Skip to main content

Utilization of Biological Control for Managing Plant-Parasitic Nematodes

  • Chapter
  • First Online:

Part of the book series: Progress in Biological Control ((PIBC,volume 11))

Abstract

Biological control of plant-parasitic nematodes can be accomplished either by application of antagonistic organisms, conservation and enhancement of indigenous antagonists, or a combination of both strategies. The application of biological control has been inconsistent in suppressing nematode populations because the efficacy of antagonists is influenced by other soil organisms and the host-plant. Integration of biological control with nematicides, solarization, organic amendments, and crop rotation has also had varied success. Progress in biological control of nematodes has been hampered by the opaque nature of soil, the microscopic size of nematodes and their antagonists, and the complex interactions among soil organisms. Molecular biology offers new tools that will aid in determining which organisms are involved in naturally-suppressive soils, the fate of introduced antagonists, and how populations of indigenous and introduced antagonists change seasonally and with different crop production practices. Moreover, organisms have been engineered to over-express traits that enhance their activity against plant-parasitic nematodes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahman J, Johansson T, Olsson M et al (2002) Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Appl Environ Microbiol 68:3408–3415

    PubMed  CAS  Google Scholar 

  • Ahren D, Tholander M, Fekete C et al (2005) Comparison of gene expression in trap cells and vegetative hyphae of the nematophagous fungus Monacrosporium haptotylum. Microbiology 151:789–803

    PubMed  Google Scholar 

  • Akhtar M, Malik A (2000) Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: a review. Bioresour Technol 74:35–47

    CAS  Google Scholar 

  • Anastasiadis IA, Giannakou IO, Prophetou-Athanasiadou DA et al (2008) The combined effect of the application of a biocontrol agent Paecilomyces lilacinus, with various practices for the control of root-knot nematodes. Crop Prot 27:352–361

    Google Scholar 

  • Atkins SD, Clark IM, Sosnowska D et al (2003a) Detection and quantification of Plectos-phaerella cucumerina, a potential biological control agent of potato cyst nematodes, by using conventional PCR, real-time PCR, selective media, and baiting. Appl Environ Microbiol 69:4788–4793

    PubMed  CAS  Google Scholar 

  • Atkins SD, Hidalgo-Diaz L, Clark IM et al (2003b) Approaches for monitoring the release of Pochonia chlamydosporia var. catenulata, a biocontrol agent of root-knot nematodes. Mycol Res 107:206–212

    PubMed  Google Scholar 

  • Atkins SD, Hidalgo-Diaz L, Kalisz H et al (2003c) Development of a new management strategy for the control of root-knot nematodes (Meloidogyne spp) in organic vegetable production. Pest Manag Sci 59:183–189

    PubMed  CAS  Google Scholar 

  • Atkins SD, Clark IM, Pande S et al (2005) The use of real-time PCR and species-specific primers for the identification and monitoring of Paecilomyces lilacinus. FEMS Microbiol Ecol 51:257–264

    PubMed  CAS  Google Scholar 

  • Atkins SD, Peteira B, Clark IM (2009) Use of real-time quantitative PCR to investigate root and gall colonisation by co-inoculated isolates of the nematophagous fungus Pochonia chlamydosporia. Ann Appl Biol 155:143–152

    CAS  Google Scholar 

  • Barbosa P (1998) Conservation biological control. Academic, San Diego

    Google Scholar 

  • Bent E, Loffredo A, McKenry MV et al (2008) Detection and investigation of soil biological activity against Meloidogyne incognita. J Nematol 40:109–118

    PubMed  CAS  Google Scholar 

  • Bernard EC, Self LH, Tyler DD (1996) Fungal parasitism of soybean cyst nematode, Heterodera glycines (Nemata: Heteroderidae), in differing cropping-tillage regimes. Appl Soil Ecol 5:57–70

    Google Scholar 

  • Bilgrami AL, Brey C, Gaugler R (2008) First field release of a predatory nematode, Mononchoides gaugleri (Nematoda: Diplogastrida), to control plant-parasitic nematodes. Nematology 10:143–146

    Google Scholar 

  • Bird AF, Bird J (1986) Observations on the use of insect parasitic nematodes as a means of biological control of root-knot nematodes. Int J Parasitol 16:511–516

    Google Scholar 

  • Borneman J, Becker JO (2007) Identifying microorganisms involved in specific pathogen suppression in soil. Annu Rev Phytopathol 45:153–172

    PubMed  CAS  Google Scholar 

  • Bourne JM, Kerry BR (1999) Effect of the host plant on the efficacy of Verticillium chlamydosporium as a biological control agent of root-knot nematodes at different nematode densities and fungal application rates. Soil Biol Biochem 31:75–84

    CAS  Google Scholar 

  • Bourne JM, Kerry BR, De Leij F (1996) The importance of the host plant on the interaction between root-knot nematodes (Meloidogyne spp.) and the nematophagous fungus, Verticillium chlamydosporium Goddard. Biocontrol Sci Technol 6:539–548

    Google Scholar 

  • Brown SM, Nordmeyer D (1985) Synergistic reduction in root galling by Meloidogyne javanica with Pasteuria penetrans and nematicides. Rev Nematol 8:285–286

