Advertisement

Opportunities and challenges for the development of an integrated seaweed-based aquaculture activity in Chile: determining the physiological capabilities of Macrocystis and Gracilaria as biofilters

  • Alejandro H. Buschmann
  • Daniel A. Varela
  • María Carmen Hernández-González
  • Pirjo Huovinen
Chapter
Part of the Developments in Applied Phycology book series (DAPH, volume 2)

Abstract

Seaweed production is a reality in Chile. More than ten species are commercially used to produce phycocolloids, fertilizers, plant growth control products, human food or animal fodder and feed additives. These multiple uses of algae offer a number of possibilities for coupling this activity to salmon, abalone and filter-feeder farming. In this context, different experiments carried out in Chile have demonstrated that Gracilaria chilensis and Macrocystis pyrifera have great potential in the development of an integrated aquaculture strategy. The present Integrated Multi-Trophic Aquaculture (IMTA) approach study showed that Gracilaria can be cultured best at 1 m depth whereas Macrocystis has an especially good growth response at 3 m depth. Both species use available nitrogen efficiently. On the other hand, high intensities of solar radiation (UV and PAR) can be critical at low depths of cultivation, and our results indicate that both species show photosynthetic susceptibility mainly at noon during the summer. The demand of Macrocystis for abalone feeding is increasing, thus improving the opportunity for developing an integrated nutrient waste recycling activity in Chile. Although Gracilaria shows a higher nitrogen uptake capacity than Macrocystis, its market value does not yet allow a massive commercial scaling.

