Google Scholar 

  • Jansson H-B, Nordbring-Hertz B (1988) Infection events in the fungus-nematode system. In: Poinar GO, Jansson H-B (eds) Diseases of nematodes, vol II. CRC Press, Boca Raton

    Google Scholar 

  • Jansson H-B, Jeyaprakash A, Zuckerman BM (1985) Control of root-knot nematodes on tomato by the endoparasitic fungus Meria coniospora. J Nematol 17:327–330

    PubMed  CAS  Google Scholar 

  • Johnstone IL (1994) The cuticle of the nematode Caenorhabditis elegans, a complex collagen structure. Bioessays 16:171–178

    PubMed  CAS  Google Scholar 

  • Johnstone IL, Barry JD (1996) Temporal reiteration of a precise gene expression pattern during nematode development. EMBO J 15:3633–3639

    PubMed  CAS  Google Scholar 

  • Jones JT (2002) Nematode sense organs. In: Lee DL (ed) The biology of nematodes. Taylor & Francis, London

    Google Scholar 

  • Jones JT, Perry RN, Johnston MRL (1993) Changes in the ultrastructure of the cuticle of the potato cyst-nematode, Globodera rostochiensis, during development and infection. Fundam Appl Nematol 16:433–445

    Google Scholar 

  • Jones JT, Reavy B, Smant G et al (2004) Glutathione peroxidases of the potato cyst nematode Globodera rostochiensis. Gene 324:47–54

    PubMed  CAS  Google Scholar 

  • Jung WJ, Jung SJ, An KN et al (2002) Effect of chitinase-producing Paenibacillus illinoisensis KJA-424 on egg hatching of root-knot nematode (Meloidogyne incognita). J Microbiol Biotechnol 12:865–871

    CAS  Google Scholar 

  • Jungery M, Clark NWT, Parkhouse RM (1983) A major change in surface-antigens during the maturation of newborn larvae of Trichinella spiralis. Mol Biochem Parasitol 7:101–109

    PubMed  CAS  Google Scholar 

  • Kennedy MW, Allen JE, Wright AS et al (1995) The gp15/400 polyprotein antigen of Brugia malayi binds fatty-acids and retinoids. Mol Biochem Parasitol 71:41–50

    PubMed  CAS  Google Scholar 

  • Kerry BR (2000) Rhizosphere interactions and exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu Rev Phytopathol 38:423–441

    PubMed  CAS  Google Scholar 

  • Kerry BR, Hominick WM (2001) Biological control. In: Lee DL (ed) Biology of nematodes. Taylor & Francis, London

    Google Scholar 

  • Koltai H, Chejanovski N, Raccha B et al (1997) The first isolated collagen gene of the root-knot nematode Meloidogyne javanica is developmentally regulated. Gene 196:191–199

    PubMed  CAS  Google Scholar 

  • Koltai H, Sharon E, Spiegel Y (2002) Root-nematode interactions: recognition and pathogenicity. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 3rd edn. Marcel Dekker, New York

    Google Scholar 

  • Kramer JM, Cox GN, Hirsh D (1982) Comparisons of the complete sequences of 2 collagen genes from Caenorhabditis elegans. Cell 30:599–606

    PubMed  CAS  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331

    PubMed  CAS  Google Scholar 

  • Kusel JR, Gordon JF (1989) Biophysical studies of the Schistosome surface and their relevance to its properties under immune and drug attack. Parasite Immunol 11:431–451

    PubMed  CAS  Google Scholar 

  • Labrousse A, Chauvet S, Couillault C et al (2000) Caenorhabditis elegans is a model host for Salmonella typhimurium. Curr Biol 10:1543–1545

    PubMed  CAS  Google Scholar 

  • Lal RB, Kumaraswami V, Steel C et al (1990) Phosphocholine-containing antigens of Brugia malayi nonspecifically suppress lymphocyte function. Am J Trop Med Hyg 42:56–64