    Google Scholar 

  • Carneiro R, de Mesquita LFG, Cirotto PAS et al (2007) The effect of sandy soil, bacterium dose and time on the efficacy of Pasteuria penetrans to control Meloidogyne incognita race 1 on coffee. Nematology 9:845–851

    Google Scholar 

  • Chen ZX, Dickson DM (1998) Review of Pasteuria penetrans: biology, ecology, and biological control potential. J Nematol 30:313–340

    PubMed  CAS  Google Scholar 

  • Chen SY, Dickson DW, Mitchell DJ (1996a) Population development of Heterodera glycines in response to mycoflora in soil from Florida. Biol Control 6:226–231

    Google Scholar 

  • Chen ZX, Dickson DW, McSorley R et al (1996b) Suppression of Meloidogyne arenaria race 1 by soil application of endospores of Pasteuria penetrans. J Nematol 28:159–168

    PubMed  CAS  Google Scholar 

  • Chen ZX, Dickson DW, Mitchell DJ et al (1997) Suppression mechanisms of Meloidogyne arenaria race 1 by Pasteuria penetrans. J Nematol 29:1–8

    PubMed  CAS  Google Scholar 

  • Chen J, Abawi GS, Zuckerman BM (1999) Suppression of Meloidogyne hapla and its damage to lettuce grown in a mineral soil amended with chitin and biocontrol organisms. J Nematol 31:719–725

    PubMed  CAS  Google Scholar 

  • Chen J, Abawi GS, Zuckerman BM (2000) Efficacy of Bacillus thuringiensis, Paecilomyces marquandii, and Streptomyces costaricanus with and without organic amendments against Meloidogyne hapla infecting lettuce. J Nematol 32:70–77

    PubMed  CAS  Google Scholar 

  • Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Cronin D, MoenneLoccoz Y, Fenton A et al (1997) Role of 2, 4-diacetylphloroglucinol in the interactions of the biocontrol pseudomonad strain F113 with the potato cyst nematode Globodera rostochiensis. Appl Environ Microbiol 63:1357–1361

    PubMed  CAS  Google Scholar 

  • Dabire KR, Mateille T (2004) Soil texture and irrigation influence the transport and the development of Pasteuria penetrans, a bacterial parasite of root-knot nematodes. Soil Biol Biochem 36:539–543

    CAS  Google Scholar 

  • De Leij FAAM, Kerry BR (1991) The nematophagous fungus Verticillium chlamydosporium as a potential biological control agent for Meloidogyne arenaria. Rev Nematol 14:157–164

    Google Scholar 

  • De Leij FAAM, Kerry BR, Dennehy JA (1993) Verticillium chlamydosporium as a biological control agent for Meloidogyne incognita and Meloidogyne hapla in pot and micro-plot tests. Nematologica 39:115–126

    Google Scholar 

  • de Werra P, Baehler E, Huser A et al (2008) Detection of plant-modulated alterations in antifungal gene expression in Pseudomonas fluorescens CHA0 on roots by flow cytometry. Appl Environ Microbiol 74:1339–1349

    PubMed  Google Scholar 

  • Dong LQ, Zhang KQ (2006) Microbial control of plant-parasitic nematodes: a five-party interaction. Plant Soil 288:31–45

    CAS  Google Scholar 

  • Duponnois R, Ba AM (1998) Influence of the microbial community of a Sahel soil on the interactions between Meloidogyne javanica and Pasteuria penetrans. Nematologica 44:331–343

    Google Scholar 

  • Duponnois R, Amadou MB, Mateille T (1999) Beneficial effects of Enterobacter cloacae and Pseudomonas mendocina for biological control of Meloidogyne incognita with the endospore-forming bacterium Pasteuria penetrans. Nematology 1:95–101

    Google Scholar 

  • Fould S, Dieng AL, Davies KG et al (2001) Immunological quantification of the nematode parasitic bacterium Pasteuria penetrans in soil. FEMS Microbiol Ecol 37:187–195

    CAS  Google Scholar 

  • Gaspard JT, Jaffee BA, Ferris H (1990) Meloidogyne incognita survival in soil infested with Paecilomyces lilacinus and Verticillium chlamydosporium. J Nematol 22:176–181

    PubMed  CAS  Google Scholar 

  • Giannakou IO, Dimitrios G, Karpouzas DG et al (2004) A novel non-chemical nematicide for the control of root-knot nematodes. Appl Soil Ecol 26:69–79

    Google Scholar 

  • Giannakou IO, Anastasiadis IA, Gowen SR et al (2007) Effects of a non-chemical nematicide combined with soil solarization for the control of root-knot nematodes. Crop Prot 26:1644–1654

    CAS  Google Scholar 

  • Goswami J, Pandey RK, Tewari JP et al (2008) Management of root knot nematode on tomato through application of fungal antagonists, Acremonium strictum and Trichoderma harzianum. J Environ Sci Heal B 43:237–240

    CAS  Google Scholar 

  • Grewal PS, Martin WR, Miller RW et al (1997) Suppression of plant-parasitic nematode populations in turfgrass by application of entomopathogenic nematodes. Biocontrol Sci Technol 7:393–399