Keywords

Chile Gracilaria Integrated multi-trophic aquaculture Macrocystis Physiology Seaweeds as biofilters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arzul G, Seguel M, Clement A (2001) Effect of marine animal excretions on differential growth of phytoplankton species. ICES J Mar Sci 58:386–390CrossRefGoogle Scholar
  2. Bracken MES, Stachowicz JJ (2006) Seaweed diversity enhances nitrogen uptake via complementary use of nitrate and ammonium. Ecology 87:2397–2403PubMedCrossRefGoogle Scholar
  3. Bradstreet RB (1965) The Kjeldahl Method for Organic Nitrogen. Academic Press, New YorkGoogle Scholar
  4. Buschmann A, Fortt A (2005) Efectos ambientales de la acuicultura intensiva y alternativas para un desarrollo sustentable. Ambiente y Desarrollo 20:58–64Google Scholar
  5. Buschmann AH, Mora O, Gómez P, Böttger M, Buitano S, Retamales CA, Vergara PA, Gutierrez A (1994) Gracilaria chilensis outdoor tank cultivation in Chile: use of land-based salmon culture effluents. Aquat Eng 13:283–300CrossRefGoogle Scholar
  6. Buschmann AH, Troell M, Kautsky N, Kautsky L (1996a) Integrated tank cultivation of salmonids and Gracilaria chilensis (Rhodophyta). Hydrobiologia 326/327:75–82CrossRefGoogle Scholar
  7. Buschmann AH, López DA, Medina A (1996b) A review of the environmental effects and alternative production strategies of marine aquaculture in Chile. Aquat Eng 15:397–421CrossRefGoogle Scholar
  8. Buschmann AH, Troell M, Kautsky N (2001) Integrated algal farming: a review. Cah Biol Mar 42:83–90Google Scholar
  9. Buschmann AH, Vásquez JA, Osorio P, Reyes E, Filún L, Hernández-González MC, Vega A (2004) The effect of water movement, temperature and salinity on abundance and reproductive patterns of Macrocystis spp (Phaeophyta) at different latitudes in Chile. Mar Biol 145:849-862CrossRefGoogle Scholar
  10. Buschmann AH, Riquelme VA, Hernández-González MC, Varela DA, Jiménez JE, Henríquez L, Vergara PA, Guíñez R, Filún L (2006) A review of the impacts of salmon farming on marine coastal ecosystems in the southeast Pacific. ICES J Mar Sci 63:1338–1345CrossRefGoogle Scholar
  11. Buschmann AH, Hernández-González MC, Varela DA (2007) Seaweed future cultivation in Chile: perspectives and challenges. International Journal Environment and Pollution (in press)Google Scholar
  12. Chopin T, Buschmann AH, Halling C, Troell M, Kautsky N, Neori A, Kraemer GP, Zertuche-González JA, Yarish C, Neefus C (2001) Integrating seaweeds into aquaculture systems: a key towards sustainability. J Phycol 37:975–986CrossRefGoogle Scholar
  13. Chopin T, Robinson SMC, Troell M, Neori A, Buschmann AH, Fang J (2007) Ecological engineering: Multi-trophic integration for sustainable marine aquaculture. In: Encyclopedia of Ecology, Elsevier (in press)Google Scholar
  14. Chow F, De Oliveira MC, Pedersén M (2004) In vitro assay and light regulation of nitrate reductase in red alga Gracilaria chilensis. J Plant Physiol 161:769–776PubMedCrossRefGoogle Scholar
  15. Fortt A, Cabello F, Buschmann AH (2007) Residuos de tetraciclina y quinolonas en peces silvestres en una zona costera donde donde se desarrolla la acuicultura del salmón en Chile. Rev Chil Infect 24:8–12Google Scholar
  16. Gómez I, Figueroa FL, Ulloa N, Morales V, Lovengreen C, Huovinen P, Hess S (2004) Patterns of photosynthesis in 18 species of intertidal macroalgae from southern Chile. Mar Ecol Progr Ser 270:103–116CrossRefGoogle Scholar
  17. Gómez I, Figueroa FL, Huovinen P, Ulloa N, Morales V (2005) Photosynthesis of the red alga Gracilaria chilensis under natural solar radiation in an estuary in southern Chile. Aquaculture 244:369–382CrossRefGoogle Scholar
  18. Halling C, Aroca G, Cifuentes M, Buschmann AH, Troell M (2005) Comparison of suspended cultivation methods of Gracilaria chilensis in an integrated seaweed and fish cage culture. Aquacult Int 13:409–422CrossRefGoogle Scholar
  19. Huovinen P, Gómez I, Figueroa FL, Ulloa N, Morales V, Lovengreen C (2004) Ultraviolet-absorbing mycosporine-like amino acids in red macroalgae from Chile. Bot Mar 47:21–29CrossRefGoogle Scholar
  20. Huovinen P, Gómez I, Lovengreen C (2006a) A five-year study of solar ultraviolet radiation in southern Chile (39°S): potential impact on coastal marine algae? Photochem Photobiol 82:515–522PubMedCrossRefGoogle Scholar
  21. Huovinen P, Matos J, Sousa-Pinto I, Figueroa FL (2006b) The role of ammonium in photoprotection against high irradiance in the Mediterranean red alga Grateloupia lanceola. Aquat Bot 84:308–316CrossRefGoogle Scholar
  22. Hurd CL, Berges JA, Osborne JO, Harrison PJ (1995) An in vitro assay for marine macroalgae: optimization and characterization of the enzyme for Fucus gardneri (Phaeophyta). J Phycol 31:835–843CrossRefGoogle Scholar
  23. Gutierrez A, Correa T, Muñoz V, Santibáñez A, Marcos R, Cáceres C, Buschmann AH (2006) Farming of the giant kelp Macrocystis pyrifera in southern Chile for development of novel food products. J Appl Phycol 18:259–267CrossRefGoogle Scholar
  24. Korbee N, Huovinen P, Figueroa FL, Aguilera J, Karsten U (2005) Availability of ammonium influences photosynthesis and the accumulation of mycosporine-like amino acids in two Porphyra species (Bangiales, Rhodophyta). Mar Biol 146:645–654CrossRefGoogle Scholar
  25. Lobban CS, Harrison P (1994) Seaweed Ecology and Physiology. Cambridge University Press, CambridgeGoogle Scholar
  26. Miranda CD, Zemelman R (2002) Bacterial resistance to oxytetracycline in Chilean salmon farming. Aquaculture 212:31–47CrossRefGoogle Scholar
  27. Neori A, Chopin T, Troell M, Buschmann AH, Kraemer GP, Halling C, Shpigel M, Yarish C (2004) Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern aquaculture. Aquaculture 231:361–391CrossRefGoogle Scholar
  28. Sahoo D, Yarish C (2005) Mariculture of seaweeds. In: Andersen R (ed) Phycological Methods: Algal Culturing Techniques. Academic Press, New York, pp 219–237Google Scholar
  29. Sellner KG, Doucette GJ, Kirkpatrick GJ (2003) Harmful algal blooms: causes, impacts and detection. J Ind Microbiol Biotechnol 30:383–409PubMedCrossRefGoogle Scholar
  30. Sernapesca (1985) Anuario Estadístico de Pesca 1985. Servicio Nacional de Pesca, Ministerio de Economía Fomento y Reconstrucción, ValparaísoGoogle Scholar
  31. Sernapesca (2005) Publicaciones, Anuarios Estadísticos de Pesca; Desembarques y Acuicultura. http://www.sernapesca.cl.
  32. Soto D, Norambuena F (2004) Evaluation of salmon farming effects on marine systems in the inner seas of southern Chile: a large-scale mensurative experiment. J Appl Ichthyol 20:493–501CrossRefGoogle Scholar
  33. Soto D, Jara F, Moreno CA (2001) Escaped salmon in the inner seas, Southern Chile: Facing ecological and social conflicts. Ecol Appl 11:1750–1762CrossRefGoogle Scholar
  34. Strickland JDH, Parsons TR (1972) A practical handbook of sea-water analysis (2nd edn). Fish Res Bd Canada Bull 167:311Google Scholar
  35. Troell M, Halling C, Nilsson A, Buschmann AH, Kautsky N, Kautsky L (1997) Integrated open sea cultivation of Gracilaria chilensis (Gracilariales, Rhodophyta) and salmons for reduced environmental impact and increased economic output. Aquaculture 156:45–62CrossRefGoogle Scholar
  36. Troell M, Halling C, Neori A, Buschmann AH, Chopin T, Yarish C, Kautsky N (2003) Integrated mariculture: asking the right questions. Aquaculture 226:69–80CrossRefGoogle Scholar
  37. Trono Jr, GC (1993) Eucheuma and Kappaphycus: taxonomy and cultivation. In: Ohno M, Critchley AT (eds) Seaweed Cultivation and Marine Ranching. JICA, Yokosuka, pp 75–88Google Scholar
  38. Westermeier R, Patiño D, Piel MI, Maier I, Müller DG (2006) A new approach to kelp mariculture in Chile: production of free-floating sporophyte seedlings from gametophyte cultures of Lessonia trabeculata and Macrocystis pyrifera. Aquacult Res 37:164–171CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  • Alejandro H. Buschmann
    • 1
  • Daniel A. Varela
    • 1
  • María Carmen Hernández-González
    • 1
  • Pirjo Huovinen
    • 1
  1. 1.Centro I-MarUniversidad de Los LagosPuerto MonttChile

Personalised recommendations