Protein Phosphotase 1α Reverses UNC-51 Phosphorylations of Both Actins and Tubulins and a New Model of UNC-51-Inducing Axon Formation

  • Huaize Tian
  • Sanetaka Shirahata
Conference paper
Part of the Animal Cell Technology: Basic & Applied Aspects book series (ANICELLTECH, volume 15)


Because UNC-51 can promote depolymerization-dynamics of microtubules (being submitted to Science Signaling), and Protein phosphotase 1α has microtubule-stabilizing functions (Liao, et al., 1998), we showed that protein phosphotase 1α efficiently dephosphorylated UNC-51 phosphorylations of actins and tubulins, and hypothesized a new model of UNC-51-inducing axon formation.


kinase UNC-51 tubulin actin depolymerization PP1 axon formation model 



We are very thankful to Drs. K. Hayashi and T. Tahira, T. Tani, K. Nakayama, A. Yamanaka, K. Mizuno, K. Tawada, Y. Emoto, H. Arata, K. Katayama, Y. Fujiki, Y. Fukumaki, M. Kimura, S. Osaki, I. Ito and Y. Kato for kindly providing pCAGGS vector, COS cells, HeLa cells, HEK293T cells, pUcD2SRαMCS, Beckman Optima centrifuge, French press, the computer system, kind discussion, advice, help and encouragement. We express sincere gratitude to all members of both laboratories for their help and encouragement.


  1. 1.
    Liao, H., Li, Y., Brautigan, D.L. and Gundersen, G.G. (1998). Protein phosphatase 1 is targeted to microtubules by the microtubule-associated protein tau. J. Biol. Chem. 273, 21901–21908.CrossRefPubMedGoogle Scholar
  2. 2.
    Gurland, G. and Gundersen, G.G. (1993). Protein phosphatase inhibitors induce the selective breakdown of stable microtubules in fibroblasts and epithelial cells. Proc. Natl. Acad. Sci. USA 90, 8827–8831.CrossRefGoogle Scholar
  3. 3.
    Maier, G.D., Wright, M.A., Lozano, Y., Djordjevic, A., Matthews, J.P. and Young, M.R.I. (1995). Regulation of cytoskeletal organization in tumor cells by protein phosphatase- 1 and 2A. Int. J. Cancer 61, 54–61.CrossRefPubMedGoogle Scholar
  4. 4.
    Stephanie, L.B. et al (2007). Spinophilin facilitates PP1-mediated dephosphorylation of pSer297 doublecortin in microtubule bundling at the axonal “wrist”. Cell 129, 579–591.CrossRefGoogle Scholar
  5. 5.
    Andersen, S.S.L. and Guo-qiang Bi. (2000). Axon formation: a molecular model for the generation of neuronal polarity. BioEssays 22, 172–179.CrossRefPubMedGoogle Scholar
  6. 6.
    Dent, E.W. and Kalil, K. (2001). Axon branching requires interactions between dynamic microtubules and actin filaments. J. Neurosci. 21, 9757–9769.PubMedGoogle Scholar
  7. 7.
    Edson, K., Weisshaar, B. and Matus, A. (1993). Actin depolymerisation induces process formation on MAP2-transfected non-neuronal cells. Development 117, 689–700.PubMedGoogle Scholar
  8. 8.
    Bradke, F. and Dotti, C.G. (1999). The role of local actin instability in axon formation. Science 283, 1931–1934.CrossRefPubMedGoogle Scholar
  9. 9.
    Grenningloh, G., Soehrman, S., Bondallaz, P., Ruchti, E. and Cadas, H. (2004). Role of the microtubule destabilizing proteins SCG10 and stathmin in neuronal growth. J. Neurobiol. 58, 60–69.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Huaize Tian
    • 1
    • 2
    • 3
  • Sanetaka Shirahata
    • 2
  1. 1.Department of Biology, Faculty of ScienceKyushu UniversityFukuokaJapan
  2. 2.Laboratory of Cellular Regulation Technology, Graduate School of Systems Life SciencesKyushu UniversityFukuokaJapan
  3. 3.Neuronal Neo-Cytoskeletonology, International Health and Life Science Center Co., Ltd.FukuokaJapan

Personalised recommendations