    Google Scholar 

  • Hackenberg C, Muehlchen A, Forge T et al (2000) Pseudomonas chlororaphis strain Sm3, bacterial antagonist of Pratylenchus penetrans. J Nematol 32:183–189

    PubMed  CAS  Google Scholar 

  • Hirsch PR, Mauchline TH, Mendum TA et al (2000) Detection of the nematophagous fungus Verticillium chlamydosporium in nematode-infested plant roots using PCR. Mycol Res 104:435–439

    CAS  Google Scholar 

  • Hirsch PR, Atkins SD, Mauchline TH et al (2001) Methods for studying the nematophagous fungus Verticillium chlamydosporium in the root environment. Plant Soil 232:21–30

    CAS  Google Scholar 

  • Ishibashi N, Kondo E (1986) Steinernema feltiae (DD-136) and S. glaseri: persistence in soil and bark compost and their influence on native nematodes. J Nematol 18:310–316

    PubMed  CAS  Google Scholar 

  • Jacobs H, Gray SN, Crump DH (2003) Interactions between nematophagous fungi and consequences for their potential as biological agents for the control of potato cyst nematodes. Mycol Res 107:47–56

    PubMed  Google Scholar 

  • Jaffee BA (1999) Enchytraeids and nematophagous fungi in tomato fields and vineyards. Phytopathology 89:398–406

    PubMed  CAS  Google Scholar 

  • Jaffee BA (2002) Soil cages for studying how organic amendments affect nematode-trapping fungi. Appl Soil Ecol 21:1–9

    Google Scholar 

  • Jaffee BA (2004) Do organic amendments enhance the nematode-trapping fungi Dactylellina haptotyla and Arthrobotrys oligospora? J Nematol 36:267–275

    PubMed  CAS  Google Scholar 

  • Jaffee BA (2006) Interactions among a soil organic amendment, nematodes, and the nematode-trapping fungus Dactylellina candidum. Phytopathology 96:1388–1396

    PubMed  CAS  Google Scholar 

  • Jaffee BA, Muldoon AE (1997) Suppression of the root-knot nematode Meloidogyne javanica by alginate pellets containing the nematophagous fungi Hirsutella rhossiliensis, Monacrosporium cionopagum and M. ellipsosporum. Biocontrol Sci Technol 7:203–217

    Google Scholar 

  • Jaffee BA, Ferris H, Stapleton JJ et al (1994) Parasitism of nematodes by the fungus Hirsutella rhossiliensis as affected by certain organic amendments. J Nematol 26:152–161

    PubMed  CAS  Google Scholar 

  • Jaffee BA, Muldoon AE, Westerdahl BB (1996) Failure of a mycelial formulation of the nematophagous fungus Hirsutella rhossiliensis to suppress the nematode Heterodera schachtii. Biol Control 6:340–346

    Google Scholar 

  • Jaffee BA, Muldoon AE, Didden WAM (1997) Enchytraeids and nematophagous fungi in soil microcosms. Biol Fertil Soils 25:382–388

    Google Scholar 

  • Jaffee BA, Ferris F, Scow KM (1998) Nematode-trapping fungi in organic and conventional cropping systems. Phytopathology 88:344–350

    PubMed  CAS  Google Scholar 

  • Jagdale GB, Grewal PS (2002) Identification of alternatives for the management of foliar nematodes in floriculture. Pest Manag Sci 58:451–458

    PubMed  CAS  Google Scholar 

  • Jagdale GB, Somasekhar N, Grewal PS et al (2002) Suppression of plant-parasitic nematodes by application of live and dead infective juveniles of an entomopathogenic nematode, Steinernema carpocapsae, on boxwood (Buxus spp.). Biol Control 24:42–49

    Google Scholar 

  • Jagdale GB, Kamoun S, Grewal PS (2009) Entomopathogenic nematodes induce components of systemic resistance in plants: biochemical and molecular evidence. Biol Control 51:102–109

    CAS  Google Scholar 

  • Kariuki GM, Dickson DW (2007) Transfer and development of Pasteuria penetrans. J Nematol 39:55–61

    PubMed  CAS  Google Scholar 

  • Kaşkavalci G, Tüzel Y, Dura O et al (2009) Effects of alternative control methods against Meloidogyne incognita in organic tomato production. Ekoloji 18:23–31

    Google Scholar 

  • Katan J, DeVay JE (1991) Soil solarization. CRC Press, Boca Raton

    Google Scholar 

  • Kerry BR (1995) Ecological considerations for the use of the nematophagous fungus Verticillium chlamydosporium, to control plant parasitic nematodes. Can J Bot 73:65–70

    Google Scholar 

  • Kerry BR (2001) Exploitation of the nematophagous fungus Verticillium chlamydosporium Goddard for the biological control of root-knot nematodes (Meloidogyne spp.). In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents. CAB International, Wallingford

    Google Scholar 

  • Kerry BR, Crump DH (1998) The dynamics of the decline of the cereal cyst nematode, Heterodera avenae, in four soils under intensive cereal production. Fund Appl Nematol 21:617–625

