Advertisement

Class Liliopsida (Monocotyledons)

Embryo, when differentiated, always with one cotyledon. The cotyledon usually with two main vascular bundles. Leaf venation striate or of derived types, mostly arcuate-striate or longitudinally striate (parallel), less often palmate-striate or pinnate-striate, almost always more or less closed at the apex (the veins emerging from the leaf base usually run together again at their apices). Leaves usually not clearly divided into petiole and lamina, less often more or less differentiated, but in these cases the “petiole” and the “lamina” are not homologous to those of magnoliopsids (are of secondary origin), often with sheathing base. Leaf traces usually numerous. Prophylls (including bracteoles) usually solitary and nearly always adaxial. Vascular bundles usually without cambium or rarely with vestigial cambium only. Vascular system of the stem usually consists of many separate scattered bundles or sometimes of two or more rings of vascular bundles, and the axis mostly attains its full diameter early, after which no increase in thickness takes place; only in some groups does thickening of the axis occur by means of division and enlargement of ground parenchyma cells (so-called diffuse secondary growth), as in palms, or by means of special kind of cambium that arises in the parenchyma outside the primary vascular system, as in some herbaceous and woody Lilianae. Sieve-element plastids of P-type with several to numerous cuneate (triangular) crystalloid bodies (lacking in all magnoliopsids studied except Saruma and Asarum in Aristolochiaceae). Phloem without parenchyma. Usually without clearly differentiated bark and pith. The primary root is usually ephemeral, dries out early in the growth of the plant, and is replaced by an adventitious root system that develops from the stem or (as in grasses) directly from the hypocotyl. Ontogenetically root cap and root epidermis are of different origin. Usually herbs, but often secondarily arborescent plants (primary woody plants are absent among the monocots). Flowers usually 3-merous, sometimes 4- or 2-merous, very rarely 5-merous. Nectaries predominantly septal. Pollen grains mostly 1-colpate (sulcate) or of derived types, often 1-porate.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arber A. 1920. Water plants: a study of aquatic angiosperms. Cambridge University Press, Cambridge.Google Scholar
  2. Arber A. 1925. Monocotyledons: a morphological study. Cambridge University Press, Cambridge.Google Scholar
  3. Bancroft N. 1914. A review of the literature concerning the evolution of Monocotyledons. New Phytol. 13: 285–303.CrossRefGoogle Scholar
  4. Batygina TB and MS Yakovlev, eds. 1990. Comparative embryology of flowering plants: monocotyledons. Nauka, Leningrad (in Russian).Google Scholar
  5. Behnke H-D. 1981. Siebelement-plastiden, phloem-protein, und evolution der blütenpflanzen: II. Monocotyledonen. Ber. Deutsch. Bot. Ges. 94: 647–662.Google Scholar
  6. Behnke H-D. 1998. Forms and sizes of sieve-element plastids and evolution of the monocotyledons. In Monocots II, pp. 8–9 (abstract). Sydney.Google Scholar
  7. Behnke H-D. 2000. Forms and sized of sieve-element plastids and evolution of the monocotyledons. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp.163–188. CSIRO, Collingwood.Google Scholar
  8. Behnke H-D. 2002(2003). Sieve-element plastids and evolution of Monocotyledons, with emphasis on Melanthiaceae sensu lato and Aristolochiaceae-Asaroideae, a putative Dicotyledon sister group. Bot. Rev. 68: 524–544.CrossRefGoogle Scholar
  9. Bennett MD and IJ Leitch. 2000. Variation in nuclear DNA amount (C-value) in monocots and its significance. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp.137–146. CSIRO, Collingwood.Google Scholar
  10. Bews JW. 1927. Studies in the ecological evolution of the angio-sperms. New Phytologist reprint 16. Wheldon & Wesley, London.Google Scholar
  11. Bharathan G, G Lambert, and DW Galbraith. 1944. Nuclear DNA content of monocotyledons and related taxa. Am. J. Bot. 81: 381–386.CrossRefGoogle Scholar
  12. Boyd L. 1932. Monocotyledons seedlings: morphological studies in the post-seminal development of the embryo. Trans. Proc. Bot. Soc. Edinb. 31: 5–224.Google Scholar
  13. Brickell CD et al., eds. 1980. Petaloid monocotyledons: horticultural and botanical research. Linn. Soc. Symposium, No. 8. London/New York.Google Scholar
  14. Burger WC. 1977. The Piperales and the monocots: alternate hypotheses for the origin of monocotyledonous flowers. Bot. Rev. 43: 345–393.CrossRefGoogle Scholar
  15. Burger WC. 1981. Heresy revised: the monocot theory of angio-sperm origin. Evol. Theory (Chicago) 3: 189–225.Google Scholar
  16. Charlton WA. 1999. Morphological traffic between the inflores-cence and the vegetative shoot in Helobial Monocotyledons. Bot. Rev. 65: 370–384.CrossRefGoogle Scholar
  17. Chase MW. 2004. Monocot relationships: an overview. Am. J. Bot. 91: 1645–1655.CrossRefGoogle Scholar
  18. Chase MW, DE Soltis, PS Soltis, PJ Rudall, MF Fay, WH Hahn, S Sullivan, J Joseph, M Molvray, PJ Kores, TJ Givnish, KJ Sytsma, and JC Pires. 2000. Higher-level systematics of the monocotyledons: an assessment of current knowledge and a new classification. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 3–16. CSIRO, Sydney.Google Scholar
  19. Cheadle VI. 1942. The occurrence and types of vessels in the various organs of the plant in the Monocotyledoneae. Am. J. Bot. 29: 441–450.CrossRefGoogle Scholar
  20. Cheadle VI. 1943a. The origin and certain trends of specialization of the vessels in the Monocotyledoneae. Am. J. Bot. 30: 11–17.CrossRefGoogle Scholar
  21. Cheadle VI. 1943b. Vessel specialization in the late metaxylem of the various organs in the Monocotyledoneae. Am. J. Bot. 30: 484–490.CrossRefGoogle Scholar
  22. Cheadle VI. 1944. Specialization of vessels within the xylem of each organ in the Monocotyledoneae. Am. J. Bot. 31: 81–92.CrossRefGoogle Scholar
  23. Cheadle VI and JM Tucker. 1961. Vessels and phylogeny of Monocotyledoneae. In Recent advances in botany, pp. 161–165. University of Toronto Press, Toronto.Google Scholar
  24. Clifford HT. 1977. Quantitative studies of interrelationships amongst the Liliatae. Plant Syst. Evol. Suppl. 1: 77–95.Google Scholar
  25. Clifford HT and WT Williams. 1980. Interrelationships amongst the Liliatae: a graph theory approach. Aust. J. Bot. 28: 261–268.CrossRefGoogle Scholar
  26. Conran JG. 2000. Biogeographic studies in the monocotyledons: an overview of methods and literature. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 35–43. CSIRO, Collingwood.Google Scholar
  27. Daghlian CP. 1981. A review of the fossil record of monocotyledons. Bot. Rev. 47: 517–555.CrossRefGoogle Scholar
  28. Dahlgren RMT and FN Rasmussen. 1983. Monocotyledon evolution: characters and phylogenetic estimation. In: MK Hecht, B Wallace, and GT Prance, eds. Evolutionary biology, vol. 16, pp. 255–395. Plenum, New York.Google Scholar
  29. Dahlgren RMT, HT Clifford, and PF Yeo. 1985. The families of the monocotyledons: structure, evolution, and taxonomy. Springer, Berlin.Google Scholar
  30. Danilova MF, EN Nemirovich-Danchenko, GA Komar, and MM Lodkina. 1990. Some trends of structural evolution of seeds in monocotyledons. Bot. Zhurn. 75: 755–773 (in Russian with English summary).Google Scholar
  31. Danilova MF, EN Nemirovich-Danchekno, GA Komar, and MM. Lodkina. 1995. The seed structure of monocotyledons. In: P Rudal, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, pp. 461–472. Royal Botanic Gardens. Kew.Google Scholar
  32. Davis JI, DW Stevenson, G Petesen, O Seberg, LM Campbell, JV Freudenstein, DH Goldman, CR Hardy, FA Michelangeli, MP Simmons, CD Specht, F Vergara-Silva, and M Gandolfo. 2004. A phylogeny of the monocots, as inferred from rbcL and atpA sequence variation, and a comparison of methods for calculating jackknife and bootstrap values. Syst. Bot. 29: 467–510.CrossRefGoogle Scholar
  33. Delpino F. 1903. Aggiunte alla teoria della classificazione della Monocotyledoni. Mem. Acad. Bologna, ser. V, 10: 569–584.Google Scholar
  34. Daumann E. 1970. Das Blütennektarium der Monocotyledonen unter besonderer Berucksichtigung seiner systematischen und phylogenetischen Bedeutung. Feddes Repert. 80: 463–590.Google Scholar
  35. Davis JI, DW Stevenson, CD Specht, JV Freudenstein, and R DeSalle. 1998. A phylogenetic analysis of the monocotyledons: based on morphological and molecular character sets. In Monocots II, p.18 (abstract). Sydney.Google Scholar
  36. Deyl M. 1955. The evolution of the plants and the taxonomy of the monocotyledons. Acta Mus. Natl. Prag., ser. 11B, 3(6): 1–143.Google Scholar
  37. Doyle JA. 1973. The monocotyledons: their evolution and comparative biology. Quart. Rev. Biol. 48: 399–413.CrossRefGoogle Scholar
  38. Duval MR et al. 1993. Phylogenetic hypotheses for the monocotyledons constructed from rbcL sequence data. Ann. Missouri Bot. Gard. 80: 607–619.CrossRefGoogle Scholar
  39. Duvall MR. 2000. Seeking the dicot sister group of the mono-cots. In: KL Wilson and DA Morrison, eds. Monocots: sys-tematics and evolution, pp. 25–32. CSIRO, Collingwood.Google Scholar
  40. Eber E. 1934. Karpellbau und Pflanzenverhaltnisse in dem Reiche der Helobiae. Flora 127: 273–330.Google Scholar
  41. El-Gazzar A and MK Hamza. 1975. On the monocots-dicots distinction. Publ. Cairo Univ. Herb. 6: 15–28.Google Scholar
  42. Endress PK 1995. Major evolutionary traits of monocot flowers. In: PJ Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, pp. 43–79. Royal Botanic Gardens, Kew.Google Scholar
  43. Erbar C and P Leins. 1994. Flowers in Magnoliidae and the origin of flowers in other subclasses of the angiosperms. I. The relationships between flowers of Magnoliidae and Alismatidae. Plant Syst. Evol. Suppl. 8: 193–208.Google Scholar
  44. Fisher JB and JC French. 1978. Internodal meristems of monocotyledons: further studies and general taxonomic summary. Ann. Bot. 42: 41–50.Google Scholar
  45. French JC, MC Chung, and YK Hur. 1995. Chloroplast DNA phylogeny of the Ariflorae. In: PJ Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, pp. 255–275. Royal Botanic Gardens, Kew.Google Scholar
  46. Frolich D and W Barthlott. 1988. Micromorphologie der epicu-ticularen Wachse und das System der Monocotylen. Trop. Subtrop. Pflanzenwelt, vol. 63. Stuttgart.Google Scholar
  47. Furness CA and PJ Rudall. 1998a. The tapetum and systematics in monocotiledons. Bot. Rev. 64: 201–239.CrossRefGoogle Scholar
  48. Furness CA and PJ Rudall. 1998b. Microsporogenesis in monocotyledons. In Monocots II, p. 21 (abstract). Sydney.Google Scholar
  49. Furness CA and PJ Rudall. 1999. Inaperturate pollen in Monocotyledons. Int. J. Plant. Sci. 160 (2): 195–414.CrossRefGoogle Scholar
  50. Furness CA and PJ Rudall. 2000a. The systematic significance of simultaneous cytokinesis during microsporogenesis in monocotyledons. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 189–193. CSIRO, Collingwood.Google Scholar
  51. Furness CA and PJ Rudall. 2000b. Aperture absence in pollen of monocotyledons. In: MM Harley, CM Morton, and S Blackmore, eds. Pollen and spores: morphology and biology, pp. 249–257. Royal Botanic Gardens, Kew.Google Scholar
  52. Furness CA and PJ Rudall. 2001. Pollen and anther characters in monocot systematics. Grana 40: 17–25.CrossRefGoogle Scholar
  53. Furness CA and PJ Rudall. 2003. Apertures with lids: distribution and significance of operculate pollen in monocotyledons. Int. J. Plant Sci. 164: 835–854.CrossRefGoogle Scholar
  54. Furness CA and PJ Rudall. 2006. The operculum in pollen of monocotyledons. In: JT Columbus, EA Friar, JM Porter, LM Prince, and MG Simpson, eds. Monocots: comparative biology and evolution (excluding Poales), pp. 191–196, Rancho Santa Ana Botanical Garden, Claremont (Aliso 22: 191–196).Google Scholar
  55. Gandolfo MA, KC Nixon, and WL Crepet. 1998. Monocotyledons and their fossil record: a review. In Monocots II, p. 21 (abstract). Sydney.Google Scholar
  56. Gandolfo MA, KC Nixon, and WL Crepet. 2000. Monocotyledons: a review of their Early Cretaceous record. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 44–51. CSIRO, Collingwood.Google Scholar
  57. Gaut B, S Muse, WD Clark, and M Clegg. 1992. Relative rates of nucleotide substitution at the rbcL locus of monocotyle-donous plants. J. Molec. Evol. 35: 292–303.PubMedCrossRefGoogle Scholar
  58. Givnish TJ, JC Pires JC, SW Graham, MA McPherson, LM Prince, TB Patterson, HS Rai, EH Roalson, TM Evans, HJ Hahn, KC Millam, AW Meerow, M Molvray, PJ Kores, HE O'Brien, JC Hall, WJ Kress, and KJ Sytsma. 2006. Phylogeny of the monocots based on ndhF: evidence for widespread concerted convergence. In: JT Columbus, EA Friar, CW Hamilton, JM Porter, LM Prince, and MG Simpson, eds. Monocots: comparative biology and evolution (excluding Poales), vol. 2, pp. 28–51. Rancho Santa Ana Botanical Garden, Claremont.Google Scholar
  59. Gluck H. 1901. Die Stipulargebilde der Monocotyledonen. Verhandl. Naturhist. Med. Vereins zu Heidelberg, N. F, 7: 1–96.Google Scholar
  60. Goldberg A. 1989. Classification, evolution, and phylogeny of the families of monocotyledons. Smithsonian Contr. Bot. 71.Google Scholar
  61. Graham SW, JM Zgurski, MA McPherson, DM Cherniawsky, JM Saarela, ESC Horne, SY Smith, WA Wong, HE O'Brien, VL Biron, JC Pires, RG Olmstead, MW Chase, and HS Rai. 2006. Robust inference of monocot deep phylogeny using an expanded multigene plastid data set. In: JT Columbus, EA Friar, CW Hamilton, JM Porter, LM Prince, and MG Simpson, eds. Monocots: comparative biology and evolution, vol. 2, pp. 3–21. Rancho Santa Ana Botanical Garden, Claremont.Google Scholar
  62. Greilhuber J. 1995. Chromosomes of the monocotyledons (general aspects). In: PJ Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, vol. 2, pp. 379–414. Royal Botanic Gardens, Kew.Google Scholar
  63. Guerra M. 2000. Chromosome number variation and evolution in monocots. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 127–136. CSIRO, Collingwood.Google Scholar
  64. Guignard J-L. 1975. Du cotyledon des monocotyledones. Phytomorphology 25: 193–200.Google Scholar
  65. Gunawardena A and NG Dengler. 2006. Alternative modes of leaf dissection in monocotyledons. Bot. J. Linn. Soc. 150: 25–44.CrossRefGoogle Scholar
  66. Haines RW and KA Lye. 1979. Monocotylar seedlings: a review of evidence supporting origin by fusion. Bot. J. Linn. Soc. 78: 123–140.CrossRefGoogle Scholar
  67. Halbitter H and M Hesse. 1993. Sulcus morphology in some monocot families. Grana 32: 87–99.Google Scholar
  68. Harley MM and MS Zavada. 2000. Pollen of the monocotyledons: selecting characters for cladistic analysis. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 194–213. CSIRO, Collingwood.Google Scholar
  69. Harris PJ. Compositions of monocotyledon cell walls: implications for biosystematics. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 114–126. CSIRO, Collingwood.Google Scholar
  70. Harris PJ and RD Hartley. 1980. Phenolic constituents of the cell walls of monocotyledons. Biochem. Syst. Ecol. 8: 153–160.CrossRefGoogle Scholar
  71. Heel van WA. 1988. On the development of some gynoecia with septal nectaries. Blumea 33: 477–504.Google Scholar
  72. Hegnauer R. 1963. Chemotaxonomie der Pflanzen: 2. Monocotyledoneae. Basel.Google Scholar
  73. Henslow G. 1893. A theoretical origin of endogens from exo-gens through self-adaptation to an aquatic habit. Bot. J. Linn. Soc. 29: 485–528.CrossRefGoogle Scholar
  74. Henslow G. 1911. The origin of monocotyledons from dicotyledons through self-adaptation to a moist or aquatic habit. Ann. Bot. 26: 717–744.Google Scholar
  75. Hofmeister W. 1861. Neue Beiträge zur Erkenntnis der Embryobildung der Phanerogamen: 2. Monokotyledonen. Abh. Kongl. Sachs. Ges. Wiss. 5: 629–760.Google Scholar
  76. Holttum RE. 1955. Growth-habits of Monocotyledons: Variation on a theme. Phytomorphology 5: 399–413.Google Scholar
  77. Huber H. 1969. Die Samenmerkmale und Verwandts-chaftsverhaltnisse der Liliifloren. Mitt. Bot. Staatssamml. München 8: 219–538.Google Scholar
  78. Huber H. 1977. The treatment of the monocotyledons in an evolutionary system of classification. Plant Syst. Evol., Suppl., 1: 285–298.Google Scholar
  79. Igersheim A, M Buzgo and PK Endress. 2001. Gynoecium diversity and systematics in basal monocots. Bot. J. Linn. Soc. 136: 1–65.CrossRefGoogle Scholar
  80. Janssen T and K Bremer. 2004. The age of major monocot groups inferred from 800 + rbcL sequences. Bot. J. Linn. Soc. 146: 385–398.CrossRefGoogle Scholar
  81. Johnson KA. 2000. Development of non-zygotic embryos from callus in three Australian monocots. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 218–220. CSIRO, Collingwood.Google Scholar
  82. Kaplan DR. 1973. The monocotyledons: their evolution and comparative biology: VII. The problem of leaf morphology and evolution in the monocotyledons. Quart. Rev. Biol. 48: 437–457.CrossRefGoogle Scholar
  83. Kaplan DR. 1975. Comparative developmental evaluation of the morphology of unifacial leaves in the monocotyledons. Bot. Jahrb. Syst. 95: 1–105.Google Scholar
  84. Kellog EA. 2000. A model of inflorescence development. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 84–88. CSIRO, Collingwood.Google Scholar
  85. Khokhrjakov AP. 1975. Somatic evolution of the monocotyledons. Nauka, Moscow (in Russian).Google Scholar
  86. Kimura Y. 1956. Systeme et phylogenie des monocotyledones. Notul. Syst. (Paris) 15: 137–159.Google Scholar
  87. Kite GC, RJ Grayer, PJ Rudall, and MSJ Simmonds. 2000. The potential for chemical characters in monocotyledon systematics. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 101–113. CSIRO, Collingwood.Google Scholar
  88. Kubitzki K, ed. 1998. The families and genera of vascular plants, vols. 3 and 4. Monocotyledons. Springer, Berlin/Heidelberg/ New York.Google Scholar
  89. Les DH and EL Schneider. 1995. The Nymphaeales, Alismatiodae, and the theory of an aquatic monocotyledon origin. In: PJ Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, vol. 1, pp. 23–42. Royal Botanic Gardens, Kew.Google Scholar
  90. Li X-X and Z-K Zhou. 2006. A cladistic analysis of monocotyledons at the family level based on morphological data. Acta Bot. Yunn. 28: 241–249 (in Chinese).Google Scholar
  91. Li X-X and Z-K Zhou. 2007. The higher-level phylogeny of monocots based on matK, rbcL and 18 S rDNA sequences. Acta Phytotax. Sinica 45: 113–133 (in Chinese).Google Scholar
  92. Lodkina MM. 1988. Evolutionary relations between mono- and dicotyledons based on embryo and seedling investigation. Bot. Zhurn. 73: 617–630 (in Russian with English summary).Google Scholar
  93. Metcaife CR. 1961. The anatomical approach to systematics: general introduction with special reference to recent work on monocotyledons. In recent advances in botany, pp. 146–150. University of Toronto Press, Toronto.Google Scholar