    PubMed  CAS  Google Scholar 

  • Lee DL (2002) Cuticle, moulting and exsheathment. In: Lee DL (ed) The biology of nematodes. Taylor & Francis, London

    Google Scholar 

  • Lin HJ, McClure MA (1996) Surface coat of Meloidogyne incognita. J Nematol 28:216–224

    PubMed  CAS  Google Scholar 

  • Liu J, Koltai H, Chejanovski N et al (2001) Isolation of a novel collagen gene in Meloidogyne javanica and studies on its expression pattern. J Parasitol 87:801–807

    PubMed  CAS  Google Scholar 

  • Lopez-Arellano ME, Curtis RHC (2002) Immunolocalization of Trichinella spiralis L1 surface and excreted/secreted antigens in situ. Int J Nematol 12:55–58

    Google Scholar 

  • Lopez-Llorca LV, Robertson WM (1992) Immunocytochemical localization of a 32-kDa protease from the nematophagous fungus Verticillium suchlasporium in infected nematode eggs. Exp Mycol 16:261–267

    CAS  Google Scholar 

  • Lopez-Llorca LV, Olivares-Bernabeu C, Salinas J et al (2002) Prepenetration events in fungal parasitism of nematode eggs. Mycol Res 106:499–506

    CAS  Google Scholar 

  • Lopez-Llorca LV, Macia-Vicente JG, Jansson H-B (2008) Mode of action and interactions of nematophagous fungi. In: Ciancio A, Mukerji KG (eds) Integrated pest and disease management and biocontrol of vegetable and grain crops nematodes. Springer Publishers, Dordrecht

    Google Scholar 

  • Loukas A, Maizels RM (2000) Helminth C-type lectins and host-parasite interactions. Parasitol Today 16:333–339

    PubMed  CAS  Google Scholar 

  • Mackintosh GM (1960) The morphology of the Brassica root eelworm Heterodera cruciferae Franklin, 1945. Nematologica 5:158–165

    Google Scholar 

  • Maggenti AR (1962) Production of gelatinous matrix and its taxonomic significance in Tylenchulus (Nematoda, Tylenchulinae). Proc Helminth Soc Washington 29:139–144

    Google Scholar 

  • Maizels RM, Loukas A (2001) The surface and secreted antigens of Toxocara canis: genes, protein structure and function. In: Kennedy MW, Harnett W (eds) Parasitic nematodes – molecular biology, biochemistry and immunology. CABI Publishing, Wallingford

    Google Scholar 

  • Maizels RM, Gregory WF, Kwanlim GE et al (1989) Filarial surface-antigens, the major 29 Kilodalton glycoprotein and a novel 17–200 Kilodalton complex from adult Brugia malayi parasites. Mol Biochem Parasitol 32:213–227

    PubMed  CAS  Google Scholar 

  • Maizels RM, Gomez-Escobar N, Gregory WF et al (2001) Immune evasion genes from filarial nematodes. Int J Parasitol 31:889–898

    PubMed  CAS  Google Scholar 

  • Mallo GV, Kurz CL, Couillault C et al (2002) Inducible antibacterial defense system in C. elegans. Curr Biol 12:1209–1214

    PubMed  CAS  Google Scholar 

  • McClure MA, Spiegel Y (1991) Role of the nematode surface coat in the adhesion of Clavibacter sp. to Anguina funesta and Anguina tritici. Parasitology 103:421–427

    Google Scholar 

  • Mendoza de Gives P, Davies KG, Clark SJ, Behnke JM (1999) Predatory behavior of trapping fungi against srf mutants of Caenorhabditis elegans and different plant- and animal-parasitic nematodes. Parasitology 119:95–104

    PubMed  Google Scholar 

  • Modha J, Kusel JR, Kennedy MW (1995) A role for 2nd messengers in the control of activation-associated modification of the surface of Trichinella spiralis infective larvae. Mol Biochem Parasitol 72:141–148