    Google Scholar 

  • Khan Z, Kim YH (2007) A review on the role of predatory soil nematodes in the biological control of plant parasitic nematodes. Appl Soil Ecol 35:370–379

    Google Scholar 

  • Khan TA, Saxena SK (1997) Effect of root-dip treatment with culture filtrates of on root penetration, development and reproduction of Meloidogyne javanica on tomato. Int J Nematol 7:85–88

    Google Scholar 

  • Khan A, Williams KL, Nevalainen HKM (2006) Control of plant-parasitic nematodes by Paecilomyces lilacinus and Monacrosporium lysipagum in pot trials. Biocontrol 51:643–658

    Google Scholar 

  • Kiewnick S, Sikora RA (2006) Evaluation of Paecilomyces lilacinus strain 251 for the biological control of the northern root-knot nematode Meloidogyne hapla Chitwood. Nematology 8:69–78

    Google Scholar 

  • Kladivko EJ (2001) Tillage systems and soil ecology. Soil Tillage Res 61:61–76

    Google Scholar 

  • Kloepper JW, Rodriguez KR, McInroy JA et al (1992) Rhizosphere bacteria antagonistic to soybean cyst Heterodera glycines and root-knot Meloidogyne incognita nematodes identification by fatty acid analysis and frequency of biological control activity. Plant Soil 139:75–84

    CAS  Google Scholar 

  • Kluepfel DA, McInnis TM, Zehr EI (1993) Involvement of root-colonizing bacteria in peach orchard soils suppressive of the nematode Criconemella xenoplax. Phytopathology 83:1240–1245

    Google Scholar 

  • Kluepfel DA, Nyczepir AP, Lawrence JE et al (2002) Biological control of the phytoparasitic nematode Mesocriconema xenoplax on peach trees. J Nematol 34:120–123

    PubMed  CAS  Google Scholar 

  • Kok CJ, Papert A, Hok-A-Hin CH (2001) Microflora of Meloidogyne egg masses: species composition, population density and effect on the biocontrol agent Verticillium chlamydosporium (Goddard). Nematology 3:729–734

    Google Scholar 

  • Kokalis-Burelle N, Dickson DW (2003) Effects of soil fumigants and BioYieldTM on root-knot nematode incidence and yield of tomato. In: Proceedings of international research conference on methyl bromide: alternatives and emissions reductions, San Diego, pp 50.51–50.53

    Google Scholar 

  • Kokalis-Burelle N, Vavrina CS, Rosskopf EN et al (2002) Field evaluation of plant growth-promoting Rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238:257–266

    CAS  Google Scholar 

  • Kumar T, Wahla V, Pandey P et al (2009) Rhizosphere competent Pseudomonas aeruginosa in the management of Heterodera cajani on sesame. World J Microbiol Biotechnol 25:277–285

    Google Scholar 

  • Lara Martez J, Acosta N, Betancourt C et al (1996) Biological control of Meloidogyne incognita in tomato in Puerto Rico. Nematropica 26:143–152

    Google Scholar 

  • Li L, Mo MH, Qu Q et al (2007) Compounds inhibitory to nematophagous fungi produced by Bacillus sp strain H6 isolated from fungistatic soil. Eur J Plant Pathol 117:329–340

    CAS  Google Scholar 

  • Madulu JD, Trudgill DL, Phillips MS (1994) Rotational management of Meloidogyne javanica and effects on Pasteuria penetrans and tomato and tobacco yields. Nematologica 40:438–455

    Google Scholar 

  • Maehara N (2008) Reduction of Bursaphelenchus xylophilus (Nematoda: Parasitaphelen-chidae) population by inoculating Trichoderma spp. into pine wilt-killed trees. Biol Control 44:61–66

    Google Scholar 

  • Mankau R (1962) Soil fungistasis and nematophagous fungi. Phytopathology 52:611–615

    Google Scholar 

  • Mankau R, Prasad N (1972) Possibilities and problems in the use of a sporozoan endoparasite for biological control of plant-parasitic nematodes. Nematropica 2:7–8

    Google Scholar 

  • Manzanilla-López RH, Atkins SD, Clark IM et al (2009a) Measuring abundance, diversity and parasitic ability in two populations of the nematophagous fungus Pochonia chlamydosporia var. chlamydosporia. Biocontrol Sci Technol 19:391–406

    Google Scholar 

  • Manzanilla-López RH, Clark IM, Atkins SD et al (2009b) Rapid and reliable DNA extraction and PCR fingerprinting methods to discriminate multiple biotypes of the nematophagous fungus Pochonia chlamydosporia isolated from plant rhizospheres. Lett Appl Microbiol 48:71–76

    PubMed  Google Scholar 

  • Mauchline TH, Kerry BR, Hirsch PR (2002) Quantification in soil and the rhizosphere of the nematophagous fungus Verticillium chlamydospotium by competitive PCR and comparison with selective plating. Appl Environ Microbiol 68:1846–1853

    PubMed  CAS  Google Scholar 

  • Mauchline TH, Kerry BR, Hirsch PR (2004) The biocontrol fungus Pochonia chlamydosporia shows nematode host preference at the infraspecific level. Mycol Res 108:161–169