  94. Metcalfe CR, ed. 1960–1982. Anatomy of the monocotyledons, 7 vols. Clarendon, Oxford.Google Scholar
  95. Meusel I, E Leistner, and W Barthlott. 1994. Chemistry and micromorphology of compound epicuticular wax crystalloids (Strelitzia type). Plant Syst. Evol. 193: 115–123.CrossRefGoogle Scholar
  96. Nadot S, G Bittar, L Carter, R Lacroix, and B Lejune. 1995. A phylogenetic analysis of monocotyledons based on the chloroplast gene rps4, using parsimony and a new numerical phenetics method. Mol. Phylogenet. Evol. 4: 257–282.PubMedCrossRefGoogle Scholar
  97. Paliwal GS. 1969. Stomatal ontogeny and phylogeny: 1. Monocotyledons. Acta Bot. Neerl. 18: 654–668.Google Scholar
  98. Parkin J. 1923. The strobilus theory of angiospermous descent. Proc. Linn. Soc. Lond. 153: 51–64.Google Scholar
  99. Prychid CJ and PJ Rudall. 1999. Calcium oxalate crystals in monocotyledons: structure and systematics. Ann. Bot. 84: 725–739.CrossRefGoogle Scholar
  100. Prychid CJ and PJ Rudall. 2000. Distribution of calcium oxalate crystals in monocotyledons. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 159–162. CSIRO, Collingwood.Google Scholar
  101. Puri V. 1989. Monocotyledons: some comments on their morphology and evolution. Professor Panchanan Maheshwari Memorial Lecture. New Delhi.Google Scholar
  102. Ronse Decraene LP and EF Smets. 1995. The androecium of monocotyledons. In: P Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematic and evolution, pp. 243–254. Royal Botanic Gardens. Kew.Google Scholar
  103. Rudall P. 1991. Lateral meristems and stem thickening growth in monocotyledons. Bot. Rev. 57: 150–163.CrossRefGoogle Scholar
  104. Rudall P. 1997. The nucellus and chalaza in Monocotyledons: structure and systematics. Bot. Rev. 63: 140–181.CrossRefGoogle Scholar
  105. Rudall PJ. 2000. ‘Cryptic’ characters in monocotyledons: homology and coding. In: Scotland R and RT Pennington, eds. Homology and systematics: coding characters for phylogenetic analysis, pp. 114–123. Taylor & Francis, London.Google Scholar
  106. Rudall PJ. 2002a. Homologies of inferior ovaries and septal nectaries in monocotyledons. Int. J. Plant Sci. 163: 261–276.CrossRefGoogle Scholar
  107. Rudall PJ. 2002b. Unique floral structures and iterative evolutionary themes in Asparagales: insights from a morphological cladistic analysis. Bot. Rev. 68: 488–509.CrossRefGoogle Scholar
  108. Rudall PJ. and R Caddick. 1994. Investigation on the presence of phenolic compounds in monocotyledonous cell walls, using UV fluorescence microscopy. Ann. Bot. 74: 483–491.CrossRefGoogle Scholar
  109. Rudall P, PJ Cribb, DF Cutler, and CJ Humphries, eds. 1995. Monocotyledons: systematics and evolution, 2 vols. Royal Botanic Gardens. Kew.Google Scholar
  110. Rudall PJ, CJ Prychid, and CJ Jones. 1998. Intra-ovarian trichomes in monocotyledons. In: SJ Owens and PJ Rudall, eds. Reproductive biology, pp. 219–230. Royal Botanic Gardens, Kew.Google Scholar
  111. Sargant E. 1903. A theory of the origin of monocotyledons, founded on the structure of their seedlings. Ann. Bot. 17: 1–92.Google Scholar
  112. Sargant E. 1904. The evolution of Monocotyledons. Bot. Gaz. 37: 325–345.CrossRefGoogle Scholar
  113. Scotland R and RT Pennington, eds. 2000. Homology and sys-tematics: coding characters for phylogenetic analysis. Taylor and Francis, London.Google Scholar
  114. Sharma AK 1969. Evolution and taxonomy of monocotyledons. In: CD Darlington and KR Lewis, eds. Chromosomes today, vol. 2, pp. 241–249. Plenum, New York.Google Scholar
  115. Smets EF, L-P Ronse Decraene, P Caris, and PJ Rudall. 2000. Floral nectaries in monocotyledons: distribution and evolution. In: KL Wilson and DA Morrison, eds. Monocots: sys-tematics and evolution, pp. 221–229. CSIRO, Collingwood.Google Scholar
  116. Stebbins GL and GS Khush. 1961. Variation in the organization of the stomatal complex in the leaf epidermis of monocotyledons and its bearing on their phylogeny. Am. J. Bot. 48: 51–59.CrossRefGoogle Scholar
  117. Stevenson DW, JI Davis, JV Freudenstein, CR Hardy, MP Simmons, and CD Specht. 2000. A phylogenetic analysis of the monocotyledons based on morphological and molecular character sets, with comments on the placement of Acorus and Hydatellaceae. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 17–24. CSIRO, Collingwood.Google Scholar
  118. Stevenson DW and H Loconte. 1995. Cladistic analysis of monocotyledons. In: PJ Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, vol. 2, pp. 543–576. Royal Botanic Gardens, Kew.Google Scholar
  119. Takhtajan A, ed. 1982. Plant life: 6. Liliopsids or monocotyledons. Nauka, Moscow (in Russian).Google Scholar
  120. Takhtajan A, ed. 1985. Comparative seed anatomy: 1. Monocotyledons. Nauka, Leningrad (in Russian).Google Scholar
  121. Tamura MN, J Yamashita, S Fuse, and M Haraguchi. 2004. Molecular phylogeny of monocotyledons inferred from combined analysis of plastid matK and rbcL gene sequences. J. Plant Res. 117: 109–120.PubMedCrossRefGoogle Scholar
  122. Thorne RF. 2000. The classification and geography of the monocotyledon subclasses Alismatidae, Liliidae and Commeli-nidae. In: Nordenstam et al., eds. Plant systematics for the 21st century, pp. 75–122. Portland, London.Google Scholar
  123. Tieghem R van and H Duliot. 1888. Recherches comparatives sur 1'origine des membres endogenes dans les plantes vascu-laires. Ann. Sci. Nat., ser. 7, 8: 1–666.Google Scholar
  124. Tillich H-J. 1992. Bauprinzipien und Evolutionslinien bei mono-cotylen Keimpflanzen. Bot. Jahrb. Syst. 114: 91–132.Google Scholar
  125. Tillich H-J. 1995. Seedlings and systematics in monocotyledons. In: PJ Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, 1: 303–352. Royal Botanic Gardens, Kew.Google Scholar
  126. Tillich H-J. 1998. Plesiomorphies and apomorphies in seedlings of monocotyledons. In Monocots II, p. 53 (abstract). Sydney.Google Scholar
  127. Tillich H-J. 2000. Ancestral and derived character states in seedlings of monocotyledons. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 221–229. CSIRO, Collingwood.Google Scholar
  128. Tomlinson RB. 1970. Monocotyledons: towards an understanding of their morphology and anatomy. In: RD Preston, ed. Advances in botanical research, pp. 207–292. Academic, New York.Google Scholar
  129. Tomlinson PB 1974. Development of the stomatal complex as a taxonomic character in the monocotyledons. Taxon 23: 109–128.CrossRefGoogle Scholar
  130. Tomlinson PB. 1995. Non-homology of vascular organization in monocotyledons and dicotyledons. In: PJ Rudall, PJ Cribb, DF Cutler, CJ Humphries, eds. Monocotyledons: systemat-ics and evolution, pp. 489–622. Royal Botanic Gardens. Kew.Google Scholar
  131. Tomlinson PB and JB Fisher. 2000. Stem vasculature in climbing monocotyledons: a comparative approach. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 89–100. CSIRO, Collingwood.Google Scholar
  132. Van Heel WA. 1988. On the development of some gynoecia with septal nectaries. Blumea 33: 477–504.Google Scholar
  133. Von Staudermann W. 1924. Die Haare der Monocotyledonen. Bot. Arch. 8: 105–184.Google Scholar
  134. Wagner A. 1977. Vessel types of the monocotyledons: a survey Bot. Not. 130: 383–402.Google Scholar
  135. Weber A. 1980. Die Homologie des Perigons der Zingiberaceen: Ein Beitrag zur Morphologic und Phylogenie des Monocotylen-Perigons. Plant Syst. Evol. 133: 149–179.CrossRefGoogle Scholar
  136. Williams CA, JB Harborne, and B Mathew. 1988. A chemical appraisal via leaf flavonoids of Dahlgren's Liliiflorae. Phytochemistry 27: 2609–2629.CrossRefGoogle Scholar
  137. Wilson KL and DA Morison, eds. 2000. Monocots: systematics and evolution. CSIRO, Collingwood.Google Scholar
  138. Yeo PE. 1989. What is happening to the monocotyledons? Plant Syst. Evol. 167: 75–86.CrossRefGoogle Scholar
  139. Zavada M. 1983. Comparative morphology of monocot pollen and evolutionary trends of apertures and wall structures. Bot. Rev. 49: 331–379.CrossRefGoogle Scholar
  140. Zimmerman MH and PB Tomlinson. 1972. The vascular system of Monocotyledonous stems. Bot. Gaz. 133: 141–155.CrossRefGoogle Scholar
  141. Arber A. 1923. On the “squamulae intravaginales” of the Helobiae. Ann. Bot. 37: 31–41.Google Scholar
  142. Buchenau F. 1882. Beiträge zur Kenntnis der Butomaceen, Alismaceen, und Juncaginaceen. Engler's Bot. Jahrb. 2: 465–510.Google Scholar
  143. Chen J-M, D Chen, GW Robert, Q-F Wang, and Y-H Guo. 2004a. Evolution of apocarpy in Alismatidae using phyloge-netic evidence from chloroplast rbcL sequence data. Bot. Bull. Acad. Sinica 45: 33–40.Google Scholar
  144. Chen J-M, GW Robert, Q-F Wang. 2004b. Evolution of aquatic life forms in Alismatidae: phylogenetic estimation from chloroplast rbcL sequence data. Israel J. Plant Sci. 52: 323–329.CrossRefGoogle Scholar
  145. Eber E. 1934. Karpellbau und Plazentationsverhaltnisse in der Reihe der Helobiae. Flora 127: 273–330.Google Scholar
  146. Gibson RJH. 1905. The axillary scales of aquatic monocotyledons. Bot. J. Linn. Soc. 37: 228–236.CrossRefGoogle Scholar
  147. Harada I. 1956. Cytological studies in Helobiae: I. Chromosome idiograms and a list of chromosome numbers in seven families. Cytologia 21: 306–328.Google Scholar
  148. Haynes RR and LB Holm-Nielsen. 1985 (1987). A generic treatment of Alismatidae in the Neotropics with special reference to Brazil. Acta Amazonica Suppl. 15: 153–193.Google Scholar
  149. Haynes RR and LB Holm-Nielsen. 1989. Speciation of Alismatidae in the Neotropics. In: LB Holm-Nielsen, IC Nielsen, and H Balslev, eds. Tropical forests: botanical dynamics, speciation, and diversity, pp. 211–219. Academic, London.Google Scholar
  150. Lakshmanan KK. 1970. Hydrocharitaceae, Juncaginaceae, Scheuchzeriaceae, Potamogetonaceae, Zannichelliaceae, Najadaceae. Bull. Ind. Natl. Sci. Acad. 41: 336–357.Google Scholar
  151. Les DH and MA Cleland. 1997. Phylogenetic studies in Alismatidae, II. Evolution of marine angiosperms (sea grasses) and hydrophily. Syst. Bot. 22: 443–463.CrossRefGoogle Scholar
  152. Les DH and RR Haynes. 1995. Systematics of subclass Alismatidae: a synthesis of approaches. In: PJ Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution 2: 353–377. Royal Botanic Gardens, Kew.Google Scholar
  153. Les DH, DK Garvin, and CF Wimpee. 1993. Phylogenetic studies in the monocot subclass Alismatidae, evidence for a reappraisal of the aquatic order Najadales. Mol. Phylogeb. Evol. 2: 304–314.CrossRefGoogle Scholar
  154. Markgraf F. 1936. Blütenbau und Verwandtschaft bei den ein-fachsten Helobiae. Ber. Deutsch. Bot. Ges. 54: 191–229.Google Scholar
  155. Mavrodiev EV and DD Sokolov. 1998. On the morphology of European species of Zannichelliaceae, Ruppiaceae, Potamogetonaceae and Zosteraceae. Byull. Mosk. Obshch. Ispyt. Prir., Biol. 103(5): 49–60 (in Russian).Google Scholar
  156. Pettitt JM and AC Jenny 1975. Pollen in hydrophilous angio-sperms. Micron 5: 377–405.Google Scholar
  157. Posluszny U and WA Charlton. 1993. Evolution of the helobial flower. Aquatic Bot. 44: 303–324.CrossRefGoogle Scholar
  158. Salisbury EJ 1926. Floral construction in Helobiales. Ann. Bot. 40: 419–455.Google Scholar
  159. Sharma AK and T Chaterjee. 1967. Cytotaxonomy of Helobiae with special reference to the mode of evolution. Cytologia 32: 286–307.Google Scholar
  160. Singh V. 1966. Morphological and anatomical studies of the flower of Helobiae. Agra Univ. J. Res. (Sci.) 15: 147–150.Google Scholar
  161. Tomlinson PB. 1982. Helobiae (Alismatidae), including the sea grasses. In: CR Metcalfe, ed. Anatomy of monocotyledons, vol. 3. Clarendon, Oxford.Google Scholar
  162. Wilder GJ. 1974. Symmetry and development of Butomus umbellatus (Butomaceae) and Limnocharis flava (Limnocharitaceae). Am. J. Bot. 61: 379–394.CrossRefGoogle Scholar
  163. Wilder GJ. 1975. Phylogenetic trends in the Alismatidae (Monocotyledoneae). Bot. Gaz. 136: 159–170.CrossRefGoogle Scholar
  164. Ambrose JD. 1985. Lophiola, familial affinity with the Liliaceae. Taxon 34: 149–150.CrossRefGoogle Scholar
  165. Beccari O. 1871. Petrosavia: Nuovo genere di piante parasite della famiglia delle Melanthiaceae. Nuovo Giorn. Bot. Ital. 3: 7–11.Google Scholar
  166. Browne ET, Jr. 1961. Morphological studies in Aletris. I. Development of the ovule, megaspores and megagameto-phyte of A. aurea and their connection with the systematics of the genus. Am. J. Bot. 48: 143–147.CrossRefGoogle Scholar
  167. Cameron KM. 1998. Systematics of heteromycotrophic Petrosaviaceae. In Monocots II, p. 64 (abstract). Sydney.Google Scholar
  168. Cameron KM, MW Chase, and PJ Rudall. 2003. Recircum-scription of the monocotyledonous family Petrosaviaceae to include Japonolirion. Brittonia 55: 214–225.CrossRefGoogle Scholar
  169. Eie S. 1972. Floral anatomy in Tofieldia fusilla (Michx.) Pers. with special reference to the gynoecium. Norweg. J. Bot. 19: 31–36.Google Scholar
  170. Groom P. 1892. On the embryo of Petrosavia Beccari. Ann. Bot. 6: 380–382.Google Scholar
  171. Groom P. 1895. On a new saprophytic monocotyledon. Ann. Bot. 9: 45–58.Google Scholar
  172. Hara H. 1967. The status of the genus Metanarthecium Maxim. Jpn. J. Bot. 42: 312–316.Google Scholar
  173. Kosenko VN. 1987. Pollen morphology of Tofieldieae, Narthecieae, Xerophylleae, Melanthieae (Melanthiaceae). Bot. Zhurn. 72: 1318–1330 (in Russian with English summary).Google Scholar
  174. Lersten NR and JD Curtis. 1977. Anatomy and distribution of secretory glands and other emergences in Tofieldia (Liliaceae). Ann. Bot. (UK) 41(174): 879–882.Google Scholar
  175. McDaniel S. 1968. Harperocallis. A new genus of the Liliaceae from Florida. J. Arnold Arbor. 49: 35–40.Google Scholar
  176. Ohba H 1984. A review of Petrosavia (Liliaceae), with special reference to the floral features. J. Jpn. Bot. 59: 106–109.Google Scholar
  177. Remizova M and D Sokoloff. 2003. Inflorescence and floral morphology in Tofieldia (Tofieldiaceae) compared with Araceae, Acoraceae and Alismatales s. str. Bot. Jahrb. Syst. 124: 255–271.CrossRefGoogle Scholar
  178. Remizowa M, D Sokoloff, and PJ Rudall. 2006a. Evolution of the monocot gynoecium: evidence from comparative morphology and development in Tofieldia, Japonolirion, Petrosavia and Narthecium. Plant Syst. Evol. 258: 183–209.CrossRefGoogle Scholar
  179. Remizowa M, D Sokoloff, and PJ Rudall. 2006b. Comparative patterns of floral orientation, bracts and bracteoles in Tofieldia, Japonolirion, and Narthecium. Aliso 24: 157–169.Google Scholar
  180. Sokolowska-Kulczycka A. 1980. Embryological studies of Tofieldia calyculata (l.) Whlb. Acta Biol. Cracov. Ser. Bot. 22: 113–128.Google Scholar
  181. Stant M Y. 1970. Anatomy of Petrosavia stellaris Becc., a sapro-phytic monocotyledon. Bot. J. Linn Soc. 63(Suppl. 1): 147–161.Google Scholar
  182. Sterling C. 1978. Comparative morphology of the carpel of the Liliaceae: Hewardieae, Petrosavieae, and Tricyrteae. Bot. J. Linn. Soc. 77: 95–106.CrossRefGoogle Scholar
  183. Sterling C. 1979. Comparative morphology of the carpel in the Liliaceae: Tofieldieae. Bot. J. Linn. Soc. 79: 321–332.CrossRefGoogle Scholar
  184. Takahashi HR, E Nishio, and H Hayashi. 1993. Pollination biology of the saprophytic species Petrosavia sakuraii (Makino) J. J. Smith ex van Steenis in central Japan. J. Plant Res. 106: 213–217.CrossRefGoogle Scholar
  185. Takhtajan AL. 1994. Six new families of flowering plants. Bot. Zhurn. 79(1): 96–97 (in Russian).Google Scholar
  186. Takhtajan AL. 1994 (1995). New families of the monocotyledons. Bot. Zhurn. 79(12): 65–66 (in Russian).Google Scholar
  187. Takhtajan AL. 1996. Validization of some formerly established families of flowering plants. Bot. Zhurn. 81(2): 85–86.Google Scholar
  188. Tamura MN. 1998b. Nartheciaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 381–392. Springer, Berlin/Heidelberg/New York.Google Scholar
  189. Tamura MN and H Takahashi. 1998. Karyotype analysis of the saprophyte Petrosavia sakuraii (Makino) J. J. Smith ex van Steenis. And its systematic implications. Acta Phytotax. Geobot. 49.Google Scholar
  190. Tanaka R and N Tanaka. 1976. Karyomorphological studies in Tofieldia of Japan. Chromosome Inform. Serv., no. 19: 9–11.Google Scholar
  191. Tomimatsu H, A Hoya, H Takahashi, and M Ohara. 2004. Genetic diversity and multilocus genetic structure in the relictual endemic herb Japonolirion osense (Petrosaviaceae). J. Plant Res. 117: 13–18.PubMedCrossRefGoogle Scholar
  192. Utech FH. 1978a. Floral vascular anatomy of monotypic Japanese Metanarthecium luteoviride Maxim. (Liliaceae-Melanthioideae). Ann. Carnegie Mus. 47: 455–477.Google Scholar
  193. Utech FH. 1978b. Floral vascular anatomy of Pleea tenuifolia Michx. (Liliaceae-Tofieldieae) and its reassignment to Tofieldia. Ann. Carnegie Mus. 47: 423–454.Google Scholar
  194. Utech FH. 1979. Karyotype analysis, palynology, and external seed morphology of Tofieldia tenuifolia Michx. Utech (Liliaceae-Tofieldieae). Ann. Carnegie Mus. 48: 161–174.Google Scholar
  195. Utech FH. 1984. Floral vascular anatomy of Japonolirion osense Nakai (Liliaceae) and its tribal relationship. Ann. Carnegie Mus. 53: 447–461.Google Scholar
  196. Zomlefer WB. 1997a. The genera of Tofieldiaceae in the southeastern United States. Harvard Pap. Bot. 2: 179–194.Google Scholar
  197. Zomlefer WB. 1997b. The genera of Nartheciaceae in southeastern United States. Harvard Pap. Bot. 2: 195–211.Google Scholar
  198. Ancibor E. 1979. Systematic anatomy of vegetative organs of the Hydrocharitaceae. Bot. J. Linn. Soc. 78: 237–266.CrossRefGoogle Scholar
  199. Argue CL. 1971. Pollen of the Butomaceae and Alismataceae: I. Development of the pollen wall in Butomus umbellatus L. Grana 11: 131–144.Google Scholar
  200. Balfour IB. 1870. On the genus Halophila. Trans. Proc. Bot. Soc. Edinb. 13: 290–343.Google Scholar
  201. Baude E. 1956. Die Embryoentwicklung von Stratiotes aloides L. Planta 46: 649–671.CrossRefGoogle Scholar
  202. Bercu R and M Fagaras. 2002. Anatomical features of the root, stem and leaf blade of Potamogeton pectinatus L. and Vallisneria spiralis L. Contrib. Bot. Univ. Babes Rolyal Gard. Bot. (Cluj Napoca) 37: 41–47.Google Scholar
  203. Bolkhovskikh Z V. 1983. On the morphology of pollen grains of Najas major (Najadaceae). Bot. Zhurn. 68: 448–452 (in Russian with English summary).Google Scholar
  204. Bouman F. 1985. Embryology. In: HWE van Bruggen, ed. Monograph of the genus Aponogeton (Aponogetonaceae). Bibl. Bot. 137: 4–9.Google Scholar
  205. Bruggen HWE von, ed. 1985. Monograph of the genus Aponogeton (Aponogetonaceae). Bibl. Bot. 137: 1–76.Google Scholar
  206. Bruggen HWE von. 1998. Aponogetonaceae. In: K Kubitzki, ed. The families and genera of vascular plants vol. 4, pp. 21–25. Springer, Berlin/Heidelberg/New York.Google Scholar
  207. Brunaud A. 1976, 1977. Ramification chez les Hydrocharitaceae: I. Ontogenie du systeme des pousses. II. Organisation des rameaux lateraux. Rev. Gen. Bot. 83: 397–413, 1976; 84: 137–157, 1977.Google Scholar
