Hyperspectral Applications in Urban Geography

  • Vijay Lulla
Part of the Geotechnologies and the Environment book series (GEOTECH, volume 1)


This chapter examines the scale and scope of hyperspectral remote sensing applications and presents a brief case study. As the case study demonstrates, hyperspectral approaches expand the range and accuracy of very fine scale urban studies.


Hyperspectral data Remote sensing Terre Haute 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J. R., Hardy, E. E., Roach, J. T., and Witmer, R. E. (1976). A land use and land cover classification system for use with remote sensor data. Paper presented at the Geological Survey Professional Paper.Google Scholar
  2. Chou, T. Y., Lei, T. C., Wan, S., and Yang, L. S. (2005). Spatial knowledge databases as applied to the detection of changes in urban land use. International Journal of Remote Sensing, 26[s](14), 3047–3068.CrossRefGoogle Scholar
  3. Clark, R. N., Swayze, G. A., Wise, R. A., Livo, K. E., Hoefen, T. M., Kokaly, R. F., et al. (2007). USGS Digital Spectral Library splib06a.Google Scholar
  4. Hardin, P. J., and Jensen, R. R. (2005). Neural network estimation of urban leaf area index. GIScience and Remote Sensing, 42[s](3), 229–252.Google Scholar
  5. Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote sensing of environment, 25, 53–70.CrossRefGoogle Scholar
  6. Jensen, J. R. (2000). Remote sensing of the environment: an earth resource perspective. New Jersey: Prentice Hall.Google Scholar
  7. Jensen, R. (2002). Spatial and temporal leaf area index dynamics in a north central Florida, USA Preserve. Geocarto International, 17[s](4), 47–54.CrossRefGoogle Scholar
  8. Jensen, R. R., and Binford, M. W. (2004). Measurement and comparison of Leaf Area Index estimators derived from satellite remote sensing techniques. International Journal of Remote Sensing, 25[s](20), 4251–4265.CrossRefGoogle Scholar
  9. Jensen, R. R., Boulton, J. R., and Harper, B. T. (2003). The relationship between urban leaf area index and household energy usage in Terre Haute, Indiana, U.S. Journal of Arboriculture, 29[s](4), 226–229.Google Scholar
  10. Jensen, R.R., Hardin, P. J., Bekker, M. F., Farnes, D. A., Lulla, V., and Hardin, A. (in press). Modeling urban leaf area index with AISA${+}$ hyperspectral data. Applied Geography.Google Scholar
  11. Li, G., and Weng, Q. (2007). Measuring the quality of life in city of Indianapolis by integration of remote sensing and census data. International Journal of Remote Sensing, 28[s](2), 249–267.CrossRefGoogle Scholar
  12. Lillesand, T. M., Kiefer, R. W., and Chipman, J. W. (2004). Remote Sensing and Image Interpretation (Fifth edn): John Wiley and Sons Inc.Google Scholar
  13. Liu, X., and Lathrop, R. G. (2002). Urban change detection based on an artificial neural network. International Journal of Remote Sensing, 23(12), 2513–2518.CrossRefGoogle Scholar
  14. Lu, D., Mausel, P., Brondìzio, E., and Moran, E. (2004). Change detection techniques. International Journal of Remote Sensing, 25(12), 2365–2401.CrossRefGoogle Scholar
  15. Lulla, V. O. (2005). Biomass estimation using statistical and neural network analysis of ASTER data. Indiana State University, Terre Haute, IN-47809 USA.Google Scholar
  16. Mundia, C. N., and Aniya, M. (2005). Analysis of land use/cover changes and urban expansion of Nairobi city using remote sensing and GIS. International Journal of Remote Sensing, 26(13), 2831–2849.CrossRefGoogle Scholar
  17. Muttitanon,W., and Tripathi, N. K. (2005). Land use/land cover changes in the coastal zone of Ban Don Bay, Thailand using Landsat 5 TM data. International Journal of Remote Sensing, 26(11), 2311–2323.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Vijay Lulla
    • 1
  1. 1.Department Geography, Geology, and AnthropologyIndiana State UniversityUSA

Personalised recommendations