    PubMed  Google Scholar 

  • Mazzola M (2007) Manipulation of rhizosphere bacterial communities to induce suppressive soils. J Nematol 39:213–220

    PubMed  Google Scholar 

  • McInnis TM, Jaffee BA (1989) An assay for Hirsutella rhossiliensis spores and the importance of phialides for nematode inoculation. J Nematol 21:229–234

    PubMed  CAS  Google Scholar 

  • McSorley R, Wang KH, Kokalis-Burelle N et al (2006) Effects of soil type and steam on nematode biological control potential of the rhizosphere community. Nematropica 36:197–214

    Google Scholar 

  • Meyer SLF (2003) United States Department of Agriculture – Agricultural Research Service research programs on microbes for management of plant-parasitic nematodes. Pest Manag Sci 59:665–670

    PubMed  CAS  Google Scholar 

  • Meyer SLF, Roberts DP (2002) Combinations of biocontrol agents for management of plant-parasitic nematodes and soilborne plant-pathogenic fungi. J Nematol 34:1–8

    PubMed  Google Scholar 

  • Meyer SLF, Roberts DP, Chitwood DJ et al (2001) Application of Burkholderia cepacia and Trichoderma virens, alone and in combinations, against Meloidogyne incognita on bell pepper. Nematropica 31:75–86

    Google Scholar 

  • Minton NA, Sayre RM (1989) Suppressive influence of Pasteuria penetrans in Georgia USA soils on reproduction of Meloidogyne arenaria. J Nematol 21:574–575

    Google Scholar 

  • Monfort E, Lopez-Llorca LV, Jansson HB et al (2006) In vitro soil receptivity assays to egg-parasitic nematophagous fungi. Mycol Prog 5:18–23

    Google Scholar 

  • Morton CO, Hirsch PR, Peberdy JP et al (2003) Cloning of and genetic variation in protease VCP1 from the nematophagous fungus Pochonia chlamydosporia. Mycol Res 107:38–46

    PubMed  CAS  Google Scholar 

  • Muller J (1985) The influence of two pesticides on fungal parasites of Heterodera schachtii. Colloques INRA 31:225–231

    Google Scholar 

  • Noel GR (1990) Inability of a seed treatment with Pseudomonas cepacia to control Heterodera glycines on soybean. J Nematol 22:792–794

    PubMed  CAS  Google Scholar 

  • Notz R, Maurhofer M, Schnider-Keel U et al (2001) Biotic factors affecting expression of the 2, 4-diacetylphloroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathology 91:873–881

    PubMed  CAS  Google Scholar 

  • Notz R, Maurhofer M, Dubach H et al (2002) Fusaric acid-producing strains of Fusarium oxysporum alter 2, 4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat. Appl Environ Microbiol 68:2229–2235

    PubMed  CAS  Google Scholar 

  • Nyczepir AP, Shapiro-Ilan DI, Lewis EE et al (2004) Effect of entomopathogenic nematodes on Mesocriconema xenoplax populations in peach and pecan. J Nematol 36:181–185

    PubMed  CAS  Google Scholar 

  • Okubara PA, Schroeder KL, Paulitz TC (2005) Real-time polymerase chain reaction: applications to studies on soilborne pathogens. Can J Plant Pathol 27:300–313

    CAS  Google Scholar 

  • Olatinwo R, Becker JO, Borneman J (2006a) Suppression of Heterodera schachtii populations by Dactylella oviparasitica in four soils. J Nematol 38:345–348

    PubMed  Google Scholar 

  • Olatinwo R, Borneman J, Becker JO (2006b) Induction of beet-cyst nematode suppressiveness by the fungi Dactylella oviparasitica and Fusarium oxysporum in field microplots. Phytopa-thology 96:855–859

    PubMed  Google Scholar 

  • Olatinwo R, Yin B, Becker JO et al (2006c) Suppression of the plant-parasitic nematode Heterodera schachtii by the fungus Dactylella oviparasitica. Phytopathology 96:111–114

    PubMed  Google Scholar 

  • Oyekanmi EO, Coyne DL, Fagade OE et al (2007) Improving root-knot nematode management on two soybean genotypes through the application of Bradyrhizobium japonicum, Trichoderma pseudokoningii and Glomus mosseae in full factorial combinations. Crop Prot 26:1006–1012

    Google Scholar 

  • Parvatha Reddy P, Rao MS, Nagesh M (1996) Management of the citrus nematode, Tylenchulus semipenetrans, by integration of Trichoderma harzianum with oil cakes. Nematol Medit 24:265–267

    Google Scholar 

  • Perez EE, Lewis EE (2006) Use of entomopathogenic nematodes and thyme oil to suppress plant-parasitic nematodes on English boxwood. Plant Dis 90:471–475

    Google Scholar 

  • Persmark L (1997) Ecology of nematophagous fungi in agricultural soils. Ph.D. thesis, Lund University, Lund

    Google Scholar 

  • Pickett CH, Bugg RL (1998) Enhancing biological control. University of California Press, Berkeley