  208. Campbell DH. 1897. A morphological study of Najas and Zannichellia. Proc. Calif. Acad. Sci., 3d ser., 1: 1–61.Google Scholar
  209. Caspary R. 1858. Die Hydrilleen. Jahrb. Wiss. Bot. 1: 377–513.Google Scholar
  210. Chanda S, S Nusson, and S Blackmore. 1988. Phylogenetic trends in the Alismatales with reference to pollen grains. Grana 27: 257–272.Google Scholar
  211. Charlton WA and A Ahmed. 1973. Studies in the Alismataceae: IV. Developmental morphology of Ra-nalisma humile and comparisons with two members of the Butomaceae, Hydrocleis nymphoides and Butomus umbellatus. Canad. J. Bot. 51: 899–910.CrossRefGoogle Scholar
  212. Cook CDK. 1982. Pollination mechanisms in the Hydrocharitaceae. In: JJ Symoens, SS Hooper, and F Compere, eds. Studies on aquatic vascular plants, pp. 1–15. Royal Botanical Society of Belgium, Brussels.Google Scholar
  213. Cook CDK. 1998a. Butomaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol 4, pp. 100–102. Springer, Berlin/Heidelberg/New York.Google Scholar
  214. Cook CDK. 1998b. Hydrocharitaceae. In: K Kubitzki, ed. The families and genera of vascular plants vol 4, pp. 234–248. Springer, Berlin/Heidelberg/New York.Google Scholar
  215. Govindappa DA and TRB Najdu. 1956. The embryo sac and endosperm Blyxa oryzetorum Hook. f. J. Indian Bot. Soc. 35: 417–422.Google Scholar
  216. Guo YH and SQ Huang. 1999. Evolution of pollination system and characters of stigmas in Najadales. Acta Phytotax Sinica 37(2): 131–136.Google Scholar
  217. Haynes RR. 1977. The Najadaceae in the Southeastern United states. J. Arnold Arbor. 58: 161–170.Google Scholar
  218. Haynes RR. 1979. Revision of north and central American Najas (Najadaceae). SIDA 8: 34–56.Google Scholar
  219. Haynes RR and LB Holm-Nielsen. 2001. The genera of Hydrocharitaceae in the southeastern United States. Harvard Pap. Bot. 5: 201–275.Google Scholar
  220. Haynes RR, LB Holm-Nielsen, and DH Les. 1998. Najadaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol 4, pp. 301–306. Springer, Berlin/Heidelberg/ New York.Google Scholar
  221. Islam AS. 1950. A contribution to the life history of Ottelia alismoides Pers. J. Indian Bot. Soc. 29: 79–91.Google Scholar
  222. Kaul RB. 1965. Development and vasculature of the androecium in the Butomaceae. Am. J. Bot. 52: 624 (Abstract).Google Scholar
  223. Kaul RB. 1968. Floral morphology and phylogeny in the Hydrocharitaceae. Phytomorphology 18: 13–35.Google Scholar
  224. Kaul RB. 1969. Morphology and development of the flowers of Boottia cordata, Ottelia alismoides, and their synthetic hybrid (Hydrocharitaceae). Am. J. Bot. 58: 951–959.CrossRefGoogle Scholar
  225. Kaul RB. 1970. Evolution and adaptation of inflorescences in the Hydrocharitaceae. Am. J. Bot. 57: 708–715.CrossRefGoogle Scholar
  226. Kaul RB. 1976. Conduplicate and specialized carpels in the Alismatales. Am. J. Bot. 63: 175–182.CrossRefGoogle Scholar
  227. Kun S, QF Wang, JK Chen. 1997. Micromorphological characters of seed coats of Chinese Najadaceae and their systematic significance. Acta Phytotax. Sinica 35: 521–526.Google Scholar
  228. Lakshmanan KK. 1961. Embryological studies in the Hydrocharitaceae: I. Blyxa octandra Planch. J. Madras Univ. 31B: 133–142.Google Scholar
  229. Lakshmanan KK. 1963. Embryological studies in the Hydrocharitaceae: II. Halophila ovata Gaudich. J. Indian Bot. Soc. 42: 15–18.Google Scholar
  230. Lakshmanan KK. 1965. Embryological studies in the Hydrocharitaceae: III. Nechamandra alternifolia. Phyton (Buenos Aires) 20: 49–58. I V. Post-fertilization development in the Hydrilla verticillata Royle. Phyton (Buenos Aires) 22: 13–14.Google Scholar
  231. Les DH, DK Garvin, and CF Wimpee. 1993. Phylogenetic studies in the monocot subclass Alismatidae: evidence for a reappraisal of the aquatic order Najadales. Mol. Phylogenet. Evol. 2: 304–314.PubMedCrossRefGoogle Scholar
  232. Les DH, ML Moody, and SWL Jacobs. 2005. Phylogeny and systematics of Aponogeton (Aponogetonaceae): the Australian species. Syst. Bot. 30: 503–519.CrossRefGoogle Scholar
  233. Les DH, ML Moodly, and CL Soros. 2006. A reappraisal of phy-logenetic relationships in the monocotyledon family Hydrocharitaceae (Alismatidae). In: JT Columbus, EA Friar, JM Porter, LM Prince, and MG Simpson, eds. Monocots: comparative biology and evolution (excluding Poales), pp. 211–230. Rancho Santa Ana Botanical Garden, Claremont (Aliso 22: 211–230).Google Scholar
  234. Lowden RM. 1986. Taxonomy of the genus Najas L. (Najadaceae) in the neotropics. Aquat. Bot. 24: 147–187.CrossRefGoogle Scholar
  235. Magnus P. 1894. Uber die Gattung Najas. Ber. Deutsch. Bot. Ges. 12: 214–224.Google Scholar
  236. Miki S. 1937. The origin of Najas and Potamogeton. Bot. Mag. (Tokyo) 51: 472–480.Google Scholar
  237. Naidoo Y, JR Lawton, AD Barnabas, and J Goetzee. 1990. Ultrastructure and cytochemistry of squamulae intravagina-les of the marine angiosperm, Halophila ovalis. South Afr. Tydskr. Plantk. 56: 546–553.Google Scholar
  238. Pettitt JM. 1980. Reproduction in sea grasses: nature of the pollen and receptive surface of the stigma in the Hydrocharitaceae. Ann. Bot. 45: 257–271.Google Scholar
  239. Pettitt JM. 1981. Reproduction in sea grasses: pollen development in Thalassia hemprichii, Halophila stipulacea, and Thalassodendron ciliatum. Ann. Bot. 48: 609–622.Google Scholar
  240. Posluszny U and R Sattler. 1976. Floral development of Najas flexilis. Canad. J. Bot. 54: 1140–1151.CrossRefGoogle Scholar
  241. Rangasamy K. 1941. A morphological study of the flower of Blyxa echinosperma Hook. f. J. Indian Bot. Soc. 20: 123–133.Google Scholar
  242. Rao YS. 1953. Karyosystematic studies of Helobiales: I. Butomaceae. Proc. Natl. Inst. Sci. India 19: 563–581.Google Scholar
  243. Rendle AE. 1899. A systematic revision of the genus Najas. Trans. Linn. Soc., Bot., ser. 2, 5: 379–444.Google Scholar
  244. Roper RB. 1952. The embryo sac of Butomus umbellatus L. Phytomorphology 2: 61–74.Google Scholar
  245. Sane YK. 1939. A contribution to the embryology of the Aponogetonaceae. J. Indian Bot. Soc. 18: 79–91.Google Scholar
  246. Sattler R and V Singh. 1978. Floral development of Hydrocleis nymphoides. Canad. J. Bot. 51: 2455–2458.CrossRefGoogle Scholar
  247. Scribailo RW and U Posluszny. 1985. Floral development of Hydrocharis morsus-ranae (Hydrocharitaceae). Am. J. Bot. 72: 1678–1589.CrossRefGoogle Scholar
  248. Shaffer-Fehre M. 1991a. The endotegmen tuberculae: An account of little-known structures from the seed coat of the Hydro-charitoideae (Hydrocharitaceae) and Najas (Najadaceae). Bot. J. Linn. Soc. 107: 169–188.CrossRefGoogle Scholar
  249. Shaffer-Fehre M. 1991b. The position of Najas within the subclass Alismatidae (Monocotyledones) in the light of new evidence from seed coat structures in the Hydrocharitoideae (Hydrocharitales). Bot. J. Linn. Soc. 107: 189–209.CrossRefGoogle Scholar
  250. Singh V. 1965. Morphological and anatomical studies in Helobiae: III. Vascular anatomy of the node and flower of Najadaceae. Proc. Indian Acad. Sci. 61B: 98–108.Google Scholar
  251. Singh V. 1966. Morphological and anatomical studies in Helobiae: VII. Vascular anatomy of the flower of Butomus umbellatus Linn. Proc. Indian Acad. Sci. 63B: 313–320.Google Scholar
  252. Singh V and R Sattler. 1974. Floral development of Butomus umbellatus. Canad. J. Bot. 52: 223–230.CrossRefGoogle Scholar
  253. Singh V and R Sattler. 1977. Floral development of Aponogeton natans and A. undulatus. Canad. J. Bot. 55: 1106–1120.CrossRefGoogle Scholar
  254. Soros CL and DH Les. 2002. Phylogenetic relationships in the Alismataceae. In Botany 2002: Botany in the Curriculum. Abstracts, p. 152. Madison, WI.Google Scholar
  255. Stant MY. 1967. Anatomy of the Butomaceae. Bot. J. Linn. Soc. 60: 31–60.CrossRefGoogle Scholar
  256. Sun K, Q-F Wang, and J-K Chen. 1997. Micromorphological characters of seed coats of Chinese Najadaceae and their systematic significance. Acta Phytotax. Sinica 35: 521–526 (in Chinese with English summary).Google Scholar
  257. Sun K, J-K Chen, and Z-Y Zhang. 2001. Pollen morphology of Najadaceae and Zannichelliaceae. Acta Phytotax. Sinica 39: 31–37 (in Chinese with English summary).Google Scholar
  258. Sun K, J-K Chen, and Z-Y Zhang. 2002. Studies on pollen morphology of Aponogetonaceae. Bull. Bot. Res. (China) 22: 33–36.Google Scholar
  259. Swamy BGL and KK Lakshmanan. 1962. Contributions to the embryology of the Najadaceae. J. Indian Bot. Soc. 41: 247–267.Google Scholar
  260. Tanaka N, H Setoguchi, and J Murata. 1997. Phylogeny of the family Hydrocharitaceae inferred from rbcL and matK gene sequence data. J. Plant Res. 110: 329–337.CrossRefGoogle Scholar
  261. Tanaka N, K Uehara, and J Murata. 2004. Correlation between pollen morphology and pollination mechanisms in the Hydrocharitaceae. J. Plant Res. 117: 265–276.PubMedCrossRefGoogle Scholar
  262. Terekhin EC. 1985. Hydrocharitaceae. In: A Takhtajan, ed. Comparative seed anatomy vol 1, pp. 38–43. Nauka, Leningrad (in Russian).Google Scholar
  263. Thanikaimoni G. 1985. Palynology and phylogeny. In: HWE van Bruggen, ed. Monograph of the genus Aponogeton (Aponogetonaceae). Bibl. Bot. 137: 11–14.Google Scholar
  264. Tomlinson PB. 1969, 1972. On the morphology and anatomy of turtle grass, Thalassia testudinum (Hydrocharitaceae): II. Anatomy and development of the root in relation to function. I V. Leaf anatomy and development. Bull. Marine Sci. 19 (I): 57–71, 1969; 22(1): 75–93, 1972.Google Scholar
  265. Troll W. 1931. Beitrage zur Morphologic des Gynaeceums: I. Über das Gynaeceum der Hydrocharitaceen. Planta 14: 1–18.CrossRefGoogle Scholar
  266. Vijayaraghavan MR and T Kapoor. 1985. Embryogenesis in Najas marina L.: Structural and histochemical approach. Aquatic Bot. 22: 45–60.CrossRefGoogle Scholar
  267. Argue CL. 1973. The pollen of Limnocharis flava Buch., Hydrocleis nymphoides (Willd.) Buch., and Tenogacharis latifolia (Don) Buch. (Limnocharitaceae). Grana 13: 108–113.Google Scholar
  268. Argue CL. 1976. Pollen studies in the Alismataceae with special reference to taxonomy. Pollen et Spores 18: 161–201.Google Scholar
  269. Chanda S, S Nilsson, and S Blackmore. 1988. Phylogenetic trends in the Alismatales with reference to pollen grains. Grana 27: 257–272.Google Scholar
  270. Charlton WA. 1968, 1973, 1991. Studies in the Alismataceae: I. Developmental morphology of Echinodorus tenellus. II. Inflorescences of Alismataceae. IX. Development of the flower of Ranalisma humile. Canad. J. Bot. 46: 1345–1360, 1968; 51: 775–789, 1973; 69: 2790–2796, 1991.CrossRefGoogle Scholar
  271. Charlton WA. 2004. Studies in the Alismataceae. XII. Floral organogenesis in Damasonium alisma and Baldellia ranun-culoides, and comparisons with Butomus umbellatus. Canad. J. Bot. 82: 528–539.CrossRefGoogle Scholar
  272. Charlton WA and A Ahmed. 1973. Studies in the Alismataceae: III. Floral anatomy of Ranalisma humile. I V. Developmental morphology of Ranalisma humile and comparison with two members of the Butomaceae, Hydrocleis nymphoides and Butomus umbellatus. Canad. J. Bot. 51: 891–897, 899–910.CrossRefGoogle Scholar
  273. Chen J-M, D Chen, GW Robert, Q-F Wang, and Y-H Guo. 2004a. Evolution of apocarpy in Alismatidae using phyloge-netic evidence from chloroplast rbcL sequence data. Bot. Bull. Acad. Sinica 45: 33–40.Google Scholar
  274. Chen J-M, GW Robert, and Q-F Wang. 2004b. Evolution of aquatic life forms in Alismatidae: phylogenetic estimation from chloroplast rbcL sequence data. Israel J. Plant Sci. 52: 323–329.CrossRefGoogle Scholar
  275. Daumann E. 1964. Zur Morphologic der Blüte von Alisma plantago-aquatica L. Preslia 36: 226–239.Google Scholar
  276. Forni Martins ER and KP Calligaris. 2002. Chromosomal studies on neotropical Limnocharitaceae (Alismatales). Aquatic Bot. 74(1): 33–41.CrossRefGoogle Scholar
  277. Harley MM. 1982. Palynological evidence of a close association between Butomopsis Kunth and Hydrocleys L. C. Rich. (Limnocharitaceae). In: JJ Symoens, SS Hooper, and P Compere, eds. Studies on aquatic vascular plants, pp. 61–65. Botanical Society of Belgium, Brussels.Google Scholar
  278. Haynes RR and LB Holm-Nielsen. 1992. Limnocharitaceae. Flora Neotropica 56: 1–34.Google Scholar
  279. Haynes RR and LB Holm-Nielsen. 1994. Alismataceae. Flora Neotropica 64: 1–112.Google Scholar
  280. Haynes RR, DH Les, and LB Holm-Nielsen. 1998a. Alismataceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol 4, pp 11–18. Springer, Berlin/Heidelberg/ New York.Google Scholar
  281. Haynes RR, DH Les, and LB Holm-Nielsen. 1998b. Limnocharitaceae. In: K. Kubitzki, ed. The families and genera of vascular plants vol 4, pp 271–275. Springer, Berlin/ Heidelberg/New York.Google Scholar
  282. Hooper SS and JJ Symoens. 1982. Observations on the family Limnocharitaceae Takhtajan ex Hooper and Symoens. In: JJ Symoens, SS Hooper, and P Compere, eds. Studies on aquatic vascular plants, pp. 56–60. Royal Botanical Society of Belgium, Brussels.Google Scholar
  283. Johri BM. 1936. The life-history of Butomopsis lanceolata Kunth. Proc. Indian Acad. Sci. 4B: 139–162.Google Scholar
  284. Johri BM. 1938a. The embryo sac of Hydrocleis nymphoides Buchen. Beih. Bot. Centralbl. 58A: 165–172.Google Scholar
  285. Johri BM. 1938b. The embryo sac of Limnocharis emarginata L. New Phytol. 37: 279–285.CrossRefGoogle Scholar
  286. Kak AM and S Durani. 1989. Seed morphology of the family Alismataceae. J. Econ. Taxon, Bot. 13: 501–509.Google Scholar
  287. Kaul RB. 1967a. Development and vasculature of the flowers of Lophotocarpus calycinus and Sagittaria latifolia (Alismataceae). Am. J. Bot. 54: 914–920.CrossRefGoogle Scholar
  288. Kaul RB. 1967b. Ontogeny and anatomy of the flower of Limmnocharis flava (Butomaceae). Am. J. Bot. 54: 1223–1230.CrossRefGoogle Scholar
  289. Kaul RB. 1968. Floral development and vasculature in Hydrocleis nymphoides (Butomaceae). Am. J. Bot. 55: 236–242.CrossRefGoogle Scholar
  290. Kaul RB. 1976. Conduplicate and specialized carpels in the Alismatales. Am. J. Bot. 63: 175–182.CrossRefGoogle Scholar
  291. Kudryashov LV and EI Savich. 1963. Some data on the embryology of Alisma plantago-aquatica L. Bull. Moscow Soc. Naturalists Div. Biol. 68(4): 50–63 (in Russian).Google Scholar
  292. Leins P and P Stadler. 1973. Entwicklungsgeschichtliche Untersuchungen am Androeceum der Alismatales. Oesterr. Bot. Z. 121: 51–63.CrossRefGoogle Scholar
  293. Liu K-M, L-G Lei, and G-W Hu. 2002. Developmental study on the inflorescence and flower of Caldesia grandis Samuel (Alismataceae). Bot. J. Linn. Soc. 140: 39–47.CrossRefGoogle Scholar
  294. Markgraf F. 1936. Blütenbau und Verwandtschaft bei den ein-fachsten Helobiae. Ber. Deutsch. Bot. Ges. 54: 191–229.Google Scholar
  295. Mayr F. 1943. Beiträge zur Anatomic der Alismataceen: Die Blattanatomie von Caldesia parnassifolia (Bassi) Parl. Beih. Bot. Centralbl. 62: 61–77.Google Scholar
  296. Meyer FJ 1932. Beiträge zur Anatomic der Alismataceen. Beih. Bot. Centralbl. 49(I): 54–63, 272–91, 309–68; 50 (I): 54–63; 52B: 96–111; 54A: 156–69.Google Scholar
  297. Pichon M. 1946. Sur les Alismatacees et les Butomacees. Notul. Syst. (Paris) 12: 170–183.Google Scholar
  298. Rogers GK. 1983. The genera of Alismataceae in the southeastern United States. J. Arnold Arbor. 64: 383–420.Google Scholar
  299. Sattler R and V Singh. 1973. Floral development of Hydrocleis nymphoides. Canad. J. Bot. 51: 2455–2458.CrossRefGoogle Scholar
  300. Sattler R and V Singh. 1977. Floral organogenesis of Limnocharis flava. Canad. J. Bot. 55: 1076–1086.CrossRefGoogle Scholar
  301. Sattler R and V Singh. 1978. Floral organogenesis of Echinodorus amazonicus Rataj and floral construction of the Alismatales. Bot. J. Linn. Soc. 77: 141–156.CrossRefGoogle Scholar
  302. Singh V. 1966. Morphological and anatomical studies in Helobiae: VI. Vascular anatomy of the flower of Alismaceae. Proc. Natl. Acad. Sci. India B 36: 329–344.Google Scholar
  303. Singh V and R Sattler. 1972. Floral development of Alisma triv-iak. Canad. J. Bot. 50: 619–627.CrossRefGoogle Scholar
  304. Singh V and R Sattler, 1973. Nonspiral androecium and gynoe-cium of Sagittaria latifolia. Canad. J. Bot. 51: 1093–1095.CrossRefGoogle Scholar
  305. Singh V and R Sattler. 1977. Development of the inflorescence and flower of Sagittaria cuneata. Canad. J. Bot. 55: 1087–1105.CrossRefGoogle Scholar
  306. Stant MY. 1964. Anatomy of the Alismataceae. Bot. J. Linn. Soc. 59: 1–42.CrossRefGoogle Scholar
  307. Troll W. 1932. Beiträge zur Morphologic des Gynaeceums: II. Über das Gynaeceum von Limnocharis Humb. and Bonpl. Planta 17: 453–460.CrossRefGoogle Scholar
  308. Wilder GJ. 1974. Symmetry and development of Butomus umbellatus (Butomaceae) and Limnocharis flava (Limnocharitaceae). Am. J. Bot. 61: 379–394.CrossRefGoogle Scholar
  309. Wodehouse RP. 1936. Pollen grains in the identification and classification of plants: VIII. The Alismataceae. Am. J. Bot. 23: 535–539.CrossRefGoogle Scholar
  310. Aalto M. 1970. Potamogetonaceae fruits. I. Recent and subfossil endocarps of the Fennoscandian species. Acta Bot. Fenn. 88: 1–85.Google Scholar
  311. Agrawal JS 1952. The embryology of Lilaea subulata H. B. K. with a discussion on its systematic position. Phytomorphology 2: 15–29.Google Scholar
  312. Albergoni FG, B Basso, and G Tedesco. 1978. Considerations sur l'anatomie de Posidonia oceanica (Zosteraceae). Plant Syst. Evol. 130: 191–210.CrossRefGoogle Scholar
  313. Arber A. 1940. Studies in flower structure: VI. On the residual vascular tissue in the apices of reproductive shoots, with special reference to Lilaea and Amherstia. Ann. Bot. 2(4): 617–627.CrossRefGoogle Scholar
  314. Barnabas AD. 1982. Fine structure of the leaf epidermis of Thalassodendron ciliatum (Forsk.) den Hartog. Aquatic Bot. 12: 41–55.CrossRefGoogle Scholar
  315. Barnabas AD. 1983. Composition and fine structural features of longitudinal veins in leaves of Thalassodendron ciliatum. South Afr. J. Bot. 2: 317–325.Google Scholar
  316. Barnabas AD. 1994. Anatomical, histochemical and ultrastruc-tural features of the seagrass Phyllospadix scouleri Hook. Aquatic Bot. 49: 167–182.CrossRefGoogle Scholar
  317. Barnabas AD and HJ Arnott. 1987. Zostera capensis Setchell: root structure in relation to function. Aquatic Bot. 27: 309–322.CrossRefGoogle Scholar
  318. Barnabas AD and S Kasavan. 1983. Structural features of the leaf epidermis of Halodule uninervis. South Afr. J. Bot. 2: 311–316.Google Scholar
  319. Black JM. 1913. The flowering and fruiting of Pectinella antarctica (Cymodocea antarctica). Trans. Proc. Roy. Soc. South Australia 37: 1–5.Google Scholar
  320. Bowes G, SK Rao, GM Estavillo, and JB Reiskind. 2002. C4 mechanisms in aquatic angiosperms: Comparisons with terrestrial C4 systems. Funct. Plant Biol. 29: 379–392.CrossRefGoogle Scholar
  321. Buzgo M and PK Endress. 1999. The gynoecium of Gymnostachys (Araceae) and Potamogeton (Potomagetonaceae). In XVI Int. Bot. Congr. Abstracts, p. 240. Missouri Botanical Garden, St. Louis, MO.Google Scholar