    PubMed  CAS  Google Scholar 

  • Modha J, Roberts MC, Kennedy MW et al (1997) Induction of surface fluidity in Trichinella spiralis larvae during penetration of the host intestine: simulation by cyclic AMP in vitro. Parasitology 114:71–77

    PubMed  Google Scholar 

  • Mohan S, Fould S, Davies KG (2001) The interaction between the gelatin-binding domain of fibronectin and the attachment of Pasteuria penetrans endospores to nematode cuticle. Parasitology 123:271–276

    PubMed  CAS  Google Scholar 

  • Morton CO, Hirsch PR, Kerry B (2004) Infection of plant-parasitic nematodes by nematophagous fungi – a review of application of molecular biology to understand infection processes and to improve biological control. Nematology 6:161–170

    CAS  Google Scholar 

  • Neuhaus B, Bresciani J, Peters W (1997) Ultrastructure of the pharyngeal cuticle and lectin labelling with wheat germ agglutinin-gold conjugate indicating chitin in the pharyngeal cuticle of Oesophagostomum dentatum (Strongylida, Nematoda). Acta Zool 78:205–213

    Google Scholar 

  • Niu Q, Huang X, Zhang L et al (2006) A neutral protease from Bacillus nematocida, another potential virulence factor in the infection against nematodes. Arch Microbiol 185:439–448

    PubMed  CAS  Google Scholar 

  • Nordbring-Hertz B, Mattiasson B (1979) Action of a nematode-trapping fungus shows lectinmediated host-microorganism interaction. Nature 281:477–479

    CAS  Google Scholar 

  • O’Rourke D, Baban D, Demidova M et al (2006) Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum. Genome Res 16:1005–1016

    PubMed  Google Scholar 

  • Oka Y, Chet I, Spiegel Y (1993) Control of the root-knot nematode Meloidogyne javanica by Bacillus cereus. Biocontrol Sci Technol 3:115–126

    Google Scholar 

  • Olsen DP, Phu D, Libby LJM et al (2007) Chemosensory control of surface antigen switching in the nematode Caenorhabditis elegans. Genes Brain Behav 6:240–252

    PubMed  CAS  Google Scholar 

  • Opperman CH, Bird DM, Williamson VM et al (2008) Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism. Proc Natl Acad Sci USA 105:14802–14807

    PubMed  CAS  Google Scholar 

  • Page AP, Johnstone IL (2007) The cuticle. In: Wormbook. The C. elegans research community, doi/10.1895/wormbook.1.7.1, http://www.wormbook.org

  • Perry RN, Clarke AJ (1981) Hatching mechanisms of nematodes. Parasitology 83:435–449

    Google Scholar 

  • Perry RN, Trett MW (1986) Ultrastructure of the eggshell of Heterodera schachtii and Heterodera glycines (Nematode, Tylenchida). Rev Nematol 9:399–403

    Google Scholar 

  • Persidis A, Lay JG, Manousis T et al (1991) In: Wormbook. Characterization of potential adhesions of the bacterium Pasteuria penetrans, and of putative receptors on the cuticle of Meloidogyne incognita, a nematode host. J Cell Sci 100:613–622

    PubMed  CAS  Google Scholar 

  • Philipp M, Rumjaneck FD (1984) Antigenic and dynamic properties of helminth surface structures. Mol Biochem Parasitol 10:245–268

    PubMed  CAS  Google Scholar 

  • Politz SM, Philipp M (1992) Caenorhabditis elegans as a model for parasitic nematodes: a focus on the cuticle. Parasitol Today 8:6–12

    PubMed  CAS  Google Scholar 

  • Premachandran D, Vonmende N, Hussey RS et al (1988) A method for staining nematode secretions and structures. J Nematol 20:70–78

    PubMed  CAS  Google Scholar 

  • Preston CM, Jenkins T (1985) Trichuris muris – structure and formation of the egg polar plugs. Z Parasitenkunde – Parasitol Res 71:373–381