    Google Scholar 

  • Pocasangre LE, zum Felde A, Canizares C et al (2007) Field evaluation of the antagonistic activity of endophytic fungi towards the burrowing nematode, Rhadopholus similis, in plantain in Latin America. In: ISHS/ProMusa symposium: Recent advances in banana crop protection for sustainable production and improved livelihoods, White River

    Google Scholar 

  • Pyrowolakis A, Schuster RP, Sikora RA (1999) Effect of cropping pattern and green manure on the antagonistic potential and the diversity of egg pathogenic fungi in fields with Heterodera schachtii infection. Nematology 1:165–171

    Google Scholar 

  • Pyrowolakis A, Westphal A, Sikora RA et al (2002) Identification of root-knot nematode suppressive soils. Appl Soil Ecol 19:51–56

    Google Scholar 

  • Rao MS, Parvatha Reddy P, Nagesh M (1998) Evaluation of plant based formulations of Trichoderma harzianum for the management of Meloidogyne incognita on egg plant. Nematol Medit 26:59–62

    Google Scholar 

  • Roberts PA (1993) The future of nematology: integration of new and improved management strategies. J Nematol 25:383–394

    PubMed  CAS  Google Scholar 

  • Robinson AF, Westphal A, Overstreet C et al (2008) Detection of suppressiveness against Rotylenchulus reniformis in soil from cotton (Gossypium hirsutum) fields in Texas and Louisiana. J Nematol 40:35–38

    PubMed  Google Scholar 

  • Ruberson JR, Nemoto H, Hirose Y (1998) Pesticides and conservation of natural enemies in pest management. In: Barbosa P (ed) Conservation biological control. Academic, San Diego

    Google Scholar 

  • Rumbos CI, Kiewnick S (2006) Effect of plant species on persistence of Paecilomyces lilacinus strain 251 in soil and on root colonization by the fungus. Plant Soil 283:25–31

    CAS  Google Scholar 

  • Samac DA, Kinkel LL (2001) Suppression of the root-lesion nematode (Pratylenchus penetrans) in alfalfa (Medicago sativa) by Streptomyces spp. Plant Soil 235:35–44

    CAS  Google Scholar 

  • Santos MA, Ferraz S, Muchovej JJ (1992) Evaluation of 20 species of fungi from Brazil for biocontrol of Meloidogyne incognita race 3. Nematropica 22:183–192

    Google Scholar 

  • Schmidt LM, Preston JF, Dickson DW et al (2003) Environmental quantification of Pasteuria penetrans endospores using in situ antigen extraction and immunodetection with a monoclonal antibody. FEMS Microbiol Ecol 44:17–26

    PubMed  CAS  Google Scholar 

  • Schmidt LM, Preston JF, Nong G et al (2004) Detection of Pasteuria penetrans infection in Meloidogyne arenaria race 1 in planta by polymerase chain reaction. FEMS Microbiol Ecol 48:457–464

    PubMed  CAS  Google Scholar 

  • Sharon E, Bar-Eyal M, Chet I et al (2001) Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology 91:687–693

    PubMed  CAS  Google Scholar 

  • Sharon E, Chet I, Viterbo A et al (2007) Parasitism of Trichoderma on Meloidogyne javanica and role of the gelatinous matrix. Eur J Plant Pathol 118:247–258

    Google Scholar 

  • Siddiqui IA, Ehteshamul-Haque S (2001) Suppression of the root rot-root knot disease complex by Pseudomonas aeruginosa in tomato: the influence of inoculum density, nematode populations, moisture and other plant-associated bacteria. Plant Soil 237:81–89

    CAS  Google Scholar 

  • Siddiqui ZA, Mahmood I (1996) Biological control of plant parasitic nematodes by fungi: a review. Bioresour Technol 58:229–239

    CAS  Google Scholar 

  • Siddiqui MA, Shaukat SS (2002) Mixtures of plant disease suppressive bacteria enhance biological control of multiple tomato pathogens. Biol Fertil Soils 36:260–268

    Google Scholar 

  • Siddiqui IA, Shaukat SS (2003a) Non-pathogenic Fusarium solani represses the biosynthesis of nematicidal compounds in vitro and reduces the biocontrol of Meloidogyne javanica by Pseudomonas fluorescens in tomato. Lett Appl Microbiol 37:109–114

    PubMed  CAS  Google Scholar 

  • Siddiqui IA, Shaukat SS (2003b) Plant species, host age and host genotype effects on Meloidogyne incognita biocontrol by Pseudomonas fluorescens strain CHA0 and its genetically-modified derivatives. J Phytopathol 151:231–238

    Google Scholar 

  • Siddiqui IA, Shaukat SS (2003c) Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2, 4-diacetylpholoroglucinol. Soil Biol Biochem 35:1615–1623

    CAS  Google Scholar 

  • Siddiqui IA, Shaukat SS (2004) Trichoderma harzianum enhances the production of nematicidal compounds in vitro and improves biocontrol of Meloidogyne javanica by Pseudomonas fluorescens in tomato. Lett Appl Microbiol 38:169–175