  322. Buzgo M, DE Soltis, PS Soltis, S Kim, H Ma, BA Hauser, J Leebens-Mackl, and B Johansen. 2006. Perianth development in the basal monocot Triglochin maritime (Juncginaceae). In: JT Columbus, EA Friar, JM Prince, MG Simpson, eds. Monocots: comparative biology and evolution (excluding Poales), pp. 107–125. Clermont (Aliso 22: 107–125).Google Scholar
  323. Cambridge ML and J Kuo. 1982. Morphology, anatomy and his-tochemistry of the Australian seagrasses genus Posidonia sinuosa Cambridge & Kuo. Aquatic Bot. 14: 1–14.CrossRefGoogle Scholar
  324. Campbell DH. 1897. A morphological study of Nolas and Zannichellia. Proc. Calif. Acad. Set., ser. 3, 1: 1–71.Google Scholar
  325. Campbell DH. 1898. Development of the flower and embryo of Lilaea subulata H. B. K. Ann. Bot. 12: 1–12.Google Scholar
  326. Campbell GKG. 1936. The anatomy of Potamogeton pectinatus. Trans. Proc. Bot. Soc. Edinb. 32: 179–186.Google Scholar
  327. Charlton WA. 1981. Features of the inflorescence of Triglochin maritimum. Canad. J. Bot. 59: 2108–2115.CrossRefGoogle Scholar
  328. Chrysler MA. 1907. The structure and relationships in Potamogetonaceae and allied families. Bot. Gaz. 44: 161–188.CrossRefGoogle Scholar
  329. Cook MT. 1908. The development of the embryo sac and embryo of Potamogeton lucens. Bull. Torrey Bot. Club 35: 209–218.CrossRefGoogle Scholar
  330. Cox PA and CJ Humphries. 1993. Hydrophilous pollination and breeding system evolution in sea grasses: a phylogenetic approach to the evolutionary ecology of the Cymodoceaceae. Bot. J. Linn. Soc. 113: 217–226.CrossRefGoogle Scholar
  331. Cox PA, PB Tomlinson, and K Nieznanski. 1992. Hydrophilous pollination and reproductive morphology in the seagrass Phyllospadix scouleri (Zosteraceae). Plant Syst. Evol. 180: 65–75.CrossRefGoogle Scholar
  332. Dahlgren KVO. 1939. Endosperm- und Embryobildung bei Zostera marina. Bot. Not. 1939: 607–615.Google Scholar
  333. De Cock AWAM. 1978. Germination of the thread like pollen grains of the seagrass Zostera marina L. Bull. Soc. Bot. France Act. Bot. 1–2: 145–148.Google Scholar
  334. De Cock AWAM. 1980. Flowering pollination and fruiting in Zostera marina L. Aquatic Bot. 9: 201–220.CrossRefGoogle Scholar
  335. Ducker SC, NJ Foord, and RB Knox. 1977. Biology of Australian sea grasses: the genus Amphibolis C. Agardh (Cymodoeaceae). Aust. J. Bot. 25: 67–95.CrossRefGoogle Scholar
  336. Ducker SC, JM Pettitt, and RB Knox. 1978. Biology of Australian sea grasses: Pollen development and submarine pollination in Amphibolis antarctica and Thalassodendron ciliatum (Cymodoceaceae). Aust. J. Bot. 26: 265–285.CrossRefGoogle Scholar
  337. Gardner RO. 1976. Binucleate pollen in Triglochin L. N. Z. J. Bot. 14: 115–116.Google Scholar
  338. Graves AH. 1908. The morphology of Ruppia maritima. Conn. Acad. Arts. Sci. 14: 59–170.Google Scholar
  339. Grönland J. 1851. Beitrag zur Kenntnis der Zostera marina. Bot. Z. 9: 185–192.Google Scholar
  340. Guo Y-H and CDK Cook. 1990. The floral biology of Groenlandia densa (L.) Fourreau (Potamogetonaceae). Aquatic Bot. 38: 283–288.CrossRefGoogle Scholar
  341. Gupta BL. 1934. Contribution to the life history of Potamogeton crispus. J. Indian Bot. Soc. 13: 51–65.Google Scholar
  342. Hagstrom ML. 1916. Critical researches on the Potamogeton. Kongl. Svenska Vetenskapsakad. Handl. 55: 1–281.Google Scholar
  343. Hartog C den. 1970. Sea grasses of the World. Verh. Kon. Ned. Akad. Wetensch. Afd. Natuurk. Tweede Sect. 59(I): 1–275.Google Scholar
  344. Haynes RR. 1978. The Potamogetonaceae in the southeastern United States. J. Arnold Arbor. 59: 170–191.Google Scholar
  345. Haynes RR and LB Holm-Nielsen. 1987. The Zannichelliaceae in the southeastern United States. J. Arnold Arbor. 68: 259–268.Google Scholar
  346. Haynes RR, DH Les, and LB Holm-Nielsen. 1998a. Juncaginaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol 4, 260–263. Springer, Berlin/ Heidelberg/New York.Google Scholar
  347. Haynes RR, DH Les, and LB Holm-Nielsen. 1998b. Potamogetonaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol 4, pp. 408–415. Springer, Berlin/ Heidelberg/New York.Google Scholar
  348. Haynes RR, LB Holm-Nielsen, and DH Les. 1998c. Ruppiaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol 4, pp. 445–448. Springer, Berlin/Heidelberg/ New York.Google Scholar
  349. Haynes RR, DH Les, and LB Holm-Nielsen. 1998d. Scheuchzeriaceae. In: K Kubitzki ed., The families and genera of vascular plants, vol 4, pp. 449–451. Springer, Berlin/ Heidelberg/New York.Google Scholar
  350. Haynes RR, DH Les, and LB Holm-Nielsen. 1998e. Zannichelliaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol 4, pp. 470–474. Springer, Berlin/ Heidelberg/New York.Google Scholar
  351. Hegelmaier F. 1870. Über die Entwicklung der Blütenteile von Potamogeton. Bot. Z. 18: 283–320.Google Scholar
  352. Hofmeister W. 1852. Zur Entwicklungsgeschichte der Zostera. Bot. Z. 10: 121–131, 137–149, 157–158.Google Scholar
  353. Holferty GM. 1901. Ovule and embryo of Potamogeton natans. Bot. Gaz. 31: 339–346.CrossRefGoogle Scholar
  354. Isaac FM. 1969 (1970). Floral structure and germination in Cymodocea ciliata. Phytomorphology 19: 44–51.Google Scholar
  355. Jacobs SWL and MA Brock. 1982. A revision of the genus Ruppia (Potamogetonaceae) in Australia. Aquatic Bot. 14: 325–337.CrossRefGoogle Scholar
  356. Kamelina OP. 1990. Potamogetonaceae. In: TB Batygina and MS Yakovlev, eds. Comparative embryology of flowering plants. Monocotyledons. Butomaceae — Lemnaceae, vol 1, pp 34–39. Nauka, Leningrad (in Russian).Google Scholar
  357. Kamelina OP and ES Terekhin. 1990. Ruppiaceae. In: TB Batygina and MS Yakovlev, eds. Comparative embryol- ogy of flowering plants. Monocotyledons. Butomaceae – Lemnaceae, vol 1, pp. 39–44. Nauka, Leningrad (in Russian).Google Scholar
  358. Kato Y, K Aioi, Y Omori, N Takahata, and Y Satta. 2003. Phylogenetic analyses of Zostera species based on rbcL and matK sequences: implications for the origin and diversification of seagrasses in Japanese waters. Genes Genet. Syst. 78: 329–342.PubMedCrossRefGoogle Scholar
  359. Kay QON. 1971. Floral structure in the marine angiosperms Cymodocea serrulata and Thalassodendron ciliatum (Cymodocea ciliata). Bot. J. Linn. Soc. 64: 423–429.CrossRefGoogle Scholar
  360. Keighery GJ and DJ Coates. 1981. Chromosome counts in Posidonia (Posidoniaceae). Plant Syst. Evol. 137: 221–222.CrossRefGoogle Scholar
  361. Kirkman H. 1975. Male floral structure in the marine angio-sperm Cymodocea serrulata (R. Br.) Ascherson and Magnus (Zannichelliaceae). Bot. J. Linn. Soc. 79: 267–268.CrossRefGoogle Scholar
  362. Kuo J. 1978. Morphology, anatomy and histochemistry of the Australian sea grasses genus Posidonia Konig (Posidoniaceae). I. Leaf blade and leaf sheath of Posidonia australis Hook.f. Aquatic Bot. 5: 171–190.CrossRefGoogle Scholar
  363. Kuo J. 1983. The nacreous walls of sieve elements in sea grasses. Am. J. Bot. 70: 159–164.CrossRefGoogle Scholar
  364. Kuo J. 1993a. Functional leaf anatomy and ultrastructure in a marine angiosperm, Syringodium isoetifolium (Aschers.) Dandy (Cymodoceaceae). Aust. J. Mar. Freshwater Res. 44: 59–73.Google Scholar
  365. Kuo J. 1993b. Root anatomy and rhizosphere ultrastructure in tropical sea grasses. Aust. J. Mar. Freshwater Res. 44: 75–84.Google Scholar
  366. Kuo J. 2001. Chromosome numbers of the Australian Zosteraceae. Plant Syst. Ecol. 226(3–4): 155–163.CrossRefGoogle Scholar
  367. Kuo J and ML Cambridge. 1978a. Morphology, anatomy, and histochemistry of the Australian sea grasses of the genus Posidonia Konig (Posidoniaceae): I. Leaf blade and leaf sheath of Posidonia australis Hook. f. Aquatic Bot. 5: 163–170.CrossRefGoogle Scholar
  368. Kuo J and ML Cambridge. 1978b. Morphology, anatomy, and histochemistry of the Australian species of the genus Posidonia Konig (Posidoniaceae): rhizome and root of Posidonia australis Hook. f. Aquatic Bot. 5: 191–206.CrossRefGoogle Scholar
  369. Kuo J and H Kirkman. 1987. Floral and seeding morphology and anatomy of Thalassodendron pachyrhizum den Hartog (Cymodoceaceae). Aquatic Bot. 29: 1–17.CrossRefGoogle Scholar
  370. Kuo J and H Kirkman. 1990. Anatomy of vipiparous sea grasses of Amphibolis and Thalassodendron and their nutrient supply. Bot. Mar. 33: 117–126.Google Scholar
  371. Kuo J and AJ McComb. 1989. Sea grass taxonomy, structure and development. In: AWD Larkum, AJ McComb, SA Shephard, eds. Biology of seagrasses. A treatise on the biology of seagrasses with special reference to the Australian region, pp. 6–73. Elsevier Science, Amsterdam.Google Scholar
  372. Kuo J and AJ McComb. 1998a. Cymodoceaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol 4, pp 133–140. Springer, Berlin/Heidelberg/New York.Google Scholar
  373. Kuo J and AJ McComb. 1998b. Posidoniaceae. In: K Kubitzki, ed., The families and genera of vascular plants, vol 4, pp 404–408. Springer, Berlin/Heidelberg/New York.Google Scholar
  374. Kuo J and AJ McComb. 1998c. Zosteraceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol 4, pp. 496–502. Springer, Berlin/Heidelberg/New York.Google Scholar
  375. Kuo J, K Aioi, and H Iizumi. 1988. Comparative leaf structure and its functional significance in Phyllospadix iwatensis Makino and Phyllospadix japonicus Makino (Zosteraceae). Aquatic Bot. 30: 169–187.CrossRefGoogle Scholar
  376. Kuo J, K Seto, T Nasu, H Iizumi, and K Aioi. 1989. Notes on Archaeozostera in relation to the Zosteraceae. Aquatic Bot. 34: 317–328.CrossRefGoogle Scholar
  377. Kuo J, RW Ridge, and S Lewis. 1990a. Leaf internal morphology and ultrastructure of Zostera moelleri Irmisch ex Aschers.: a comparative study of intertidal and subtidal forms. Aquatic Bot. 36: 217–236.CrossRefGoogle Scholar
  378. Kuo J, K Aioi, and H Iizumi. 1990b. Chromosome numbers and their systematic implications in Australian marine angio-sperms: The Posidoniaceae. Plant Syst. Evol. 171: 199–204.CrossRefGoogle Scholar
  379. Lakshmanan KK. 1965. Note on the endosperm formation in Zannichellia palustris L. Phyton 22: 13–14.Google Scholar
  380. Larkum AWD, AJ McComb, and SA Shepherd, eds. 1989. Biology of sea grasses: a treatise on the biology of sea grasses with special reference to the Australian region. Elsevier, Amsterdam.Google Scholar
  381. Larsen K. 1966. Cytotaxonomical note on Lilaea. Bot. Not. 119: 496–497.Google Scholar
  382. Les DH and RR Haynes. 1996. Coleogeton (Potamogetonaceae), a new genus of pondweeds. Novon 6: 389–391.CrossRefGoogle Scholar
  383. Les DH and DJ Sheridan. 1990a. Hagstrom's concept of phylo-genetic relationships in Potamogeton L. (Potamogetonaceae). Taxon 39: 41–58.CrossRefGoogle Scholar
  384. Les DH and DJ Sheridan. 1990b. Biochemical heterophylly and flavonoid evolution in North American Potamogeton (Potamogetonaceae). Am. J. Bot. 77: 453–465.CrossRefGoogle Scholar
  385. Les DH, ML Moody, SWL Jacobs, and RJ Bayer. 2002. Systematics of Seagrasses (Zosteraceae) in Australia and New Zealand. Syst. Bot. 27: 468–484.Google Scholar
  386. Lieu SM. 1979. Organogenesis in Triglochin striata. Canad. J. Bot. 57: 1418–1438.CrossRefGoogle Scholar
  387. Lindqvist C, J de Laet, RR Haynes, L Aagesen, BR Keener, and VA Albert. 2006. Molecular phylogenetics of an aquatic plant lineage, Potamogetonaceae. Cladistics 22: 568–588.CrossRefGoogle Scholar
  388. Lupnitz D. 1969. Histogenese and Anatomie von Primarwurzeln und sprossburtigen Wurzeln einer Potamogetonaceae. Beitr. Biol. Pflanz. 46 : 247–313.Google Scholar
  389. McConchie CA, SC Ducker, and RB Knox. 1982a Biology of Australian seagrasses: floral development and morphology in Amphibolis (Cymodoceaceae). Aust. J. Bot. 30: 251–264.CrossRefGoogle Scholar
  390. McConchie CA, RB Knox, and SC Ducker. 1982b. Pollen wall structure and cytochemistry in the seagrass Amphibolis grif-fithii (Cymodoceaceae). Ann Bot. 50: 792–732.Google Scholar
  391. McMillan C. 1983. Seed germination in Halodule wrightii and Syringodium filiforme from Texas and the US Virgin Islands, Aquatic Bot. 15: 217–220.Google Scholar
  392. McMillan C and LH Bragg. 1987. Comparison of fruits of Syringodium (Cymodoceaceae) from Texas, the US Virgin Islands and the Philippines. Aquatic Bot. 28: 97–100.CrossRefGoogle Scholar
  393. Muenscher WC. 1936. The germination of seeds of Potamogeton (pondweeds). Mich. Bot. 23: 35–38.Google Scholar
  394. Murbeck S. 1902. Über die Embryologie von Ruppia rostellata Koch. Koninkl. Sven. Vetensk. Ak. Handl. 36(5): 1–21.Google Scholar
  395. Nikiticheva ZI and OB Proskurina. 1992. Embryology of Scheuchzeria palustris (Scheuchzeriaceae). Bot. Zhurn. 77: 3–18 (in Russian with English summary).Google Scholar
  396. Pettitt JM and AC Jenny. 1975. Pollen in hydrophilous angio-sperms. Micron 5: 377–405.Google Scholar
  397. Plisco MA. 1985. Scheuchzeriaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol 1, pp. 47–49. Nauka, Leningrad (in Russian).Google Scholar
  398. Posluszny U. 1981. Unicarpellate floral development in Potamogeton zosteriformis. Canad. J. Bot. 59: 495–504.Google Scholar
  399. Posluszny U. 1983. Re-evaluation of certain key relationships in the Alismatidae: floral organogenesis of Scheuchzeria palus-tris. Am. J. Bot. 70: 925–933.CrossRefGoogle Scholar
  400. Posluszny U and R Sattler. 1973. Floral development of Potamogeton densus. Canad. J. Bot. 51: 647–656.CrossRefGoogle Scholar
  401. Posluszny U and R Sattler. 1974a. Floral development of Potamogeton richardsonii. Am. J. Bot. 61: 209–216.CrossRefGoogle Scholar
  402. Posluszny U and R Sattler. 1974b. Floral development of Ruppia maritima var. maritima. Canad. J. Bot. 52: 1607–1612.CrossRefGoogle Scholar
  403. Posluszny U and R Sattler. 1976. Floral development of Zannichellia palustris. Canad. J. Bot. 54: 651–662.CrossRefGoogle Scholar
  404. Posluszny U and PB Tomlinson. 1977. Morphology and development of floral shoots and organs in certain Zannichelliaceae. Bot. J. Linn. Soc. 75: 21–46.CrossRefGoogle Scholar
  405. Posluszny U, WA Charlton, and DK Jain. 1986. Morphology and development of the reproductive shoots of Lilaea scilloides (Poir.) Hauman (Alismatidae). Bot. J. Linn. Soc. 92: 323–342.CrossRefGoogle Scholar
  406. Reinecke P. 1964. A contribution to the morphology of Zannichellia aschersoniana Graebn. South Afr. J. Bot. 30: 93–101.Google Scholar
  407. Roth I. 1961. Histogenese der Laubblatter von Zostera nana. Bot. Jahrb. Syst. 80: 500–507.Google Scholar
  408. Sattler R. 1965. Perianth development of Potamogeton richard-sonii. Am. J. Bot. 52: 35–41.CrossRefGoogle Scholar
  409. Schneider EL and S Carlquist. 1997. Origins and nature of vessels in monocotyledons. 2. Juncaginaceae and Scheuchzeriaceae. Nord. J. Bot. 17: 397–401.CrossRefGoogle Scholar
  410. Schwantz G. 1967. Untersuchungen zur postmeiotischen Mikrosporogenese. I. Morphogenese des Ruppia-Pollens. Pollen et Spores 9: 9–48.Google Scholar
  411. Singh V. 1964. Morphological and anatomical studies in Helobiae: I. Vegetative anatomy of some members of Potamogetonaceae. Proc. Indian Acad. Sci. 60B: 214–231.Google Scholar
  412. Singh V. 1965. Morphological and anatomical studies in Helobiae. V. Vascular anatomy of the flower of Lilaea scilloides (Poir.) Hamm. Proc. Indian Acad Sci. B, 61: 316–535.Google Scholar
  413. Soros-Pottruff C and U Posluszny. 1994. Developmental morphology of reproductive structures of Phyllospadix (Zosteraceae). Int. J. Plant Sci. 155: 405–420.CrossRefGoogle Scholar
  414. Soros-Pottruff C and U Posluszny. 1995. Developmental morphology of reproductive structures of Zostera and a reconsideration of Heterozostera (Zosteraceae). Int. J. Plant Sci. 156: 143–158.CrossRefGoogle Scholar
  415. Sorsa P. 1988. Pollen morphology of Potamogeton and Groenlandia (Potamogetonaceae) and its taxonomic signifi-cance. Ann. Bot. Fenn. 25: 179–199.Google Scholar
  416. Soueges R. 1943. Embryogenie des Scheuchzeriacées: Developpement de 1'embryon chez le Triglochin mariti-mum L. Compt. Rend. Hebd. Seances Acad. Sci. 216: 746–748.Google Scholar
  417. Stenar H. 1935. Embryologische Beobachtungen fiber Scheuchzeria palustris L. Bot. Not. 1935: 78–86.Google Scholar
  418. Stewart JG and L Ludenberg. 1980. Microsporocyte growth and meiosis in Phyllospadix torreyi, a marine monocotyledon. Am. J. Bot. 67: 949–954.CrossRefGoogle Scholar
  419. Sun K, J-K Chen, and Z-Y Zhang. 2001. Pollen morphology of Najadaceae and Zannichelliaceae. Acta Phytotax. Sinica 39: 31–37 (in Chinese with English summary).Google Scholar
  420. Takaso T and F Bouman. 1984. Ovule ontogeny and seed development in Potamogeton natans L. (Potamogetonaceae), with a note on the campylotropous ovule. Acta Bot. Neerl. 33: 519–533.Google Scholar
  421. Talavera S, P Garcia-Murillo, and J Herrera. 1993. Chromosome numbers and a new model for karyotype evolution in Ruppia L. (Ruppiaceae). Aquatic Bot. 45: 1–13.CrossRefGoogle Scholar
  422. Taylor ARA. 1957a. Studies of the development of Zostera marina L.: 1. The embryo and seed. Canad. J. Bot. 35: 477–499.CrossRefGoogle Scholar
  423. Taylor ARA. 1957b. Studies of the development of Zostera marina L.: 2. Germination and seedling development. Canad. J. Bot. 35: 681–695.Google Scholar
  424. Terekhin ES. 1985. Potamogetonaceae, Ruppiaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol 1, pp. 51–55. Nauka, Leningrad (in Russian).Google Scholar
  425. Terechin ES and SI Chubarov. 1991. The embryological and carpological investigation of Althenia jiliformis (Zannichelliaceae). Bot. Zhurn. 76: 226–236 (in Russian with English summary).Google Scholar
  426. Terechin ES and GV Shibakina. 1985. Zosteraceae. In: A. Takhtajan, ed. Comparative seed anatomy, vol 1, pp. 62–64. Nauka, Leningrad (in Russian).Google Scholar
  427. Tomlinson PB and U Posluszny. 1976. Generic limits in the Zannichelliaceae (sensu Dumortier). Taxon 25: 273–279.CrossRefGoogle Scholar
  428. Tomlinson PB and U Posluszny. 1978. Aspects of floral morphology and development in the sea grass Syringodium filiformis (Cymodoceaceae). Bot. Gaz. 139: 333–345.CrossRefGoogle Scholar
  429. Tomlinson PB and U Posluszny. 2001. Generic limits in the seagrass family Zosteraceae. Taxon 50: 429–437.CrossRefGoogle Scholar
  430. Tutin TG. 1938. The autecology of Zostera marina in relation to its wasting disease. New Phytol. 37: 50–71.CrossRefGoogle Scholar
  431. Vijayraghavan MR and A Vidya Kumari. 1974, Embryology and systematic position of Zannichellia palustris L. J. Indian Bot. Soc. 53: 292–302.Google Scholar
  432. Waycott M and DH Less. 1996. An integrated approach to the evolutionary study of seagrasses. In: J Kuo, RC Phillios, DI Walker, and H Kirkman, eds. Seagrass biology. Proceedings of an International Workshop, Rottnest Island, Western Australia. 25–29 January 1996, pp. 71–78. Perth.Google Scholar
  433. Weigleb G. 1988. Notes on pondweeds, outline for a mono-graphical treatment of the genus Potamogeton L. Feddes Repert. 99: 249–266.Google Scholar