    CAS  Google Scholar 

  • Prior A, Jones JT, Blok VC et al (2001) A surface-associated retinol- and fatty acid-binding protein (Gp-FAR-1) from the potato cyst nematode Globodera pallida: lipid binding activities, structural analysis and expression pattern. Biochem J 356:387–394

    PubMed  CAS  Google Scholar 

  • Proudfoot L, Kusel JR, Smith HV et al (1993) Rapid changes in the surfce of parasitic nematodes during transition from pre-parasitic to post-parasitic forms. Parasitology 107:107–117

    PubMed  Google Scholar 

  • Pujol N, Link EM, Liu LX et al (2001) Reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr Biol 11:809–821

    PubMed  CAS  Google Scholar 

  • Rao UR, Chandrashekar R, Subrahmanyam D (1988) Developmental-changes in the surface carbohydrates of filariae. Indian J Med Res 87:9–14

    PubMed  CAS  Google Scholar 

  • Riou M, Koch C, Delaleu B et al (2005) Immunolocalisation of an ABC transporter, P-glycoprotein, in the eggshells and cuticles of free-living and parasitic stages of Haemonchus contortus. Parasitol Res 96:142–148

    PubMed  Google Scholar 

  • Robertson WM, Spiegel Y, Jansson H-B et al (1989) Surface carbohydrates of plant-parasitic nematodes. Nematologica 35:180–186

    Google Scholar 

  • Robertson L, Robertson WM, Sobczak M et al (2000) Cloning, expression and functional characterisation of a peroxiredoxin from the potato cyst nematode Globodera rostochiensis. Mol Biochem Parasitol 111:41–49

    PubMed  CAS  Google Scholar 

  • Robinson MP, Delgado J, Parkhouse RMW (1989) Characterisation of stage-specific cuticular proteins of Meloidogyne incognita by radio-iodination. Physiol Mol Plant Pathol 35:135–140

    CAS  Google Scholar 

  • Sapio MR, Hilliard MA, Cermola M et al (2005) The Zona Pellucida domain containing proteins, CUT-1, CUT-3 and CUT-5, play essential roles in the development of the larval alae in Caenorhabditis elegans. Dev Biol 282:231–245

    PubMed  CAS  Google Scholar 

  • Schallig H, Vanleeuwen MAW, Hendrikx WML (1994) Immune-responses of texel sheep to excretory/secretory products of adult Haemonchus contortus. Parasitology 108:351–357

    PubMed  Google Scholar 

  • Schallig H, Vanleeuwen MAW, Hendrikx WML (1995) Isotype-specific serum antibody-responses of sheep to Haemonchus contortus antigens. Vet Parasitol 56:149–162

    PubMed  CAS  Google Scholar 

  • Sela S, Schickler H, Chet I et al (1998) Purification and characterization of a Bacillus cereus collagenolytic/proteolytic enzyme and its effect on Meloidogyne javanica cuticular proteins. Eur J Plant Pathol 104:59–67

    CAS  Google Scholar 

  • Sharma SB, Davies KG (1997) Modulation of spore adhesion of the hyperparasitic bacterium Pasteuria penetrans to nematode cuticle. Lett Appl Microbiol 25:426–430

    PubMed  CAS  Google Scholar 

  • Sharon E, Spiegel Y (1993) Glycoprotein characterization of the gelatinous matrix in the root-knot nematode Meloidogyne javanica. J Nematol 25:585–589

    PubMed  CAS  Google Scholar 

  • Sharon E, Spiegel Y (1996) Gold-conjugated reagents for the labelling of carbohydrate-recognition domains and glycoconjugates on nematodes surfaces. J Nematol 28:124–127

    Google Scholar 

  • Sharon E, Spiegel Y, Salomon R et al (2002) Characterization of Meloidogyne javanica surface coat with antibodies and their effect on nematode behaviour. Parasitology 125:177–185