    PubMed  CAS  Google Scholar 

  • Siddiqui IA, Shaukat SS (2005) Phenylacetic acid-producing Rhizoctonia solani represses the biosynthesis of nematicidal compounds in vitro and influences biocontrol of Meloidogyne incognita in tomato by Pseudomonas fluorescens strain CHA0 and its GM derivatives. J Appl Microbiol 98:43–55

    PubMed  CAS  Google Scholar 

  • Siddiqui IA, Shaukat SS, Khan A (2004) Differential impact of some Aspergillus species on Meloidogyne javanica biocontrol by Pseudomonas fluorescens strain CHA0. Lett Appl Microbiol 39:74–83

    PubMed  CAS  Google Scholar 

  • Siddiqui IA, Atkins SD, Kerry BR (2009) Relationship between saprotrophic growth in soil of different biotypes of Pochonia chlamydosporia and the infection of nematode eggs. Ann Appl Biol 155:131–141

    Google Scholar 

  • Smith ME, Jaffee BA (2009) PCR primers with enhanced specificity for nematode-trapping fungi (Orbiliales). Microb Ecol 58:117–128

    PubMed  CAS  Google Scholar 

  • Smith KS, Hewlett TE, Griswold S (2004) Pasteuria for nematode control: development of a commercial production process. In: Proceedings of the 2004 annual international research conference on methyl bromide alternatives and emissions reductions Orlando, #44. http://www.mbao.org/2004/Proceedings04/mbrpro04.html

  • Smitley DR, Warner FW, Bird GW (1992) Influence of irrigation and Heterorhabditis bacteriophora on plant-parasitic nematodes in turf. J Nematol 24:637–641

    PubMed  CAS  Google Scholar 

  • Sorribas FJ, Ornat C, Galeano M et al (2003) Evaluation of a native and introduced isolate of Pochonia chlamydosporia against Meloidogyne javanica. Biocontrol Sci Technol 13:707–714

    Google Scholar 

  • Spaull VW (1984) Observations of Bacillus penetrans infecting Meloidogyne in sugarcane fields in South Africa. Rev Nematol 7:277–282

    Google Scholar 

  • Starr JL, Ong KL, Huddleston M et al (2007) Control of Meloidogyne marylandi on bermudagrass. Nematropica 37:43–49

    Google Scholar 

  • Stirling GR (1984) Biological control of Meloidogyne javanica with Bacillus penetrans. Phytopathology 74:55–60

    Google Scholar 

  • Stirling GR (1991) Biological control of plant-parasitic nematodes: progress problems and prospects. C.A.B International, Wallingford

    Google Scholar 

  • Stirling GR, Smith LJ (1998) Field tests of formulated products containing either Verticillium chlamydosporium or Arthrobotrys dactyloides for biological control of root-knot nematodes. Biol Control 11:231–239

    Google Scholar 

  • Stirling GR, McKenry MV, Mankau R (1979) Biological control of root-knot nematodes (Meloidogyne spp.) on peach. Phytopathology 69:806–809

    Google Scholar 

  • Stirling GR, Wilson EJ, Stirling AM et al (2005) Amendments of sugarcane trash induce suppressiveness to plant-parasitic nematodes in a sugarcane soil. Aust Plant Pathol 34:203–211

    Google Scholar 

  • Talavera M, Mizukubo T, Ito K et al (2002) Effect of spore inoculum and agricultural practices on the vertical distribution of the biocontrol plant-growth-promoting bacterium Pasteuria penetrans and growth of Meloidogyne incognita-infected tomato. Biol Fertil Soils 35:435–440

    Google Scholar 

  • Tedford EC, Jaffee BA, Muldoon AE et al (1993) Parasitism of Heterodera schachtii and Meloidogyne javanica by Hirsutella rhossiliensis in microplots over two growing seasons. J Nematol 25:427–433

    PubMed  CAS  Google Scholar 

  • Terefe M, Tefera T, Sakhuja PK (2009) Effect of a formulation of Bacillus firmus on root-knot nematode Meloidogyne incognita infestation and the growth of tomato plants in the greenhouse and nursery. J Invertebr Pathol 100:94–99

    PubMed  Google Scholar 

  • Timm L, Pearson D, Jaffee B (2001) Nematode-trapping fungi in conventionally and organically managed corn-tomato rotations. Mycologia 93:25–29

    Google Scholar 

  • Timper P, Minton NA, Johnson AW et al (2001) Influence of cropping systems on stem rot (Sclerotium rolfsii), Meloidogyne arenaria, and the nematode antagonist Pasteuria penetrans in peanut. Plant Dis 85:767–772

    Google Scholar 

  • Tobin JD, Haydock PPJ, Hare MC et al (2008a) The compatibility of the fungicide azoxystrobin with Pochonia chlamydosporia, a biological control agent for potato cyst nematodes (Globodera spp.). Ann Appl Biol 152:301–305

    CAS  Google Scholar 

  • Tobin JD, Haydock PPJ, Hare MC et al (2008b) Effect of the fungus Pochonia chlamydosporia and fosthiazate on the multiplication rate of potato cyst nematodes (Globodera pallida and G. rostochiensis) in potato crops grown under UK field conditions. Biol Control 46:194–201