  434. Yamashita T. 1972. Eigenartige Wurzelanlage der Embryos bei Ruppia maritima L. Beitr. Biol. Pfl. 48: 157–170.Google Scholar
  435. Yamashita T. 1973. Über die Embryo- und Wurzelentwicklung bei Zostera japonicus Aschers. et Graebn. J. Fac. Sci. Univ. Tokyo III, Bot. 11: 175–193.Google Scholar
  436. Yamashita T. 1976. Über die Pollenbildung bei Halodule pinifolia und H. uninervis. Beitr. Biol. Pfl. 52: 217–226.Google Scholar
  437. Zapata O and C McMillan. 1979. Phenolic acids in seagrasses. Aquatic Bot. 7: 307–317.CrossRefGoogle Scholar
  438. Amelunxen VF and G Gronau. 1969. Untersuchungen an den Gerbstoffzellen der Niederblatter von Acorus calamus L. Cytobiologie 1: 58–69.Google Scholar
  439. Arber A. 1919. The vegetative morphology of Pistia and the Lemnaceae. Proc. Roy. Soc. Lond., Ser. B, Biol. Sci. 91: 96–103.CrossRefGoogle Scholar
  440. Barabe D and S Forget. 1988. Anatomie des fleurs fertiles et steriles de Zamioculcas (Araceae). Bull. Mus. Natl. Hist. Nat. B Adansonia 10: 411–419.Google Scholar
  441. Barabé D, S Forget, and S Chrétien 1986. Sur les gynécées pseudo-monomeres: Cas de Symplocarpus. Compte Rendu Acad. Sci. Paris, sér.3, 302: 429–434.Google Scholar
  442. Barabé D, S Forget, and S Chrétien. 1987. Organogénese de la fleur de Symplocarpus foetidus (Araceae). Canad. J. Bot. 65: 446–455.CrossRefGoogle Scholar
  443. Barabe D, A Bruneau, F Forest, and C Lacroix. 2002. The correlation between development of atypical bisexual flowers and phylogeny in the Aroideae (Araceae). Plant Syst. Evol. 232: 1–19.CrossRefGoogle Scholar
  444. Barabé D, C Lacroix, A Bruneau, A Archambault, and M Gibernau. 2004. Floral development and phylogenetic position of Schismatoglottis (Araceae). Int. J. Plant Sci. 165: 173–189.CrossRefGoogle Scholar
  445. Behnke H-D. 1995. P-type sieve-element plastids and the ssystematics of the Arales (sensu Cronquist 1988) – with S-type plastids in Pistia. Plant Syst. Evol. 195: 87–119.CrossRefGoogle Scholar
  446. Beppu T and A Takimoto. 1981. Geographical distribution and cytological variation of Lemna paucicostata Hegelm. Jpn. Bot. Mag. (Tokyo) 94: 11–20.CrossRefGoogle Scholar
  447. Blanc P. 1977. Contribution a l'etude des aracees. II. Remarques sur la croissance sympodiale chez l'Anthurium scandens Engl., le Philodendron fenzlii Engl. Et le Philodendron speciosum Schott. Rev. Gen. Bot. 84: 319–331.Google Scholar
  448. Blanc P. 1980. Observations sur les flagelles des Araceae. Adansonia II 20: 325–338.Google Scholar
  449. Blodgett F-H. 1923. The embryo of Lemna. Am. J. Bot. 10: 336–342.CrossRefGoogle Scholar
  450. Bogner J. 1979. A critical list of the aroid genera. Aroideana 1: 63–73.Google Scholar
  451. Bogner J. 1987. Morphological variations in aroids. Aroideana 10(2): 4–16.Google Scholar
  452. Bogner J and A Hay. 2000. Schismatoglottideae (Araceae) in Malesia. II — Aridarum, Bucephalandra, Phymatarum and Piptospatha. Telopea 9: 179–222.Google Scholar
  453. Bogner J and M Hesse. 2005. Zamioculcadoideae, a new subfamily of Araceae. Aroideana 28: 3–20.Google Scholar
  454. Bogner J and SJ Mayo. 1998. Acoraceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol 4, pp. 7–11. Springer, Berlin/Heidelberg/New York.Google Scholar
  455. Bogner J and DH Nicolson. 1991. A revised classification of the Araceae with dichotomous keys. Willdenowia 21: 35–50.Google Scholar
  456. Bown D. 1988. Aroids – plants of the Arum family. Century, London.Google Scholar
  457. Bown D. 2000. Aroids: Plants of the Arum family. Timber Press, Portland, OR.Google Scholar
  458. Boyce PC. 1993. The genus Arum. Royal Botanic Gardens, Kew.Google Scholar
  459. Boyce PC and A Hay. 2001. A taxonomic revision of Araceae tribe Potheae (Pothos, Pothoidium and Pedicellarum) for Malesia, Australia and the tropical western Pacific. Telopea 9: 449–571.Google Scholar
  460. Buell MF. 1935. Seed and seeding of Acorus calamus. Bot. Gaz. 96: 758–795.CrossRefGoogle Scholar
  461. Buell MF. 1938. Embryology of Acorus calamus. Bot. Gaz. 99: 556–568.CrossRefGoogle Scholar
  462. Buscalioni L and D Lanza. 1935. Le basi morfologiche, anato-miche, teratologiche della nuova famiglia delle Pistiaceae (Buscalioni e Lanza) rappresentate dai duegeneri Pistia ed Ambrosinia. Malpighia 34: 103–180.Google Scholar
  463. Buzgo M. 1994. Inflorescence development of Pistia stratiotes (Araceae). Bot. Jahrb. Syst. 115: 557–570.Google Scholar
  464. Buzgo M. 2001. Flower structure and development of Araceae compared with alismatids and Acoraceae. Bot. J. Linn. Soc. 136: 393–425.CrossRefGoogle Scholar
  465. Buzgo M and PK Endress. 1998. Floral development of Acorus calamus (Acoraceae) in comparison with other basal mono-cots. In Monocots II, p. 13 (abstract). Sydney.Google Scholar
  466. Buzgo M and PK Endress. 1999. The gynoecium of Gymnostachys (Araceae) and Potamogeton (Potomagetonaceae). In XVI International Botanical Congress: Abstracts, p. 240. St. Louis, MO.Google Scholar
  467. Buzgo M and PK Endress. 2000. Floral structure and development of Acoraceae and its systematic relationships with basal angiosperms. Int. J. Plant Sci. 161: 23–41.PubMedCrossRefGoogle Scholar
  468. Campbell DH 1899. Notes on the structure of the embryo sac in Sparganium and Lysichiton. Bot. Gaz. 27: 153–166.CrossRefGoogle Scholar
  469. Campbell DH. 1900. Studies on the Araceae. 1. Ann. Bot. 14: 1–15.Google Scholar
  470. Carlquist S and EL Schneider. 1997. Origins and nature of vessels in Monocotyledons. 1. Acorus. Int. J. Plant Sci. 158: 51–56.CrossRefGoogle Scholar
  471. Carlquist S and EL Schneider 1998. Origin and nature of vessels in monocotyledons. 5. Araceae subfamily Colocasioideae. Bot. J. Linn. Soc. 128: 71–86.CrossRefGoogle Scholar
  472. Chao Y and JD Palmer. 1999. Multiple acquisitions via horizontal transfer of a group I intron in the mitochondrial coxI gene during evolution of the Araceae family. Mol. Biol. Evol. 16: 1155–1165.Google Scholar
  473. Chen YY, Li DZ, and H Wang. 2002. Infrageneric phylogeny and systematic position of the Acoraceae inferred from ITS, 18S and rbcL sequences. Acta Bot. Yunn. 24: 699–706.Google Scholar
  474. Chouteau M, D Barabé, and M Gibernau. 2006. Pollen-ovule ratios in some Neotropical Araceae and their putative signifi-cance. Plant Syst. Evol. 257: 147–157.CrossRefGoogle Scholar
  475. Crawford DJ, E Landolt, DH Les, and RT Kimb. 2001. Allozyme studies in Lemnaceae: variation and relationships in Lemna sections Alatae and Biformes. Taxon 50: 987–999.CrossRefGoogle Scholar
  476. Crawford DJ, E Landolt, DH Les, and RT Kimball. 2006. Speciation in duckweeds (Lemnaceae): phylogenetic and ecological inferences. In: JT Columbus, EA Friar, JM Porter, LM Prince, and MG Simpson, eds. Monocots: comparative biology and evolution (excluding Poales), pp. 231–242, Rancho Santa Ana Botanical Garden, Claremont.Google Scholar
  477. Croat TC. 1990. A comparison of aroid classification systems. Aroideana 13: 44–63.Google Scholar
  478. Croat TC. 1998. History and current status of systematic research with Araceae. Aroideana. 21: 26–145.Google Scholar
  479. Daubs EN. 1965. A monograph of Lemnaceae. Illinois Biological Monographs 34.Google Scholar
  480. Den Hartog C and F van der Plas. 1970. A synopsis of the Lemnaceae. Blumea 18: 355–368.Google Scholar
  481. Duvall MR. 2001. An anatomical study of anther development in Acorus L.: phylogenetic implications. Plant Syst. Evol. 228: 143–152.CrossRefGoogle Scholar
  482. Duvall MR, MT Clegg, MW Chase, WD Clark, WJ Kress, HG Hims, LE Eguiarte, JF Smith, BS Gaut, EA Zimmer, and GH Learn, Jr. 1993a. Phylogenetic hypotheses for the monocotyledons constructed from rbcL sequence data. Ann. Missouri Bot. Gard. 80: 607–619.CrossRefGoogle Scholar
  483. Duvall MR, GH Leaen, Jr., LE Eguiarte, and MT Clegg. 1993b. Phylogenetic analysis of rbcL sequences identifies Acorus calamus as the primal extant monocotyledon. Proc. Natl. Acad. Sci. USA 90: 4641–4644.CrossRefGoogle Scholar
  484. Engler A. 1876. Vergleichende Untersuchungen über die mor-phologischen Verhaltnisse der Araceae: I. Naturliches System der Araceae. Nova Acta Acad. Caes. Leop.-Carol. German. Nat. Cur. 39: 133–155.Google Scholar
  485. Engler A. 1884. Beitrage zur Kenntnis der Araceae: V. 1, 2. Über den Entwicklungsgang in der Familie der Araceen und über die Blutenmorphologie derselben. Bot. Jahrb. Syst. 5: 141–188, 287–336.Google Scholar
  486. Erti PO. 1932. Vergleichende Untersuchungen über die Entwicklung der Blattnervatur der Araceen. Flora 126: 115–248.Google Scholar
  487. Evstatieva LN, MN Todorova, IV Ognyanov, and LV Kuleva. 1996. Chemical composition of the essential oil in Acorus calamus L. (Araceae). Fitologija (Bulgaria) 48: 19–23.Google Scholar
  488. Eyde RH, DH Nicolson, and P Sherwin. 1967. A survey of floral anatomy in Araceae. Am. J. Bot. 54: 478–497.CrossRefGoogle Scholar
  489. Fox MG and JC French. 1988. Systematic occurrence of sterols in latex of Araceae: Colocasioideae. Am. J. Bot. 75: 132–137.CrossRefGoogle Scholar
  490. French JC. 1986a. Patterns of stamen vascularity in the Araceae. Am. J. Bot. 73: 434–449.CrossRefGoogle Scholar
  491. French JC. 1986b. Ovular vasculature in Araceae. Bot. Gaz. 147: 478–495.CrossRefGoogle Scholar
  492. French JC. 1986c. Patterns of endothecial wall thickenings in Araceae: subfamilies Colocasioideae, Aroideae, and Pistioideae. Bot. Gaz. 147: 166–179.CrossRefGoogle Scholar
  493. French JC. 1987a. Systematic occurrence of a sclerotic hypo-dermis in roots of Araceae. Am. J. Bot. 74: 891–903.CrossRefGoogle Scholar
  494. French JC. 1987b. Structure of ovular and placental trichomes of Araceae. Bot. Gaz. 148: 198–208.CrossRefGoogle Scholar
  495. French JC. 1987c. Systematic survey of resin canals in roots of Araceae. Bot. Gaz. 148: 360–371.CrossRefGoogle Scholar
  496. French JC. 1988. Systematic occurrence of anastomosing latic-ifers in Araceae. Bot. Gaz. 149: 71–81.CrossRefGoogle Scholar
  497. French JC. 1997. Vegetative anatomy. In: SJ Mayo, J Bogner, and PC Boyce. The genera of Araceae, pp. 9–24. Royal Botanic Gardens, Kew.Google Scholar
  498. French JC and CT Kessler. 1989. Molecular systematics of the Araceae: are Acorus and Gymnostachys aroids? Am. J. Bot. 76(Suppl.): 242.Google Scholar
  499. French JC and PB Tomlinson. 1981a. Vascular patterns in stems of Araceae: subfamily Pothoideae. Am. J. Bot. 68: 713–729.CrossRefGoogle Scholar
  500. French JC and PB Tomlinson. 1981b. Vascular patterns in stems of Araceae: subfamily Monsteroideae. Am. J. Bot. 68: 1115–1129.CrossRefGoogle Scholar
  501. French JC and PB Tomlinson. 1981c. Vascular patterns in stems of Araceae: subfamilies Calloideae and Lasioideae. Bot. Gaz. 142: 366–381.CrossRefGoogle Scholar
  502. French JC and PB Tomlinson. 1981d. Vascular patterns in stems of Araceae: subfamily Philodendroideae. Bot. Gaz. 142: 550–563.CrossRefGoogle Scholar
  503. French JC and PB Tomlinson. 1983. Vascular patterns in stems of Araceae: subfamilies Calocasioideae, Aroideae and Pistioideae. Am. J. Bot. 70: 756–771.CrossRefGoogle Scholar
  504. Gonçalves EG, Élder AS Paiva, and MA Nadruz Coelho. 2004. A preliminary survey of petiolar collenchyma in the Araceae. Ann. Missouri Bot. Gard. 91: 473–484.Google Scholar
  505. Goremykin VM, B Holland, KI Hirsch-Ernst, and FH Hellwig. 2005. Analysis of Acorus calamus genome and its phylo-genetic implications. Mol. Biol. Evol. 22: 1813–1222.PubMedCrossRefGoogle Scholar
  506. Gow JE. 1913. Phylogeny of the Araceae. Proc. Iowa Acad. Sci. 20: 161–168.Google Scholar
  507. Govaerts R and DG Frodin. 2002. World checklist and bibliography of Araceae (and Acoraceae). Royal Botanic Gardens, Kew.Google Scholar
  508. Grayum MH. 1984. Palynology and phylogeny of the Araceae. Ph.D. dissertation, University of Massachusetts, Amherst, MA.Google Scholar
  509. Grayum MH. 1985. Evolutionary and ecological significance of starch storage in pollen of the Araceae. Am. J. Bot. 72: 1565–1577.CrossRefGoogle Scholar
  510. Grayum MH. 1986. Phylogenetic implications of pollen nuclear number in the Araceae. Plant Syst. Evol. 151: 145–161.CrossRefGoogle Scholar
  511. Grayum MH. 1987. A summary of evidence and arguments supporting the removal of Acorus from the Araceae. Taxon 36: 723–729.CrossRefGoogle Scholar
  512. Grayum MH. 1990. Evolution and phylogeny of the Araceae. Ann. Missouri Bot. Gard. 77: 628–697.CrossRefGoogle Scholar
  513. Grayum MH. 1991. Systematic embryology of the Araceae. Bot. Rev. 57: 167–203.CrossRefGoogle Scholar
  514. Grayum MN. 1992. Comparative external pollen ultrastructure of the Araceae and putatively related taxa. Monogr. Syst. Bot. Missouri Bot. Gard. 43: 1–167.Google Scholar
  515. Grob GB, B Gravendeel, MCM Eurlings, and WLA Hetterscheld. 2002. Phylogeny of the tribe Thomsonieae (Araceae) based on chloroplast matK and trnL intron sequences. Syst. Bot. 27: 453–467.Google Scholar
  516. Gupta BL. 1935. Studies on the development of the pollen grain and embryo sac of Wolffia arrhiza. Curr. Sci. 4: 104–105.Google Scholar
  517. Haccius B and KK Lakshmanan. 1966. Vergleichende Untersuchung der Entwicklung von Kotyledon und Sprofischeitel bei Pistia stratiotes und Lemna gibba: Ein Beitrag zum Problem der sogenannten terminalen Blattorgane. Beitr. Biol. Pfl. 42: 425–443.Google Scholar
  518. Hartog C den and F von der Plas. 1970. A synopsis of the Lemnaceae. Blumea 18: 355–368.Google Scholar
  519. Hay A. 1992. Tribal and subtribal delimitation and circumscription of the genera of Araceae tribe Lasieae. Ann. Missouri Bot. Gard. 79: 184–205.CrossRefGoogle Scholar
  520. Hesse M. 2002. The uniquely designed pollen aperture in Lasioideae (Araceae). Aroideana. 25: 51–59.Google Scholar
  521. Hesse, M. 2006a. Pollen wall ultrastructure in Araceae and Lemnaceae in relation to molecular classifications. In: JT Columbus, EA Friar, JM Porter, LM Prince, and MG Simpson, eds. Monocots: comparative biology and evolution (excluding Poales), pp. 204–208. Rancho Santa Ana Botanical Garden, Claremont.Google Scholar
  522. Hesse M. 2006b. Reasons and consequences of the lack of sporopollenin ektexine in Aroideae (Araceae). Flora 201: 421–428.Google Scholar
  523. Hesse M, M Weber, and H Halbritter. 1998. Pollen wall stratifi-cation: its possible role in Araceae systematics. In Monocots II, p. 28. Sydney.Google Scholar
  524. Hesse M, J Bogner, H Halbritter, and M Weber. 2001. Palynology of the perigoniate Aroideae: Zamioculcas, Gonatopus and Stylochaeton (Araceae). Grana 40: 26–34.CrossRefGoogle Scholar
  525. Hotta M. 1971. Study of the family Araceae — general remarks. Jpn. J. Bot. 20: 269–310.Google Scholar
  526. Jussen FJ. 1929. Die Haploidgeneration der Araceen und ihre Verwertung fur die Systematik. Bot. Jahrb. Syst. 62: 155–283.Google Scholar
  527. Il'ina GM. 1990. Lemnaceae. In: TB Batygina and MS Yakovlev, eds. Comparative embryology of flowering plants. Monocotyledons, pp. 279–286. Nauka, Leningrad (in Russian).Google Scholar
  528. Ivanova IE. 1973. On the systematics of the family Lemnaceae. Bot. Zhurn. 58: 1413–1428 (in Russian).Google Scholar
  529. Kaplan DR. 1970. Comparative foliar histogenesis of Acorus calamus and its bearing on the phyllode theory of monocoty-ledonous leaves. Am. J. Bot. 57: 331–361.CrossRefGoogle Scholar
  530. Kaplan DR. 1973. Comparative developmental analysis of het-eroblastic leaf series of axillary shoots of Acorus calamus L. Cellule 69: 253–290.Google Scholar
  531. Keating RC. 2000. Collenchyma in Araceae: trends and relation to classification. Bot. J. Linn. Soc. 134: 203–214.Google Scholar
  532. Keating RC. 2002. Leaf anatomical characters and their value in understanding morphoclines in the Araceae. Bot. Rev. 68: 510–523.CrossRefGoogle Scholar
  533. Keating RC. 2003a. Acoraceae and Araceae. In M Gregory and D Cutler, eds. The anatomy of the Monocotyledons, vol. 9, pp. 1–327. Oxford University Press, Oxford.Google Scholar
  534. Keating RC. 2003b. Leaf anatomical characters and their value in understanding morphoclines in the Araceae. Bot. Rev. 68: 510–523.CrossRefGoogle Scholar
  535. Keating RC. 2004a. Vegetative anatomical data and its relationship to a revised classification of the genera of Araceae. Ann. Missouri Bot. Gard. 91: 485–494.Google Scholar
  536. Keating RC. 2004b. Systematic occurrence of raphide crystals in Araceae. Ann. Missouri Bot. Gard. 91: 495–504.Google Scholar
  537. Korobova SN and NA Zhinkina. 1990. Araceae. In: TB Batygina and MS Yakovlev, eds. Comparative embryology of flower-ing plants. Monocotyledons, pp. 275–279. Nauka, Leningrad (in Russian).Google Scholar
  538. Kozhevnikov DA. 1878. On the history of development of flower in the fam. Araceae. Nauka, Moscow (in Russian).Google Scholar
  539. Kulkarni AR, D Dosi, and VM Manoj. 1990. Fruit and seed structure in Araceae. Proc. Indian Acad. Sci. 100B: 61–70.Google Scholar
  540. Kuprianova LA and VF Tarasevich. 1984. The ultra-structure of the surface of pollen grain wall in some genera of the family Lemnaceae and the related genera of the family Araceae. Bot. Zhurn. 69: 1656–1661 (in Russian with English summary).Google Scholar
  541. Landolt E. 1986. The family of Lemnaceae — a monographic study. Vol. 1: Morphology; karyology; ecology; geographic distribution; systematic position; nomenclature; descriptions. Veroff. Geobot. Inst. Eidg. Tech. Hochsch. Stift. Rubel Zuer. 71: 566.Google Scholar
  542. Landolt E. 1998. Lemnaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol 4, pp. 264–270. Springer, Berlin/Heidelberg/New York.Google Scholar
  543. Landolt E and R Kandeler. 1987. The family of Lemnaceae — a monographic study. Vol. 2: Phytochemistry; physiology; application; bibliography. Veroff. Geobot. Inst. Eidg. Tech. Hochsch. Stift Rubel Zuer. 95: 638.Google Scholar
  544. Lawalree A. 1952. L'embryologie des Lemnaceae. Observations sur Lemna minor. Cellule 54: 305–326.Google Scholar
  545. Lawalree A. 1961. La polinisation de Lemna minor L. Nat. Belg. 42: 164–165.Google Scholar
  546. Lemon GD and U Posluszny. 2000a. Shoot development and evolution in Pistia stratiotes (Araceae). Int. J. Plant Sci. 161: 721–732.CrossRefGoogle Scholar
  547. Lemon GD and U Posluszny. 2000b. Comparative shoot development and evolution in the Lemnaceae. Int. J. Plant Sci. 161: 733–748.CrossRefGoogle Scholar
  548. Les DH and DJ Crawford. 1999. Landoltia (Lemnaceae) a new genus of duckweeds. Novon 9: 530–533.CrossRefGoogle Scholar
  549. Les DH, E Landolt, and DJ Crawford. 1994. Molecular system-atics of the Lemnaceae. Am. J. Bot. 81: 168–169.Google Scholar
  550. Les DH, E Landolt, and DJ Crawford. 1997. Systematics of Lemnaceae (duckweeds), inferences from micromolecular and morphological data. Plant Syst. Evol. 204: 161–177.CrossRefGoogle Scholar
  551. Les DH, DJ Crawford, E Landolt, JD Gabel, and RT Kimball. 2002. Phylogeny and systematics of Lemnaceae, the duckweed family. Syst. Bot. 27: 221–240.Google Scholar
  552. Lodkina MM. 1985. Lemnaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol 1, pp. 275–280. Nauka, Leningrad (in Russian).Google Scholar