    PubMed  CAS  Google Scholar 

  • Sharon E, Chet I, Viterbo A et al (2007) Parasitism of Trichoderma on Meloidogyne javanica and role of the gelatinous matrix. Eur J Plant Pathol 118:247–258

    Google Scholar 

  • Sharon E, Chet I, Spiegel Y (2009a) Improved attachment and parasitism of Trichoderma on Meloidogyne javanica in vitro. Eur J Plant Pathol 123:291–299

    CAS  Google Scholar 

  • Sharon E, Chet I, Bar-Eyal M et al (2009b) Biocontrol of root-knot nematodes by Trichoderma – modes of action. In: Steinberg C, Edel-Hermann V, Friberg H et al (eds) Multitrophic interactions in soil. IOBC/WPRS Bull 42:159–163

    Google Scholar 

  • Simpson AJG, Payares G, Walker T et al (1984) The modulation of expression of polypeptide surface-antigens on developing schistosomula of Schistosoma mansoni. J Immunol 133:2725–2730

    PubMed  CAS  Google Scholar 

  • Smith VP, Selkirk ME, Gounaris K (1998) Brugia malayi: Resistance of cuticular lipids to oxidant-induced damage and detection of alpha-tocopherol in the neutral lipid fraction. Exp Parasitol 88:103–110

    PubMed  CAS  Google Scholar 

  • Smithers SR, Doenhoff MJ (1982) Schistosomiasis. In: Cohen S, Warren KS (eds) Immunology of parasitic infections. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Spiegel Y, Chet I (1985) Chitin synthetase inhibitors and their potential to control the root-knot nematode, Meloidogyne javanica. Nematologica 31:480–482

    CAS  Google Scholar 

  • Spiegel Y, McClure MA (1991) Stage-specific differences in lectin binding to the surface of Anguina tritici and Meloidogyne incognita. J Nematol 23:259–263

    PubMed  CAS  Google Scholar 

  • Spiegel Y, McClure MA (1995) The surface coat of plant-parasitic nematodes: chemical composition, origin and biological role: a review. J Nematol 27:127–134

    PubMed  CAS  Google Scholar 

  • Spiegel Y, Cohn E, Galper S et al (1991) Evaluation of a newly isolated bacterium, Pseudomonas chitinolytica sp. nov. for controlling the root-knot nematode Meloidogyne javanica. Biocontrol Sci Technol 1:115–125

    Google Scholar 

  • Spiegel Y, Mor M, Sharon E (1996) Attachment of Pasteuria penetrans endospores to the surface of Meloidogyne javanica second-stage juveniles. J Nematol 28:328–334

    PubMed  CAS  Google Scholar 

  • Spiegel Y, Kahane I, Cohen L et al (1997) Meloidogyne javanica surface proteins: characterization and lability. Parasitology 115:513–519

    PubMed  CAS  Google Scholar 

  • Stirling GR, Bird AF, Cakurs AB (1986) Attachment of Pasteuria panetrans spores to the cuticle of root-knot nematodes. Rev Nematol 9:251–260

    CAS  Google Scholar 

  • Tang L, Ou X, Henkleduhrsen K et al (1994) Extracellular and cytoplasmic superoxide dismutases from Brugia lymphatic filarial nematode parasites. Infect Immun 62:961–967

    PubMed  CAS  Google Scholar 

  • Tang L, Smith VP, Gounaris K et al (1996) Brugia pahangi: the cuticular glutathione peroxidase (gp29) protects heterologous membranes from lipid peroxidation. Exp Parasitol 82:329–332

    PubMed  CAS  Google Scholar 

  • Taylor DW, Goddard JM, McMahon JE (1986) Surface components of Onchocerca volvulus. Mol Biochem Parasitol 18:283–300