    Google Scholar 

  • Trudgill DL, Bala G, Blok VC et al (2000) The importance of tropical root-knot nematodes (Meloidogyne spp.) and factors affecting the utility of Pasteuria penetrans as a biocontrol agent. Nematology 2:823–845

    Google Scholar 

  • Tzortzakakis EA (2000) The effect of Verticillium chlamydosporium and oxamyl on the control of Meloidogyne javanica on tomatoes grown in a plastic house in Crete, Greece. Nematol Medit 28:249–254

    Google Scholar 

  • Tzortzakakis EA, Gowen SR (1994) Evaluation of Pasteuria penetrans alone and in combination with oxamyl, plant resistance and solarization for control of Meloidogyne spp. on vegetables grown in greenhouses in Crete. Crop Prot 13:455–462

    Google Scholar 

  • Tzortzakakis EA, Petsas SE (2003) Investigation of alternatives to methyl bromide for management of Meloidogyne javanica on greenhouse grown tomato. Pest Manag Sci 59:1311–1320

    PubMed  CAS  Google Scholar 

  • Tzortzakakis EA, Gowen SR, Goumas DE (1996) Decreased ability of Pasteuria penetrans spores to attach to successive generations of Meloidogyne javanica. Fund Appl Nematol 19:201–204

    Google Scholar 

  • van den Boogert PHJF, Velvis H, Ettema CH et al (1994) The role of organic matter in the population dynamics of the endoparasitic nematophagous fungus Drechmeria coniospora in microcosms. Nematologica 40:249–257

    Google Scholar 

  • Verdejo-Lucas S, Sorribas FJ, Ornat C et al (2003) Evaluating Pochonia chlamydosporia in a double-cropping system of lettuce and tomato in plastic houses infested with Meloidogyne javanica. Plant Pathol 52:521–528

    Google Scholar 

  • Wang KH, Sipes BS, Schmitt DP (2002) Management of Rotylenchulus reniformis in pineapple, Ananas comosus, by intercycle cover crops. J Nematol 34:106–114

    PubMed  Google Scholar 

  • Wang KH, Sipes BS, Schmitt DP (2003) Enhancement of Rotylenchulus reniformis suppressiveness by Crotalaria juncea amendment in pineapple soils. Agric Ecosyst Environ 94:197–203

    Google Scholar 

  • Wang KH, McSorley R, Gallaher RN (2004) Effect of Crotalaria juncea amendment on squash infected with Meloidogyne incognita. J Nematol 36:290–296

    PubMed  CAS  Google Scholar 

  • Wei BQ, Xue QY, Wei LH et al (2009) A novel screening strategy to identify biocontrol fungi using protease production or chitinase activity against Meloidogyne root-knot nematodes. Biocontrol Sci Technol 19:859–870

    Google Scholar 

  • Weibelzahl-Fulton E, Dickson DW, Whitty EB (1996) Suppression of Meloidogyne incognita and M. javanica by Pasteuria penetrans in field soil. J Nematol 28:43–49

    PubMed  CAS  Google Scholar 

  • Weller DM, Landa BB, Mavrodi OV et al (2007) Role of 2, 4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biol 9:4–20

    PubMed  CAS  Google Scholar 

  • Westphal A (2005) Detection and description of soils with specific nematode suppressiveness. J Nematol 37:121–130

    PubMed  Google Scholar 

  • Westphal A, Becker JO (1999) Biological suppression and natural population decline of Heterodera schachtii in a California field. Phytopathology 89:434–440

    PubMed  CAS  Google Scholar 

  • Westphal A, Becker JO (2000) Transfer of biological suppressiveness against Heterodera schachtii. Phytopathology 90:401–406

    PubMed  CAS  Google Scholar 

  • Westphal A, Becker JO (2001a) Components of soil suppressiveness against Heterodera schachtii. Soil Biol Biochem 33:9–16

    CAS  Google Scholar 

  • Westphal A, Becker JO (2001b) Soil suppressiveness to Heterodera schachtii under different cropping sequences. Nematology 3:551–558

    Google Scholar 

  • Yin B, Valinsky L, Gao XB et al (2003) Identification of fungal rDNA associated with soil suppressiveness against Heterodera schachtii using oligonucleotide fingerprinting. Phytopa-thology 93:1006–1013

    PubMed  CAS  Google Scholar 

  • Zhang L, Liu XZ, Zhu SF et al (2006) Detection of the nematophagous fungus Hirsutella rhossiliensis in soil by real-time PCR and parasitism bioassay. Biol Control 36:316–323

    CAS  Google Scholar 

  • Zhu ML, Mo MH, Xia ZY et al (2006) Detection of two fungal biocontrol agents against root-knot nematodes by RAPD markers. Mycopathologia 161:307–316

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Timper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Timper, P. (2011). Utilization of Biological Control for Managing Plant-Parasitic Nematodes. In: Davies, K., Spiegel, Y. (eds) Biological Control of Plant-Parasitic Nematodes:. Progress in Biological Control, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9648-8_11

Download citation

Publish with us

Policies and ethics