  553. Maheshwari SC. 1954. The embryology of Wolffia. Phytomorphology 4: 355–365.Google Scholar
  554. Maheshwari SC. 1956. The endosperm and embryo of Lemna and systematic position of Lemnaceae. Phytomorphology 6: 51–55.Google Scholar
  555. Maheshwari SC. 1958. Spirodela polyrrhiza: the link between the aroids and the duckweeds. Nature 181: 1745–1756.CrossRefGoogle Scholar
  556. Maheshwari SC and RN Kapil. 1963a. Morphological and embryological studies on the Lemnaceae. I. The floral structure and gametophytes of Lemna paucicostata. Am. J. Bot. 50: 677–686.CrossRefGoogle Scholar
  557. Maheshwari SC and RN Kapil. 1963b. Morphological and embry-ological studies on the Lemnaceae. II. The endosperm and embryo of Lemna paucicostata. Am. J. Bot. 50: 907–914.CrossRefGoogle Scholar
  558. Maheshwari SC and PP Khanna. 1956. The embryology of Arisaema wallichianum Hook. f. and the systematic position of the Araceae. Phytomorphology 6: 379–388.Google Scholar
  559. Maheshwari SC and N Maheshwari. 1963. The female gameto-phyte, endosperm and embryo of Spirodela polyrrhiza. Beitr. Biol. Pflanz. 39: 179–188.Google Scholar
  560. Mayo SJ, J Bogner, and PC Boyce. 1995. The Arales. In: PJ Rudall, PJ Cribb, DF Cutler, CJ Humphries, eds. Monocotyledons: systematics and evolution, pp. 277–286. Royal Botanic Gardens, Kew, London.Google Scholar
  561. Mayo SJ, J Bogner, and PC Boyce. 1997. The genera of Araceae. Royal Botanic Gardens, Kew.Google Scholar
  562. Mayo SJ, J Bogner, and PC Boyce. 1998. Araceae. In: K Kubitzki, ed. Families and genera of vascular plants, vol 4, pp. 26–74. Springer, Berlin/Heidelberg/New York.Google Scholar
  563. Mayo SJ, L Cabrera, G Salazar, and MW Chase. 2003. Aroids and their watery beginnings. Ms.Google Scholar
  564. McClure JW and RE Alston. 1966. A chemotaxonomic study of Lemnaceae. Am. J. Bot. 53: 849–860.PubMedCrossRefGoogle Scholar
  565. Mercado-Noriel LR and BT Mercado. 1978. Floral anatomy and seed morphology of water lettuce (Pistia stratiotes). Philipp. Agric. 61: 281–290.Google Scholar
  566. Mucke M. 1908. Über den Bau und die Entwicklung der Fruchte und über die Herkunft von Acorus calamus L. Bot. Zeit. 66: 1–123.Google Scholar
  567. Nahrstedt A. 1975. Triglochinin in Araceen. Phytochemistry 14: 2627–2628.CrossRefGoogle Scholar
  568. Nicolson DH. 1984. Suprageneric names attributable to Araceae. Taxon 33: 680–690.CrossRefGoogle Scholar
  569. Nicolson DH. 1988. History of Araceae systematics. Aroideana 10: 23–30.Google Scholar
  570. Oganezova GG and NA Barsegyan. 1999. Some peculiarities of the generative organs of Acorus calamus L. from Armenian populations. Flora Rastitelnost Rast. Res. Armenia 12: 39–41 (in Russian).Google Scholar
  571. Pan YH, KM Liu, and LG Lei. 2002. Advances in the systemat-ics of Acorus L. and the re-establishment of Acoraceae. Bull. Bot. Res. (China). 22: 417–421.Google Scholar
  572. Petersen G. 1989. Cytology and systematics of Araceae. Nord. J. Bot. 9: 116–166.CrossRefGoogle Scholar
  573. Ray TS. 1987. Leaf types in the Araceae. Am. J. Bot. 74: 1359–1372.CrossRefGoogle Scholar
  574. Ray TS. 1988. Survey of shoot organization in the Araceae. Am. J. Bot. 75: 56–84.CrossRefGoogle Scholar
  575. Remizova M and D Sokoloff. 2003. Inflorescence and floral morphology in Tofieldia (Tofieldiaceae) compared with Araceae, Acoraceae and Alismatales s.str. Bot. Jahrb. Syst. 124: 255–271.CrossRefGoogle Scholar
  576. Riaz M, S Qamar, and FM Chaudhary. 1995. Chemistry of the medicinal plants of the genus Acorus (family Araceae). Hamdard Med. 38(2): 50–62.Google Scholar
  577. Rost LCM. 1979. Biosystematic inversigations with Acorus. 4. Communication: a synthetic approach to the classification of the genus. Planta Med. 37: 289–307.CrossRefGoogle Scholar
  578. Rostowzew S. 1905. Biology and morphology of duckweeds. Nauka, Moscow (in Russian).Google Scholar
  579. Rothwell GW, MR Van Atta, HE Ballard Jr, and RA Stockey. 2004. Molecular phylogenetic relationships among Lemnaceae and Araceae using the chloroplast trnL-trnF intergenic spacer. Mol. Phylogenet. Evol. 30: 378–385.PubMedCrossRefGoogle Scholar
  580. Rudall PJ and CA Furness. 1997. Systematics of Acorus: ovule and anther. Int. J. Plant Sci. 158(5): 640–651.CrossRefGoogle Scholar
  581. Schneider EL and S Carlquist. 1998. Origin and nature of vessels in monocotyledons. 4. Araceae subfamily Philodendroideae. J. Torrey Bot. Soc. 125: 253–260.CrossRefGoogle Scholar
  582. Scribailo RW and PB Tomlinson. 1992. Shoot and floral development in Calla palustris (Araceae-Calloideae). Int. J. Plant Sci. 153: 1–13.CrossRefGoogle Scholar
  583. Seubert E. 1993. Die Samenmerkmale der Araceen und ihre Bedeutung für die Gliederum der Familie. Koeltz, Koenigstein.Google Scholar
  584. Seubert E. 1997a. The sclereids of Araceae. Flora 192: 31–37.Google Scholar
  585. Seubert E. 1997b. A comparative study of the seeds of Lasieae (Araceae). Bot. Jahrb. Syst. 119: 407–426.Google Scholar
  586. Shadowsky AF. 1931. Einige Angaben fiber die Embryogenie von Pistia stratiotes L. Ber. Deutsch. Bot. Ges. 49: 350–356.Google Scholar
  587. Silva CJ da. 1981. Observacoes sobre a biologia repro-dutiva Pistia stratiotes L. (Araceae). Acta Amazonica 11: 487–504.Google Scholar
  588. Soukup A, JL Seago Jr, and O Votrubová. 2005. Developmental anatomy of the root cortex of the basal Monocotyledon, Acorus calamus (Acorales, Acoraceae). Ann. Bot. 96: 379–385.PubMedCrossRefGoogle Scholar
  589. Stevenson DW, JI Davis, JV Freudenstein, CR Hardy, MP Simmonds, and CD Specht. 2000. A phylogenetic analysis of the monocotyledons based on morphological and molecular character sets, with comments on the placement of Acorus and Hydatellaceae. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 17–24. CSIRO, Collingwood.Google Scholar
  590. Su XH, GM He, KL Sun, DL Bi, and M Wang. 2004. Study of comparative anatomy on structure of seedlings of Acorus tatarinowii and Zantedeschia aethiopica. Acta Bot. Bor. Occid. Sinica 24(3): 504–509.Google Scholar
  591. Tam S-M, PC Boyce, TM Upson, D Barabé, A Bruneau, F Forest, and JS Parker. 2004. Intergeneric and infrafamilial phylogeny of subfamily Monsteroideae (Araceae) revealed by chloroplast trnL-F sequences. Am. J. Bot. 91: 490–498.CrossRefGoogle Scholar
  592. Tarasevich VF. 1989. Pollen grain ultrastructure in the genus Anthurium (Araceae) in connection with its systematics. Bot. Zhurn. 74: 314–324 (in Russian with English summary).Google Scholar
  593. Tarasevich VF. 1990. Palynological evidence on the position of the Lemnaceae family in the system of flowering plants. Bot. Zhurn. 75: 959–965 (in Russian with English summary).Google Scholar
  594. Tillich H-J. 1985. Keimlingsbau und verwandtschaftliche Bezeihungen der Araceae. Gleditschia 13: 63–73.Google Scholar
  595. Tillich H-J. 2003. Seedling diversity in Araceae and its systematic implications. Feddes Repert. 114: 454–487.CrossRefGoogle Scholar
  596. Van der Ham RWJM, WLA Hetterscheid, and BJ Van Heuven. 1998. Notes on the genus Amorphophallus (Araceae) – 8 Pollen morphology of Amorphophallus and Pseudodracontium. Rev. Palaeobot. Palynol. 103: 95–142.CrossRefGoogle Scholar
  597. Vyshenskaya TD. 1985. Araceae. In: A Takhtajan, ed. Comparative seed anatomy, 1: 264–275. Nauka, Leningrad (in Russian).Google Scholar
  598. Wang HZ, YG Chen, and CS Fan. 1998. Review of studies on chemical constituents and pharmacology in genus Acorus in China. Acta Bot. Yunn. Suppl. 10: 96–100.Google Scholar
  599. Wang HZ, WL Li, ZJ Gu, and YY Chen. 2001. Cytological study on Acorus L. in southwestern China, with some cyto-geographical notes on A. calamus. Acta Bot. Sinica 43: 354–358.Google Scholar
  600. Wang PL and H Li. 1998. Report of pollen morphology of Araceae. Acta Bot. Yunn. Suppl. 10: 41–42.Google Scholar
  601. Wang W and NX Zhao. 2002. Epidermal characters of leaves in Araceae. J. Wuhan Bot. Res. 20: 343–349.Google Scholar
  602. Watling JR, SA Robinson, and RS Seymour. 2006. Contribution of the alternative pathway to respiration during thermo-genesis in flowers of the Sacred Lotus. Plant. Physiol. 140: 1367–1373.PubMedCrossRefGoogle Scholar
  603. Weber M, H Halbritter, and M Hesse. 1999. The basic pollen wall types in Araceae. Int. J. Plant Sci. 160: 415–423.CrossRefGoogle Scholar
  604. Williams NH, JB Harborne, and SJ Mayo. 1981. Anthocyanin pigments and leaf flavonoids in the family Araceae. Phytochemistry 20: 217–234.CrossRefGoogle Scholar
  605. Wilson KA. 1960. The genera of the Arales in the southeastern United States. J. Arnold Arbor. 41: 47–72.Google Scholar
  606. Zennie TM and JW McClure. 1977. The flavonoid chemistry of Pistia stratiotes L. and the origin of the Lemnaceae. Aquatic Bot. 3: 49–54.CrossRefGoogle Scholar
  607. Zhu ZY. 1985 Some new taxa of Acorus (Araceae) from Sichuan. Acta Bot. Bor.-Occid. Sinica 5: 118–121.Google Scholar
  608. Ambrose JD. 1980. A re-evaluation of the Melanthioideae (Liliaceae) using numerical analyses. In: CD Brickell et al., eds. Petaloid Monocotyledons, pp. 65–81. Academic, London.Google Scholar
  609. Cheadle VI and H Kosakai. 1971 (1972). Vessels in Liliaceae. Phytomorphology 21: 320–333.Google Scholar
  610. Chupov VS. 1994. Phylogeny and systematics of the Liliales and Asparagales. Bot. Zhurn. 79(3): 1–12 (in Russian with English summary).Google Scholar
  611. Conover MV. 1983. The vegetative morphology of the reticulate-veined Liliiflorae. Telopea 2: 491–412.Google Scholar
  612. Conover M V. 1991. Epidermal patterns of the reticulate-veined Liliiflorae and their parallel-veined allies. Bot. J. Linn. Soc. 107: 295–312.Google Scholar
  613. Conran JG. 1989. Cladistic analysis of some net-veined Liliiflorae. Plant Syst. Evol 168: 123–141.CrossRefGoogle Scholar
  614. Fay MF, PJ Rudall, S Sullivan, KL Stobart, AY de Bruijn, G Reeves, F Qamaruz-Zaman, W-P Hong, J Joseph, WJ Hahn, JG Conran, and MW Chase. 2000. Phylogenetic studies of Asparagales based on four plastid DNA regions. In: KL Wilson and DA Morrison, eds. Monocots: systemat-ics and evolution, pp. 360–371. CSIRO, Collingwood.Google Scholar
  615. Goldblatt P. 1995. The status of R. Dahlgten's orders Liliales and Melanthiales. In: PJ Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, vol. 1, pp. 181–200. Royal Botanic Gardens, Kew.Google Scholar
  616. Huber H. 1969. Die Samenmerkmale und Ver-wandtschaftsverhaltnisse der Liliifloren. Mitt. Bot. Staatssamml. München 8: 219–538.Google Scholar
  617. Kauff F, PJ Rudall, and JG Conran. 2000. Systematic root anatomy of Asparagales and other monocotyledons. Plant Syst. Evol. 223: 139–154.CrossRefGoogle Scholar
  618. Komar GA. 1978. Arils and aril-like formations in some Liliales. Bot. Zhurn. 63: 937–955 (in Russian).Google Scholar
  619. Kosenko VN. 2001. Palynological data on the systematics of the superorder Lilianae. Bot. Zhurn. 86(8): 1–17 (in Russian with English summary).Google Scholar
  620. Nair PKK and M Sharma. 1965. Pollen morphology of Liliaceae. J. Palyn. (Lucknow) 1: 39–61.Google Scholar
  621. Oganezova GH. 2000. Systematic position of the Trilliaceae, Smilacaceae, Herreriaceae, Tecophilaeaceae, Dioscoreaceae families and the volume and phylogeny of the Asparagales (based on the seed structure). Bot. Zhurn. 85(9): 9–25 (in Russian with English summary).Google Scholar
  622. Radulescu D. 1973. Liliiflorae: Discussions et consideradons phylogenetiques a 1'aide de quelques recherches mor-phologiques. Acta Bot. Horti Bucurest. 1972–1973: 249–283.Google Scholar
  623. Rudall PJ, KL Stobart, W-P Hong, JG Conran, CA Furness, G Kite, and MW Chase. 2000. Consider the Lilies: Systematics of Liliales. In: KL Wilson and D Morison, eds. Monocots: systematics and evolution, pp. 347–359. CSIRO, Collingwood.Google Scholar
  624. Rudall PG and RM Bateman. 2002. Roles of synorganisation, zygomorphy and heterotopy in floral evolution: the gynostemium and labellum of orchids and other lilioid monocots. Biol. Rev. 77: 403–441.PubMedCrossRefGoogle Scholar
  625. Satô D. 1942. Karyotype alteration and phylogeny in Liliaceae and allied families. Jpn. J. Bot. 12: 57–161.Google Scholar
  626. Sen S. 1975. Cytotaxonomy of Liliales. Feddes Repert. 86: 255–305.Google Scholar
  627. Shamrov II. 1999. The ovule and seed development in some representatives of the orders Liliales and Amaryllidales. Bot. Zhurn. 84(2): 13–33 (in Russian).Google Scholar
  628. Slob A, B Jekel, and E Schlatmann. 1975. On the occurrence of tuliposides in the Liliiflorae. Phytochemistry 14: 1997–2005.CrossRefGoogle Scholar
  629. Vijayavalli B and PM Mathew. 1990. Cytotaxonomy of the Liliaceae and allied families. Continental Publishers, Kerala, India.Google Scholar
  630. Vinersten A and K Bremer. 2001. Age and biogeography of major clades in Liliales. Amer. J. Bot. 88: 1695–1703.CrossRefGoogle Scholar
  631. Watson S. 1879. Contributions to American botany: I. Revision of the North American Liliaceae. Proc. Am. Acad. Arts Sci. 14: 213–288.Google Scholar
  632. Williams CA, JB Harborne, and B Mathew. 1988. A chemical appraisal via leaf flavonoids of Dahlgren's Liliiflorae. Phytochemistry 27: 2609–2629.CrossRefGoogle Scholar
  633. Wunderlich R. 1936. Vergleichende Untersuchungen von Pollenkornern einiger Liliaceen und Amarylidaceen. Oesterr. Bot. Z. 85: 30–55.CrossRefGoogle Scholar
  634. Zomlefer WB. 1999. Advances in angiosperm systematics: examples from the Liliales and Asparagales. J. Torrey Bot. Soc. 126: 58–62.CrossRefGoogle Scholar
  635. Alison B, P Whiting, SD Sarker, L Dinan, E Underwood, V Sik, and HH Rees. 1997. 20-Hydroxyecdysone 2-B-D-glucopy-ranoside from the seeds of Xerophyllum tenax. Biochem. Syst. Ecol. 25: 255–261.CrossRefGoogle Scholar
  636. Ambrose JD. 1975. Comparative anatomy and morphology of the Melanthioideae (Liliaceae). Ph.D. dissertation, Cornell University. Ithaca, NY.Google Scholar
  637. Ambrose JD. 1980. A re-evaluation of the Melanthioideae (Liliaceae) using numerical analyses. In: CD Brickell, DF Cutler and M Gregory, eds. Petaloid monocotyledons, pp. 65–81, pl. 1–2. Academic, London.Google Scholar
  638. Badawi A. 1986. The main taxonomic view points on the intra-and the interrelationships of Melanthioideae (Liliaceae). Phytologia 61: 346–350.Google Scholar
  639. Baillon H. 1893. L'organisation et les affinites des Campynemees. Bull. Mens. Soc. Linn. Paris 2: 1105–1109.Google Scholar
  640. Behnke H-D. 2000. Forms and sizes of sieve-element plastids and evolution of the monocotyledons. In: Wilson KL and DA Morrison, eds. Monocots: systematics and evolution, pp. 163–188. CSIRO, Collingwood.Google Scholar
  641. Behnke H-D. 2002 (2003). Sieve-element plastids and evolution of monocotyledons with emphasis on Melanthiaceae sensu lato and Aristolochiaceae-Asaroideae, a putative dicotyledon sister group. Bot. Rev. 68: 524–544.CrossRefGoogle Scholar
  642. Buxbaum F. 1925. Vergleichende Anatomic der Melan-thioideae. Repert. Spec. Nov. Reg. Veget. 29: 1–80.Google Scholar
  643. Buxbaum F. 1927. Nachtrage zur vergleichenden Anatomic der Melanthioideae, part 1. Beih. Bot. Centralbl. 44: 255–263.Google Scholar
  644. El-Hamidi A. 1952. Vergleichend-morphologische Unter-suchungen am Gynoeceum der Unterfamilien Melan-thioideae and Asphodelioideae der Liliaceae. Arbeit. Inst. allgem. Bot., Univ. Zürich, ser. A, 4: 1–50.Google Scholar
  645. Frame DM. 2001. Chromosome studies in Schoenocaulon (Liliaceae: Melanthieae) a relict genus. An. Inst. Biol. Univ. Nac. Auton. Mex., Bot. 72: 123–129.Google Scholar
  646. Frame DM, A Espejo, and AR López-Ferrari. 1999. A conspectus of Mexican Melanthiaceae including a description of new taxa of Schoenocaulon and Zigadenus. Acta Bot. Mexicana 48: 27–50.Google Scholar
  647. Fuse S and MN Tamura 2000. A phylogenetic analysis of the plastid matK gene with emphasis on Melanthiaceae sensu lato. Plant Biol. 2: 415–427.CrossRefGoogle Scholar
  648. Gates RR. 1918. A systematic study of the North American Melanthiaceae from a genetic standpoint. Bot. J. Linn. Soc. 44: 131–172.CrossRefGoogle Scholar
  649. Goldblatt P. 1995. The statis of R. Dahlgren's orders Liliales and Melanthiales. In: PJ Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, pp. 181–200. Royal Botanic Gardens, Kew.Google Scholar
  650. Gray A. 1837. Melanthacearum Americae Septentrionalis Revisio. Ann. Lyceum Nat. Hist. New York 4: 104–140.Google Scholar
  651. Hara H. 1968. A revision of the genus Chionographis (Liliaceae). J. Jpn. Bot. 43: 257–267.Google Scholar
  652. Kosenko VN. 1988. Pollen morphology in Chiono-graphideae, Uvularieae, Tricyrtideae, Scoliopeae, Anguillarieae, Iphigenieae, Glorioseae, Colchiceae (Melanthiaceae). Bot. Zhurn. 73: 172–185 (in Russian with English summary).Google Scholar
  653. Kupchan SM, JH Zimmerman, and A Afonso. 1961. The alkaloids and taxonomy of Veratrum and related genera. Lloydia 24: 1–22.Google Scholar
  654. Oganezova GG. 1984. Morphological and anatomical specific features of seed and fruit in some representatives of the subfamily Melanthioideae (Liliaceae) in relation with their sys-tematics and phylogeny. Bot. Zhurn. 69: 772–781 (in Russian with English summary).Google Scholar
  655. Oikawa K. 1961. The embryo sac of Chionographis japonica Maxim. Sci. Rep. Tohoku Imp. Univ., 4th ser. (Biol.) 2: 155–158.Google Scholar
  656. Ono T. 1920. Embryologie der Liliaceae, mit besonderer Rücksicht auf die Endospermbildung. I. Melanthioideae und Aletroideae. Sci. Rep. Tohoku Univ. Biol. 4: 381–393.Google Scholar
  657. Ono T. 1926. Embryologische Studien an Heloniopsis brevis-capa. Sci. Rep. Tohoku Imp. Univ., 4th ser. (Biol) 2: 93.Google Scholar
  658. Ono T. 1928. Endosperm development in Liliaceae. Bot. Mag. (Tokyo) 42: 335–440. (In Japanese).Google Scholar
  659. Schulze W. 1978. Beiträge zur Taxonomie der Liliifloren. I V. Melanthiaceae. Wiss. Z. Friedrich-Schiller-Univ. Jena. Math.-Naturwiss. Reihe 27: 87–95.Google Scholar
  660. Stenar H. 1928. Zur Embryologie der Veratrum und Anthericum Gruppe. Bot. Not. 1928: 357–378.Google Scholar
  661. Sterling C. 1978. Comparative morphology of the carpel of the Liliaceae: Hewardieae, Petrosavieae, and Tricyrteae. Bot. J. Linn. Soc. 77: 95–106.CrossRefGoogle Scholar
  662. Sterling C. 1980. Comparative morphology of the carpel in the Liliaceae: Helonieae. Bot. J. Linn. Soc. 80: 341–356.CrossRefGoogle Scholar
  663. Sterling C. 1982. Comparative morphology of the carpel in the Liliaceae: Veratreae. Bot. J. Linn. Soc. 84: 57–77.CrossRefGoogle Scholar
  664. Takahashi M and S Kawano. 1989. Pollen morphology of the Melanthiaceae and its systematic implications. Ann. Missouri Bot. Gard. 76: 863–876.CrossRefGoogle Scholar
  665. Takhtajan AL. 1994. Six new families of flowering plants. Bot. Zhurn. 79(1): 96–97 (in Russian).Google Scholar
  666. Takhtajan AL. 1994 (1995). New families of the monocotyledons. Bot. Zhurn. 79(12): 65–66 (in Russian).Google Scholar