    PubMed  CAS  Google Scholar 

  • Tefft PM, Bone LW (1985) Plant-induced hatching of eggs of the soybean cyst nematode Heterodera glycines. J Nematol 17:275–279

    PubMed  CAS  Google Scholar 

  • Tian B, Li N, Lian L et al (2006) Cloning, expression and deletion of the cuticle-degrading protease BLG4 from nematophagous bacterium Brevibacillus laterosporus G4. Arch Microbiol 186:297–305

    PubMed  CAS  Google Scholar 

  • Tian B, Yang J, Zhang K-Q (2007) Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiol Ecol 61:197–213

    PubMed  CAS  Google Scholar 

  • Tikhonov VE, Lopez-Llorca LV, Salinas J et al (2002) Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium. Fungal Genet Biol 35:67–78

    PubMed  CAS  Google Scholar 

  • Tosi S, Annovazzi L, Tosi I et al (2002) Collagenase production in an Antarctic strain of Arthrobotrys tortor jarowaja. Mycopathologia 153:157–162

    PubMed  CAS  Google Scholar 

  • Tunlid A, Johansson T, Nordbring-Hertz B (1991) Surface polymers of the nematode-trapping fungus Arthrobotrys oligospora. J Gen Microbiol 137:1231–1240

    PubMed  CAS  Google Scholar 

  • Tunlid A, Jansson H-B, Nordbring-Hertz B (1992) Fungal attachment to nematodes. Mycol Res 96:401–412

    Google Scholar 

  • Tunlid A, Rosen S, Ek B et al (1994) Purification and characterization of extracellular serine protease from the nematode-trapping fungus Arthrobotrys oligospora. Microbiology 140:1687–1695

    PubMed  Google Scholar 

  • Twomey U, Warrior P, Kerry BR et al (2000) Effects of the biological nematicide, DiTera, on hatching of Globodera rostochiensis and G. pallida. Nematology 2:355–362

    CAS  Google Scholar 

  • Van Nguyen N, Kim Oh KT, Jung W et al (2007) The role of chitinase from Lecanicillium antillanum B-3 in parasitism to root-knot nematode Meloidogyne incognita eggs. Biocontrol Sci Technol 17:1047–1058

    Google Scholar 

  • Veronico P, Gray LJ, Jones JT et al (2001) Nematode chitin synthases: gene structure, expression and function in Caenorhabditis elegans and the plant parasitic nematode Meloidogyne artiellia. Mol Genet Genomics 266:28–34

    PubMed  CAS  Google Scholar 

  • Waetzig GH, Sobczak M, Grundler FMW (1999) Localization of hydrogen peroxide during the defence response of Arabidopsis thaliana against the plant-parasitic nematode Heterodera glycines. Nematology 1:681–686

    CAS  Google Scholar 

  • Wang RB, Yang JK, Lin C et al (2006) Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Dactylella shizishanna. Lett Appl Microbiol 42:589–594

    PubMed  CAS  Google Scholar 

  • Wharton DA (1983) The production and functional-morphology of helminth egg-shells. Parasitology 86:85–97

    PubMed  Google Scholar 

  • Wyss U, Voss B, Jansson H-B (1990) In vitro observations on the infection of Meloidogyne incognita eggs by the zoosporic fungus Catenaria anguilulae Sorokin. Fundam Appl Nematol 15:133–139

    Google Scholar 

  • Zhang L, Yang J, Niu Q et al (2008) Investigation on the infection mechanism of the fungus Clonostachys rosea against nematodes using the green fluorescent protein. Appl Microbiol Biotechnol 78:983–990

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosane H. C. Curtis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Curtis, R.H.C., Jones, J.T., Davies, K.G., Sharon, E., Spiegel, Y. (2011). Plant Nematode Surfaces. In: Davies, K., Spiegel, Y. (eds) Biological Control of Plant-Parasitic Nematodes:. Progress in Biological Control, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9648-8_5

Download citation

Publish with us

Policies and ethics