  667. Takhtajan AL. 1996. Validization of some formerly established families of flowering plants. Bot. Zhurn. 81(2): 85–86 (in Russian).Google Scholar
  668. Tamura MN. 1998a. Melanthiaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 369–380. Springer, Berlin/Heidelberg/New York.Google Scholar
  669. Tanaka NY. 1997, 1998. Phylogenetic and taxonomic studies on Helonias, Ypsilandra and Heloniopsis. I. Comparison of character states. II. Evolution and geographical distribution. III. Taxonomic revision. J. Jpn. Bot. 72: 286–292, 329–336; 73: 102–115.Google Scholar
  670. Tanaka NY. 1997. Taxonomic significance of some floral characters in Helonias and Ypsilandra. J. Jpn. Bot. 72: 110–116.Google Scholar
  671. Tanaka NY and N Tanaka. 1977, 1979, 1980. Chromosome studies in Chionographis (Liliaceae). I. On the holokinetic nature of chromosomes in Chionographis japonica Maxim. II. Morphological characteristics of the somatic chromosomes of four Japanese members. III. The mode of meiosis. Cytologia 42: 753–763; 44: 935–949; 45: 809–817.Google Scholar
  672. Utech RH. 1978a. Comparison of the vascular anatomy of Xerophyllum asphodehides (L.) Nutt. and X. tenax (Pursh) Nutt. (Liliaceae-Melanthioideae). Ann. Carnegie Mus. 47: 147–167.Google Scholar
  673. Utech FH. 1978b. Vascular floral anatomy of Helonias bullata L. (Liliaceae-Helonieae) with a comparison to the Asian Heloniopsis orientalis. Ann. Carnegie Mus. 47: 169–191.Google Scholar
  674. Utech FH and S Kawano. 1981. Vascular floral anatomy of the east Asian Heloniopsis orientalis (Thunb.) C. Tanaka (Liliaceae-Helonieae). Bot. Mag. Tokyo 94: 295–311.CrossRefGoogle Scholar
  675. Zomlefer WB. 1997. The genera of Melanthiaceae in the southeastern United States. Harvard Pap. Bot. 2: 133–177.Google Scholar
  676. Zomlefer WB and WS Judd. 2002. Resurrection of segregates of the polyphyletic genus Zigadenus s.l. (Liliales: Melanthiaceae) and resulting new combinations. Novon 12: 299–308.CrossRefGoogle Scholar
  677. Zomlefer WB, NH Williams, WM Whitten, and WS Judd. 2001. Generic circumscription and relationships in the tribe Melanthieae (Liliales, Melanthiaceae), with emphasis on Zigadenus: evidence from ITS and trnL-F sequence data. Am. J. Bot. 88: 1657–1669.CrossRefGoogle Scholar
  678. Zomlefer WB, WM Whitten, NH Williams, and WS Judd. 2003. An overview of Veratrum s.l. (Liliales, Melanthiaceae) and an infrageneric phylogeny based on ITS sequence data. Syst. Bot. 28: 250–269.Google Scholar
  679. Zomlefer WB, WM Whitten, NH Williams, and WS Judd. 2006. Infrageneric phylogeny of Schoenocaulon (Liliales: Melanthiaceae) with clarification of cryptic species based on ITS sequence data and geographical distribution. Am. J. Bot. 93: 1178–1192.CrossRefGoogle Scholar
  680. Berg RY. 1958. Seed dispersal, morphology, and phylogeny of Trillium. Skr. Nor. Videnstc-Akad. Oslo, n.s., 1: 1–36.Google Scholar
  681. Berg RY. 1962. Contribution to the comparative embryology of the Liliaceae: Scoliopus, Trillium, Paris, and Medeola. Skr. Nor. Videnslc-Akad. Oslo, n.s., 4: 1–64.Google Scholar
  682. Farmer SB and EE Schilling. 2002. Phylogenetic analyses of Trilliaceae based on morphological and molecular data. Syst. Bot. 27: 674–692.Google Scholar
  683. Fukuda I. 2001a. The origin and evolution in Trillium. 1. The origin of the Himalayan Trillium govanianum. Cytologia 66: 106–111.Google Scholar
  684. Fukuda I. 2001b. The origin and evolution in Trillium. 2. Chromosome variation of Trillium undulatum in North America. Cytologia 66: 319–327.Google Scholar
  685. Gates RR. 1917. A systematic study of the North American genus Trillium, its variability, and its relation to Paris and Medeola. Annals Missouri Bot. Gard. 4: 43–93.CrossRefGoogle Scholar
  686. Geitler L. 1938. Weitere cytogenetische Untersuchungen an natürlichen Populationen von Paris quadrifolia. Zeitschr. Indukt. Abst. Verergsl. 75: 161–190.CrossRefGoogle Scholar
  687. Heatley M. 1916. A study of the life history of Trillium cernuum L. Bot. Gaz. 1: 425–429.CrossRefGoogle Scholar
  688. Howe TD. 1940. Development of the embryo sac in Trillium grandiflorum. Am. J. Bot. Suppl. 27: 11.Google Scholar
  689. Jeffrey EC. 1939. The production of unfertilized seeds in Trillium. Science 90: 81–82.PubMedCrossRefGoogle Scholar
  690. Kato H, S Kawano, R Terauchi, M Ohara, and FH Utech. 1995. Evolutionary biology of Trillium and related genera (Trilliaceae). I. Restriction site mapping and variation of chloroplast DNA and its systematic implications. Plant Spec. Biol. 10: 17–29.CrossRefGoogle Scholar
  691. Kato H, R Terauchi, FH Utech, and S Kawano. 1995. Molecular systematics of the Trilliaceae sensu lato as inferred from rbcL sequence data. Mol. Phylogenet. Evol. 4: 184–193.PubMedCrossRefGoogle Scholar
  692. Kawano S and H Kato. 1995. Evolutionary biology of Trillium and related genera (Trilliaceae). II. Cladistic analyses on gross morphological characters, and phylogeny and evolution of the genus Trillium. Plant Spec. Biol. 10: 169–183.CrossRefGoogle Scholar
  693. Kazempour Osaloo S, FH Utech, M Ohara, and S Kawano. 1999. Molecular systematics of Trilliaceae I. Phylogenetic analysis of Trillium using matK gene sequences. J. Plant Res. 112: 35–49.CrossRefGoogle Scholar
  694. Kazempour Osaloo S and S Kawano. 1999. Molecular systemat-ics of Trilliaceae II. Phylogenetic analyses of Trillium and its allies using sequences of rbcL and matK genes of cpDNA and internal transcribed spacers of 18s–26s nrDNA. Plant Spec. Biol. 14: 75–94.CrossRefGoogle Scholar
  695. Kotseruba V V. 2001. Intraspecific polymorphism of karyotype in Daiswa hainanensis subsp. vietnamensis Takht. Cytologia 43(11): 1075–1079.Google Scholar
  696. Li H. 1984. The phylogeny of the genus Paris. Acta Bot. Yunn. 6: 351–362.Google Scholar
  697. Li H. 1986. A study on taxonomy of the genus Paris L. Bull. Bot. Res. Kunming 6: 109–114 (in Chinese).Google Scholar
  698. Li H. 1998. The genus Paris (Trilliaceae). Science Press, Beijing.Google Scholar
  699. Li H, Z Gu and H Na. 1988. Cytogeographic study of the genus Paris. Acta Phytotax. Sinica 26: 10–21.Google Scholar
  700. Naumova TN. 1990. Trilliaceae. In: TB Batygina and MS Yakovlev, eds. Comparative embryology of flowering plants: Monocotyledons, pp. 151–159. Nauka, Leningrad (in Russian).Google Scholar
  701. Ohara M. 1989. Life history evolution in the genus Trillium. Plant Spec. Biol. 4: 1–28.CrossRefGoogle Scholar
  702. Punina EO, Yu A Myakoshina, AM Efimov, and AV Rodionov. 2000. Chromosome maps of Trilliaceae plants: heterochro-matin nucleotide composition and mapping of 18S–26S rRNA genes in Paris quadrifolia L. Russ. J. Genet. 36: 546–549.Google Scholar
  703. Smith MC and R Ingram. 1986. Heterochromatin banding in the genus Paris. Genetica 71: 141–145.CrossRefGoogle Scholar
  704. Spangler RC. 1925. Female gametophyte of Trillium sessile. Bot. Gaz. 79: 217–221.CrossRefGoogle Scholar
  705. Swamy BGL. 1948–49. On the post-fertilization development of Trillium undulatum. La Cellule 52: 5–14.Google Scholar
  706. Takahashi M. 1982. Pollen morphology of North American species of Trillium. Am. J. Bot. 69: 1185–1195.CrossRefGoogle Scholar
  707. Takahashi M. 1984. Pollen morphology in Paris and its related genera. Bot. Mag. (Tokyo) 97: 233–245.CrossRefGoogle Scholar
  708. Takhtajan A. 1983. A revision of Daiswa (Trilliaceae). Brittonia 35: 255–270.CrossRefGoogle Scholar
  709. Tamura MN. 1998. Trilliaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 444–452. Springer, Berlin/Heidelberg/New York.Google Scholar
  710. Trifonova VI. 1985. Trilliaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 130–132. Nauka, Leningrad (in Russian).Google Scholar
  711. Utech FH and S Kawamo. 1980. Vascular anatomy of the Japanese Paris tetraphylla A. Gray (Liliaceae-Parideae). J. Phytogeogr. Taxon. 28: 17–23.]Google Scholar
  712. Warmke HE. 1937. Cytology of the Pacific Coast Trillium. Am. J. Bot. 24: 376–383.CrossRefGoogle Scholar
  713. Wei ZX. 1995. Pollen morphology of Trillium. Acta Bot. Yunn. 17: 317–324.Google Scholar
  714. Zomlefer WB. 1996. The Trilliaceae in the southeastern United States. Harv. Pap. Bot. 9: 91–120.Google Scholar
  715. Baker JG. 1879. A synopsis of Colchicaceae and the aberrant tribes of Liliaceae. Bot. J. Linn. Soc. 17: 405–510.CrossRefGoogle Scholar
  716. Beal JM and M Ownbey. 1943. Cytological studies in relation to the classification of the genus Calochortus, part 3. Bot. Gaz. 104: 553–562.CrossRefGoogle Scholar
  717. Berg RY. 1959. Seed dispersal, morphology, and taxonomic position of Scoliopus, Liliaceae. Skr. Nor. Vidensk-Akad. Oslo 4: 1–56.Google Scholar
  718. Berg RY. 1960. Ovary, ovule, and endosperm of Calochortus amabilis. Nytt. Mag. Bot. 8: 189–206.Google Scholar
  719. Berg RY. 1962a. Morphology and taxonomic position of Medeola, Liliaceae. Skr. Nor. Vidensk.-Akad. Oslo, n.s., 3: 1–55.Google Scholar
  720. Berg RY. 1962b. Contribution to the comparative embryology of the Liliaceae: Scoliopus, Trillium, Paris, and Medeola, Skr. Nor, Vidensk-Akad. Oslo 4: 1–64.Google Scholar
  721. Björnstad IN. 1970. Comparative embryology of Asparagoideae-Polygonateae, Liliaceae. Nytt Mag. Bot. 17: 169–207.Google Scholar
  722. Buxbaum F. 1937. Die Entwicklungslinien der Lilioideae. Bot. Arch. 38: 213–293, 305–398.Google Scholar
  723. Buxbaum F. 1959. Beiträge zur Morphologic der Gattung Tricyrtis. Beitr. Biol. Pfl. 35: 55–75.Google Scholar
  724. Cave MS. 1941. Megasporogenesis and embryo sac development in Calochortus. Am. J. Bot. 28: 390–394.CrossRefGoogle Scholar
  725. Cheadle VI and H Kosakai. 1971. Vessels in Liliaceae. Phytomorphology 21: 320–333.Google Scholar
  726. Chupov VS. 1984a. The position of Liliaceae s. str. (subfamily Lilioideae of the family Liliaceae s. 1.) in the system: Serological study. Bot. Zhurn. 69: 762–771 (in Russian with English summary).Google Scholar
  727. Chupov VS. 1984b. The position of the family Liliaceae s. str. (subfamily Lilioideae of the family Liliaceae s. 1.) in the system: An analysis of characters. Bot. Zhurn. 69: 1451– 1461 (in Russian with English summary).Google Scholar
  728. Dahlgren R and A-M Lu. 1985. Campynemanthe (Campy-nemataceae): morphology, microsporo-genesis, early ovule ontogeny, and relationships. Nord. J. Bot. 5: 321–330.Google Scholar
  729. Eunus AM. 1951a. Contribution to the embryology of the Liliaceae: V. Life history of Amianthium muscaetoxicum Walt. Phytomorphology 1: 73–79.Google Scholar
  730. Eunus AM. 1951b. Development of the embryo sac and fertilization in Fritillaria pudica Spring. Pakistan J. Sci. Res. 3: 106–113.Google Scholar
  731. Fukuhara T and ZK Shinwari. 1994. Seed coat anatomy in Uvulariaceae (Liliales) of the Northern Hemisphere: Systematic implications. Acta Phytotax. Geobot. 45: 1–14.Google Scholar
  732. Goldblatt P. 1986. Systematics and relationships of the bigeneric Pacific family Campynemataceae (Liliales). Bull. Mus. Natl. Hist. Nat. Paris, Sér. 4, 8: 117–132.Google Scholar
  733. Goldblatt P, JE Henrich, and P Rudall. 1984. Occurrence of crystals in Iridaceae and allied families and their phylogenetic sig-nificance. Ann. Missouri Bot. Gard. 71: 1013–1020.CrossRefGoogle Scholar
  734. Haque A. 1951. The embryo sac of Erythronium americanum. Bot. Gaz. 112: 495–500.CrossRefGoogle Scholar
  735. He HP, FC Liu, L Hu, and HY Zhu. 1999. Alkaloids from the flow-ers of Colchicum autumnale. Acta Bot. Yunn. 21: 364–368.Google Scholar
  736. Hong W-P, J Greenham, SL Jury, and GA Williams. 1999. Leaf flavonoid patterns in the genus Tricyrtis (Tricyrtidaceae sensu stricto, Liliaceae sensu lato). Bot. J. Linn. Soc. 130: 261–266.Google Scholar
  737. Hruby Ch. 1938. Embryo sac development in Erythronium dens canis. Chronica Bot. 4: 20–21.Google Scholar
  738. Joshi AC. 1940. Development of the embryo sac of Gagea fas-cicularis Salisb. Bull. Torrey Bot. Club 67: 155–158.CrossRefGoogle Scholar
  739. Kosenko VN. 1988. Pollen morphology in Chiono-graphideae, Uvularieae, Tricyrtideae, Scoliopeae, An-guillarieae, Iphigenieae, Glorioseae, Colchiceae (Melanthiaceae). Bot. Zhurn. 73: 172–185 (in Russian with English summary).Google Scholar
  740. Kosenko VN. 1991. Palynomorphology of the family Liliaceae s. str. Bot. Zhurn. 76: 1696–1710 (in Russian with English summary).Google Scholar
  741. Kosenko VN. 1992. Pollen morphology and systematic problems of the Liliaceae family. Bot. Zhurn. 77(3): 1–15 (in Russian with English summary).Google Scholar
  742. Kubitzki K. 1998. Campynemataceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 173–175. Springer, Berlin/Heidelberg/New York.Google Scholar
  743. Lee NS and SH Yeau. 1990. A palynological study of Streptopus ovalis (Ohwi) Wang et Y.C. Tang and the relative species (tribe Poygonateae, Liliaceae). Korean J. Plant Taxon. 20: 81–94 (in Korean with English summary).Google Scholar
  744. Lowry PP, P Goldblatt, and H Tobe. 1987. Notes on the floral biology, cytology, and embryology of Campynemanthe (Liliales: Campynemataceae). Ann. Missouri Bot. Gard. 74: 573–576.CrossRefGoogle Scholar
  745. Maheshwari P. 1946. The Fritillaria type of embryo sac: A critical review. J. Indian Bot. Soc. (M.D.P. Lyengar Comm. Vol.): 101–119.Google Scholar
  746. Membrives N, J Martin, J Caujape Castells, and J Pedrola Monfort. 2002. Pollen morphology and biometry of the genus Androcymbium (Colchicaceae) in southern Africa: taxonomic and biogeographic considerations. Bothalia 32: 91–96.Google Scholar
  747. Membrives N, J Pedrola Monfort, and J Caujape Castells. 2003a. Leaf morphology and anatomy of genus Androcymbium (Colchicaceae) in southwest Africa. Collect. Bot. 26: 83–99.CrossRefGoogle Scholar
  748. Membrives N, J Pedrola Monfort, and J Caujape Castells. 2003b. Morphological seed studies of southwest African Androcymbium (Colchicaceae). Bot. Macaronesica 24: 87–106.Google Scholar
  749. Nawa N. 1928. Some cytological observations in Tricyrtis, Sagittaria and Lilium. Bot. Mag. (Tokyo) 42: 33–36.Google Scholar
  750. Ness BD. 1989. Seed morphology and taxonomic relationships in Calochortus (Liliaceae). Syst. Bot. 14: 495–505.CrossRefGoogle Scholar
  751. Nordenstam B. 1998. Colchicaceae. In: K Kubitzki, ed. The Families and genera of vascular plants vol. 3, pp. 175–185. Springer, Berlin/Heidelberg/New York.Google Scholar
  752. Oganezova GG. 1984. Morphologo-anatomical peculiarities of the fruit and seed in some representatives of the subfamily Wurmbaeoideae (Liliaceae) in connection with systematic and phylogeny. Bot. Zhurn. 69: 1317–1327 (in Russian with English summary).Google Scholar
  753. Oganezova GG. 2000. Anatomy and systematics of some Colchicum species from Armenia. Bot. Chronika 13: 217– 227 (in Russian).Google Scholar
  754. Oganezova GG. 2002. Anatomy of Caucasian species of the genus Merendera (Colchicaceae) in context of their systematics. Bot. Zhurn. 87(2): 19–33 (in Russian with English summary).Google Scholar
  755. Ogura H. 1964. On the embryo sac of two species of Tricyrtis. Sci. Rep. Tohoku Univ. Ser. IV (Biol.) 30: 219–222Google Scholar
  756. Oikawa K. 1937. A note on the development of the embryo sac in Cardiocrinum cordatum. Sci. Rep. Tohoku Imp. Univ., 4th ser., 11: 303–306.Google Scholar
  757. Oikawa K. 1940. The embryo sac of Erythronium japonicum. Bot. Mag. (Tokyo) 54: 366–369 (in Japanese).Google Scholar
  758. Ownbey M. 1940. A monograph of the genus Calochortus. Ann. Missouri Bot. Gard. 27: 371–560.CrossRefGoogle Scholar
  759. Ownbey M. 1969. Calochortus. Univ. Wash. Publ. 17(1): 765–779.Google Scholar
  760. Patterson TB and TJ Givnish. 2002. Phylogeny, concerted convergence, and phylogenetic niche conservatism in the core Liliales: Insights from rbcL and ndhF sequence data. Evolution 56: 233–252.PubMedGoogle Scholar
  761. Petrova TF. 1977. Cytoembryology of the Liliaceae subfamily Lilioideae. Nauka, Moscow (in Russian).Google Scholar
  762. Romanov ID. 1936. Die Embryosackentwicklung in der Gattung Gagea Salisb. Planta 25: 438–459.CrossRefGoogle Scholar
  763. Romanov ID. 1939. Two new forms of embryo sac in the genus Tulipa. Doklady Acad. Sci. URSS 22: 139–141.Google Scholar
  764. Rudall PJ, KL Stobart, W-P Hong, JG Conran, CA Furness, GC Kite, and MW Chase. 2000. Consider the lilies: system-atics of Liliales. In: KL Wilson and DA Morrison, eds. Monocots: systematic and evolution, pp. 347–359. CSIRO, Collingwood.Google Scholar
  765. Sargant E. 1896. The formation of the sexual nuclei in Lilium martagon: I. Oogenesis. Ann. Bot. 10: 445–477.Google Scholar
  766. Schnarf K. 1949. Der Umfang der Lilioideae im nature-lichen System. Oesterr. Bot. Z. 95: 257–269.CrossRefGoogle Scholar
  767. Schulze W. 1975. Beiträge zur Taxonomie der Liliifloren: II. Colchicaceae. Wiss. Z. Friedrich-Schiller-Univ. Jena, Math-Naturwiss. Reihe, 24: 417–428.Google Scholar
  768. Shinwari ZK, R Terauchi, FH Utech, and S Kawano. 1994. Recognition of the New World Disporum section Prosartes as Prosartes (Liliaceae) based on the sequence data of the rbcL gene. Taxon 43: 353–366.CrossRefGoogle Scholar
  769. Shurukhina EA. 1994. Anatomical structure and ultra-structure of the seeds of Campynemataceae. Bot. Zhurn. 79(5): 58–62 (in Russian).Google Scholar
  770. Sterling C. 1972. Comparative morphology of the carpel in the Liliaceae: Neodraegeae. Bot. J. Linn. Soc. 65: 163–171.CrossRefGoogle Scholar
  771. Sterling C. 1973a. Comparative morphology of the carpel in the Liliaceae: Wurmbaeae. Bot. J. Linn. Soc. 66: 75–82.CrossRefGoogle Scholar
  772. Sterling C. 1973b. Comparative morphology of the carpel in the Liliaceae: Colchiceae (Colchicum). Bot. J. Linn. Soc. 66: 213–221.CrossRefGoogle Scholar
  773. Sterling C. 1973c. Comparative morphology of the carpel in the Liliaceae: Colchiceae (Androcymbium). Bot. J. Linn. Soc. 67: 149–156.CrossRefGoogle Scholar
  774. Sterling C. 1974a. Comparative morphology of the carpel in the Liliaceae: Baeometra, Burchardia, and Walleria. Bot. J. Linn. Soc. 68: 283–290.CrossRefGoogle Scholar
  775. Sterling C. 1974b. Comparative morphology of the carpel in the Liliaceae: Iphigenieae. Bot. J. Linn. Soc. 68: 283–290.CrossRefGoogle Scholar
  776. Sterling C. 1975. Comparative morphology of the carpel Liliaceae: Glorioseae. Bot. J. Linn. Soc. 70: 341–349.CrossRefGoogle Scholar
  777. Sterling C. 1977. Comparative morphology of the carpel in the Liliaceae: Uvularieae. Bot. J. Linn. Soc. 74: 345–354.CrossRefGoogle Scholar
  778. Sterling C. 1978. Comparative morphology of the carpels in the Liliaceae: Hewardieae, Petrosavieae, and Tricyrteae. Bot. J. Linn. Soc. 77: 95–106.CrossRefGoogle Scholar
  779. Stewart RN and R Bamford. 1942. The chromosomes and nucle-oli of Medeola virginiana. Am. J. Bot. 29: 301–303.CrossRefGoogle Scholar
  780. Takahashi H. 1980. A taxonomic study on the genus Tricyrtis. Sci. Rep. Fac. Educ., Gifu Univ. (Nat. Sci.) 6: 583–635.Google Scholar
  781. Takahashi H. 1984. The floral biology of Tricyrtis latifolia Maxim. (Liliaceae). Bot. Mag. (Tokyo) 97: 207–217.CrossRefGoogle Scholar
  782. Takahashi H. 1987. A comparative floral and pollination biology of Tricyrtis flava Maxim., T. nana Yatabe and T. ohsumiensis Masamune (Liliaceae). Bot. Mag (Tokyo) 100: 185–293.CrossRefGoogle Scholar
  783. Takahashi Hr. 1994. Floral biology of Tricyrtis macropoda Miq. (Liliaceae). Acta Phytotaxon. Geobot. 45: 33–40.Google Scholar
  784. Tamura MN. 1998a. Calochortaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 164–172. Springer, Berlin/Heidelberg/New York.Google Scholar
  785. Tamura MN. 1998b. Liliaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 343–353. Springer, Berlin/Heidelberg/New York.Google Scholar
  786. Tamura MN and EH Utech. 1992. Biosystematic studies in Disporum (Liliaceae-Polygonateae). IV. Karyotype analysis of some Asiatic and North American taxa with special reference to their systematic status. Plant Spec. Biol. 7: 103–120.CrossRefGoogle Scholar
  787. Utech FH. 1978a. Floral vascular anatomy of Medeola virgini-ana L. (Liliaceae-Parideae = Trilliaceae) and tribal note. Ann. Carnegie Mus. 47: 13–28.Google Scholar
  788. Utech FH. 1978b. Somatic karyotype analysis of Uvularia flori-dana Chapman (Liliaceae). Cytologia 43: 671–678.Google Scholar
  789. Utech FH. 1992. Biology of Scoliopus (Liliaceae): I. Phytogeography and systematics. Ann. Missouri Bot. Gard. 79: 126–142.CrossRefGoogle Scholar
  790. Vinnersten A and J Manning. 2006. A new classification of Colchicaceae. Taxon 56: 171–178.Google Scholar
  791. Vinnersten A and G Reeves. 2003. Phylogenetic relationships within Colchicaceae. Amer. J. Bot. 90: 1455–1462.CrossRefGoogle Scholar
  792. Zou X, DW Fountain, and ER Morgan. 2001. Anatomical and morphological studies of seed development in Sandersonia aurantiaca (Hook.). South Afr. J. Bot. 67: 183–192.Google Scholar
  793. Chakrapani P and B Raj. 1971. Pollen morphology studies in the Burmanniaceae. Grana Palynol. 11: 161–179.Google Scholar
  794. Colloza A. 1910. Contributo allo studio anatomico delle Burmanniaceae. Boll. Soc. Ital. 1910: 106–115.Google Scholar
  795. Caddick LR, PJ Rudall, P Wilkin, TAJ Hedderson, and MW Chase. 2002. Phylogenetics of Dioscoreales based on combined analyses of morphological and molecular data. Bot. J. Linn. Soc. 138: 123–144.CrossRefGoogle Scholar
  796. Cribb PJ. 1985. The saprophytic genus Corsia in the Solomon Islands. Kew Mag. 2: 320–323.Google Scholar
  797. Cribb PJ, P Wilkin, and M Clements. 1995. Corsiaceae: a new family for the Falkland Island. Kew Bull. 50: 171–172.CrossRefGoogle Scholar
  798. Ibisch P, C Neinhuis, and NP Rojas. 1996. On the biology, bio-geography, and taxonomy of Arachnitis Phil. nom. cons. (Corsiaceae) in respect to a new record from Bolivia. Willdenowia 26: 321–332.Google Scholar
  799. Jonker FP. 1938. A monograph of the Burmanniaceae. Meded. Bot. Mus. Herb. Rijks Univ. Utrecht 51: 1–279.Google Scholar
  800. Kores P, DA White, and LB Thien. 1978. Chromosomes of Corsia (Corsiaceae). Am. J. Bot. 65: 584–585.CrossRefGoogle Scholar
  801. Larsen K. 1987. Thismiaceae. In: T Smitinand and K Larsen, eds. Flora of Thailand, vol. 5, part 1, pp. 124–126. Chutima Press, Bangkok.Google Scholar
  802. Maas-van de Kamer H. 1998. Burmanniaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 154–164. Springer, Berlin/Heidelberg/New York.Google Scholar
  803. Maas PJM, H Maas-van de Kamer, J van Bentham, HCM Snelders, and T Rübsamen 1986. Burmanniaceae. Flora Neotrop. Monogr. 42: 1–189.Google Scholar
  804. Merckx V, P Schols, H Maas-van de Kamer, P Maas, S Huysmans, and E Smets. 2006. Phylogeny and evolution of Burmanniaceae (Dioscoreales) based on nuclear and mito-chondrial data. Am. J. Bot. 93: 1684–1698.CrossRefGoogle Scholar
  805. Minoletti ML. 1986. Arachnitis uniflora Phil. una curiosa mono-cotiledonea de la flora Chilena. Bol. Soc. Biol., Concepcion, Chile 57: 7–20.Google Scholar
  806. Neinhuis C and PL Ibisch. 1998. Corsiaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 198– 201. Springer, Berlin/Heidelberg/New York.Google Scholar
  807. Neyland R. 2002. A phylogeny inferred from large-subunit (26S) ribosomal DNA sequences suggests that Burmanniales are polyphyletic. Aust. Syst. Bot. 15: 19–28.CrossRefGoogle Scholar
  808. Neyland R and M Hennigan. 2003. A phylogeny inferred from large-subunit (26S) ribosome DNA sequences suggests that the Corsiaceae are polyphyletic. N. Z. J. Bot. 41: 1–11.Google Scholar
  809. Pai RM. 1966. Studies in the floral morphology and anatomy of the Burmanniaceae: I. Vascular anatomy of the flower of Burmannia pusilla (Wall. ex Miers) Thw. Proc. Indian Acad. Sci. 63B: 301–308.Google Scholar
  810. Rao VS. 1969. Certain salient features in the floral anatomy of Burmannia, Gymnosiphon, and Thismia. J. Indian Bot. Soc. 48(1–2): 22–29.Google Scholar
  811. Rasmussen FN. 1995. Relationships of Burmanniales and Orchidales. In: P Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, pp. 227–241. Royal Botanic Gardens, Kew.Google Scholar
  812. Rübsamen T. 1983. Nectaries of the Burmanniaceae (Burmannieae). Acta Bot. Neerl. 32: 351.Google Scholar
  813. Rübsamen T. 1986. Morphologische, embryologische, und sys-tematische Untersuchungen an Burmanniaceae und Corsia-ceae (Mit Ausblick auf die Orchidaceae-Apostasioideae). Diss. Bot. 92: 1–310.Google Scholar
  814. Rudall P and S Morley. 1992. Embryo sac and early postfertili-sation development in Thismia (Burmanniaceae). Kew Bull. 47: 625–632.CrossRefGoogle Scholar
  815. Rudall PJ and A Eastman. 2002. The questionable affinities of Corsia (Corsiaceae): evidence from floral anatomy and pollen morphology. Bot. J. Linn. Soc. 138: 315–324.CrossRefGoogle Scholar
  816. Terekhin ES. 1985. Burmanniales. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 138–141. Nauka, Leningrad (in Russian).Google Scholar
  817. Wood CE, Jr. 1983. The genera of Burmanniaceae in the southeastern United States. J. Arnold Arbor. 64: 293–307.Google Scholar
  818. Zhang D-X. 2000. Addition to the Flora Reipublicae Popularis Sinicae: the family Corsiaceae. Acta Phytotax. Sinica 38: 578–581.Google Scholar
  819. Zhang DX. 2001. Phylogenetic reconstruction of Burmannia L. (Burmanniaceae): a preliminary study. Acta Phytotax. Sinica 39: 203–223.Google Scholar
  820. Zhang D-X, Saunders RMK, and CM Hu. 1999. Corsiopsis chinensis gen. et sp. nov. (Corsiaceae): first record of the family in Asia. Syst. Bot. 24: 311–314.CrossRefGoogle Scholar
  821. Aagesen L and AM Sanso. 1998. Phylogeny of the Alstroemeriaceae. In: Monocots II, p. 61 (abstract). Sydney.Google Scholar
  822. Aagesen L and AM Sanso. 2003. The phylogeny of the Alstromeriaceae, based on morphology, rps16 Intron, and rbcL sequence data. Syst. Bot. 28: 47–69.Google Scholar
  823. Aizen MA and A Basilio. 1995. Within and among flower sex-phase distribution in Alstroemeria aurea (Alstroemeriaceae). Canad. J. Bot. 73: 1984–1994.Google Scholar
  824. Aker S and W Healy. 1990. The phytogeography of the genus Alstroemeria. Herbertia 45: 76–87.Google Scholar
  825. Arroyo SC and BE Leuenberger. 1988. Leaf morphology and taxonomic history of Luzuriaga (Philesiaceae). Willdenowia 17: 159–172.Google Scholar
  826. Baker JG. 1888. Handbook of the Amaryllidaceae including the Alstroemerieae and Agaveae. George Bell, London.Google Scholar
  827. Bayer E. 1987. Die Gattung Alstroemeria in Chile. Mitt. Bot. Staatssamml. Münch. 24: 1–362.Google Scholar
  828. Bayer E. 1988. Beitrag zur Cytologie der Alstroemeriaceae. Mitt. Bot. Staatssamml. Münch. 27: 1–6.Google Scholar
  829. Bayer E. 1998. Alstroemeriaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 79–83. Springer, Berlin/Heidelberg/New York.Google Scholar
  830. Buxbaum F. 1951. Die Grundachse von Alstroemeria und Einheit ihres morphologischen Typus mit den echten Liliaceae. Phytomorphology 1: 170–184.Google Scholar
  831. Buxbaum F. 1954. Morphologic der Blüte und Frucht von Alstroemeria und der Anschluss der Alstroemerioideen bei den echten Liliaceen. Oesterr. Bot. Z. 101: 337–352.CrossRefGoogle Scholar
  832. Chupov VS. 1987. Taxonomic position of the genera Geitonoplesium and Simethis. Bot. Zhurn. 72: 904–908 (in Russian with English summary).Google Scholar
  833. Clifford HT and JG Conran. 1987. Drymophila. Flora of Australia 45: 156–158. Canberra.Google Scholar
  834. Conran JG. 1987. A phenetic study of the relationships of Drymophila R. Br. within the reticulate-veined Liliiflorae. Aust. J. Bot. 35: 283–300.CrossRefGoogle Scholar
  835. Conran JG. 1988. Embryology and possible relationships of Petermannia cirrhosa (Petermanniaceae). Nord. J. Bot. 8: 13–17.CrossRefGoogle Scholar
  836. Conran JG. 1989. Cladistic analyses of some net-veined Liliiflorae. Plant Syst. Evol. 168: 123–141.CrossRefGoogle Scholar
  837. Conran JG. 1998. Behniaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 146–138. Springer, Berlin/Heidelberg/New York.Google Scholar
  838. Conran JG. 1999. Anatomy and morphology of Behnia (Behniaceae) and its relationships within Lilianae: Asparagales. Bot. J. Linn. Soc. 131: 115–129.CrossRefGoogle Scholar
  839. Conran JG and HT Clifford. 1998a. Luzuriagaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 365–368. Springer, Berlin/Heidelberg/ New York.Google Scholar
  840. Conran JG and HT Clifford. 1998b. Petermanniaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 406–408. Springer, Berlin/Heidelberg/New York.Google Scholar
  841. Conran JG, PJ Rudall, and MW Chase. 1997. Two new monocotyledon families: Anemarrhenaceae and Behniaceae (Lilianae, Asparagales). Kew Bull. 52: 995–999.CrossRefGoogle Scholar
  842. Goldblatt P. 1995. The status of R. Dahlgren's orders Liliales and Melanthiales. In: PJ Rudall, PJ Cribb, D. Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, pp. 181–200. Royal Botanic Gardens, Kew.Google Scholar
  843. Hofreiter A and OB Lyshede. 2006. Fucntional leaf anatomy of Bomarea Mirb. (Alstroemeriaceae). Bot. J. Linn. Soc. 152: 73–90.CrossRefGoogle Scholar
  844. Hunziker AT. 1973. Notas sobre Alstroemeriaceae. Kurtziana 7: 133–135.Google Scholar
  845. Hunziker JH. 1991. Protandry in Alstroemeria psittacina (Alstroemeriaceae). Polish Bot. Studies 2: 195–198.Google Scholar
  846. Hunziker JH and CC Xifreda. 1990. Chromosome studies in Bomarea and Alstroemeria (Alstroemeriaceae). Darwiniana 30: 179–183.Google Scholar
  847. Kosenko VN. 1994. Pollen morphology of the family Alstroemeriaceae. Bot Zhurn. 79(8): 1–8 (in Russian with English summary).Google Scholar
  848. Lyshede OB. 2002. Comparative and functional leaf anatomy of selected Alstroemeriaceae of mainly Chilean origin. Bot. J. Linn. Soc. 140: 261–272.CrossRefGoogle Scholar
  849. Meerow AW. 2004. Alstroemeriaceae. In: N Smith, SA Mori, A Henderson, DW Stevenson, and SV Heald, eds. Flowering plants of the Neotropics, pp. 409–410. The New York Botanical Garden. Princeton University Press, Princeton.Google Scholar
  850. Nemirovich-Danchenko EN. 1985. Alstroemeriaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 77– 78. Nauka, Leningrad (in Russian).Google Scholar
  851. Oganezova GG. 1990. Seed and fruit anatomy of some Amaryllidaceae in connection with their systematics and phylogeny. Bot. Zhurn. 75: 615–630 (in Russian with English summary).Google Scholar
  852. Reveal JL. 1997. Behniaceae (Magnoliophyta), a new family of Asteliales (Liliopsida). Phytologia 82: 273–274.Google Scholar
  853. Rodriguez R and C Marticorena. 1987. Las especies del genera Luzuriaga R. et P. Gayana Bot. 44: 3–15.Google Scholar
  854. Sanso AM. 1996. El género Alstroemeria (Alstroemeriaceae) en Argentina. Darwiniana 34: 349–382.Google Scholar
  855. Sanso AM. 2002. Chromosome studies in Andean taxa of Alstroemeria (Alstroemeriaceae). Bot. J. Linn. Soc. 138: 451–459.CrossRefGoogle Scholar
  856. Sanso AM and JH Hanziker. 1998. Karyological studies in Alstroemeria and Bomarea (Alstroemeriaceae). Hereditas 129: 67–74.CrossRefGoogle Scholar
  857. Sanso AM and CC Xifreda. 1999. The synonymy of Schickendantzia with Alstroemeria (Alstroemeriaceae). Syst. Geogr. Plants 68: 315–323.CrossRefGoogle Scholar
  858. Sanso AM and CC Xifreda. 2001 Generic delimitation between Alstroemeria and Bomarea (Alstroemeriaceae). Ann. Bot. 38: 1057–1069.CrossRefGoogle Scholar
  859. Schlittler J. 1949. Die systematische Stellung der Gattung Petermannia E V. Muell. und ihre phylogenetische Beziehung zu den Dioscoreaceae Lindl. Vierteljahrsschr. Naturf. Ges. Zürich 1: 1–28.Google Scholar
  860. Schlittler J. 1965 (1966). Sind die Luzuriagoideen wir-kliche Liliaceen oder haben die Ericales und Fern-stroemiales organo-phylogenetisch und stammesg-eschichtlich Beziehungen zur primitiven Liliefloren? Ber. Schweiz. Bot. Ges. 75: 96–109.Google Scholar
  861. Slob A, B Jekel, and E Schlatmann. 1975. On the occurrence of tuliposides in the Liliiflorae. Phytochemistry 14: 1997–2005.CrossRefGoogle Scholar
  862. Stenar AHS. 1952. Notes on the embryology and anatomy of Luzuriaga latifolia Poir. Acta Horti Berg. 16: 219–232.Google Scholar
  863. Tomlinson PB and ES Ayensu. 1969. Notes on the vegetative morphology and anatomy of the Petermanniaceae. Bot. J. Linn. Soc. 62: 17–26.CrossRefGoogle Scholar
  864. Vinnersten A and G Reeves. 2003. Phylogenetic relationships within Colchicaceae. Am. J. Bot. 90: 1455–1462.CrossRefGoogle Scholar
  865. Arber A. 1920. Tendrils of Smilax. Bot. Gaz. 60: 438–442.CrossRefGoogle Scholar
  866. Cameron KM and C-X Fu. 2006. A nuclear rDNA phylogeny of Smilax (Smilacaceae). In: JT Columbus, EA Friar, JM Porter, LM Prince, and MG Simpson, eds. Monocots: comparative biology and evolution (excluding Poales), pp. 598–605. Rancho Santa Ana Botanical Garden, Claremont.Google Scholar
  867. Cave MS. 1966. The female gametophytes of Lapageria rosea, and Philesia magellanica. Guyana Bot. 15: 25–31.Google Scholar
  868. Chen S-C, Y-X Qiu, A-L Wang, and C-X Fu. 2006a. A phyloge-netic analysis of the Smilacaceae based on morphological data. Acta phytotax. Sinica 14: 113–125.CrossRefGoogle Scholar
  869. Chen S-C, X-P Zhang, S-F Ni, C-X Fu, and KM Cameron. 2006b. The systematic value of pollen morphology in Smilacaceae. Plant Syst. Evol. 259: 19–37.CrossRefGoogle Scholar
  870. Conover M. 1983. The vegetative morphology of the reticulate veined Liliiflorae. Telopea 2: 401–412.Google Scholar
  871. Conover M. 1991. Epidermal patterns of the reticulate-veined Liliiflorae and their parallel-veined allies. Bot. J. Linn. Soc. 107: 295–312.Google Scholar
  872. Conran JG. 1989a. Cladistic analyses of some net-veined Liliiflorae. Plant Syst. Evol. 168: 123–141.CrossRefGoogle Scholar
  873. Conran JG. 1998b. Smilacaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 417–422. Springer, Berlin/Heidelberg/New York.Google Scholar
  874. Conran JG and HT Clifford. 1985. The taxonomic affinities of the genus Ripogonum. Nord. J. Bot. 5: 215–219.Google Scholar
  875. Conran JG and HT Clifford. 1998. Philesiaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 409–411. Springer, Berlin/Heidelberg/New York.Google Scholar
  876. Conran JG, PJ Rudall, and MW Chase. 1997. Two new monocotyledon families: Anemarrhenaceae and Behniaceae (Lilianae, Asparagales). Kew Bull. 52: 995–999.CrossRefGoogle Scholar
  877. Fu C. 1998. Studies on systematics and evolution of Smilax and Heterosmilax (Smilacaceae). In Monocots II, p. 67 (abstract). Sydney.Google Scholar
  878. Judd WS. 1998. The Smilacaceae in the southeastern United States. Harvard Pap. Bot. 3: 147–169.Google Scholar
  879. Komar GA. 1985. Smilacaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 132–133. Nauka, Leningrad (in Russian).Google Scholar
  880. Koyama T. 1980. Materials toward a monograph of the genus Smilax. Quart. J. Taiwan Mus. 8: 1–62.Google Scholar
  881. Koyama T. 1984. A taxonomic revision of the genus Heterosmilax (Smilacaceae). Brittonia 36: 184–205.CrossRefGoogle Scholar
  882. Patterson TB and TJ Givnish. 2002. Phylogeny, concerted convergence, and phylogenetic niche conservatism in the core Liliales: Insights from rbcL and ndhF sequence data. Evolution 56: 233–252.PubMedGoogle Scholar
  883. Schlittler J. 1951. Die Gattung Eusterphus R. Br. ex Sims und Geitonoplesium (R. Br.) A. Cunn.: Morphologisch-anatomische Studie mit Berücksichtigung der system-atischen, nomenklatorischen, und arealgeo-graphischen Verhältnisse. Ber. Schweiz. Bot. Ges. 151: 175–239.Google Scholar
  884. Schulze W. 1931. Beiträge zur Taxonomie der Liliifloren. VIII. Wiss. Z. Friedrich-Schiller-Univ. Jena 31: 285–289.Google Scholar
  885. Schulze W. 1982. Beiträge zur Taxonomie der Liliifloren. VII. Philesiaceae. Wiss. Z. Friedricg-Schiller-Univ. Jena 31: 277–283.Google Scholar
  886. Simpson PG and WR Philipson. 1969. Vascular anatomy in vegetative shots of Rhipogonum scandens Forst. (Smilacaceae). N. Z. J. Bot. 7: 3–29.Google Scholar
  887. Abe K. 1972. Contributions to the embryology of the family Orchidaceae: VII. A comparative study of the orchid embryo sac. Sci. Rep. Tohoku Imp. Univ., 4th ser. (Biol), 36: 179–201.Google Scholar
  888. Ackermann JD and NH Williams. 1980. Pollen morphology of the tribe Neottieae and its impact on the classification of the Orchidaceae. Grana 19: 7–18.Google Scholar
  889. Ames O. 1946. The evolution of the orchid flower. Am. Orchid. Soc. Bull. 14: 355–360.Google Scholar
  890. Ames O. 1948. Orchids in retrospect: a collection of essays on the Orchidaceae. Botanical Museum of Harvard University, Cambridge, MA.Google Scholar
  891. Arditti J. 1992. Fundamentals of orchid biology. Wiley, New York.Google Scholar
  892. Atwood JT, Jr. 1984. The relationships of the slipper orchids (subfamily Cypripedioideae, Orchidaceae). Selbyana 7: 129–247.Google Scholar
  893. Atwood JT, Jr. 1986. The size of the Orchidaceae and the systematic distribution of epiphytic orchids. Selbyana 9: 171–186.Google Scholar
  894. Averyanov LV. 1990. The systems of Orchides (Orchidaceae) of the flora of Vietnam. The subfamilies Apostasioideae, Cypripedioideae, Neottioideae, and Orchidoideae. Bot. Zhurn. 75(7): 1013–1028 (in Russian).Google Scholar
  895. Averyanov LV. 1991. Main trends of the morphological evolution of the Orchidaceae family. Bot. Zhurn. 76: 921–935 (in Russian with English summary).Google Scholar
  896. Averyanov LV, P Cribb, PK Loc, and NT Hiep. 2003. Slipper Orchids of Vietnam. Royal Botanic Gardens, Kew.Google Scholar
  897. Baker JG. 1878. Synopsis of Hypoxidaceae. Bot. J. Linn. Soc. 17: 93–126.CrossRefGoogle Scholar
  898. Barthlott W. 1976. Morphologic der Samen von Orchideen im Hinblick auf taxonomische und funktionelle Aspekte. In: K Senghas, ed. Proc. 8th World Orchid Conf., pp. 438–443. Frankfurt.Google Scholar
  899. Bayer C, O Appel, and PJ Rudall. 1998. Asteliaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 141–145. Springer, Berlin/Heidelberg/New York.Google Scholar
  900. Benzing DH and JT Atwood, Jr. 1984. Orchidaceae: ancestral habitats and current status in forest canopies. Syst. Bot. 9: 155–165.CrossRefGoogle Scholar
  901. Burns-Balogh P and P Bernhardt. 1985. Evolutionary trends in the androecium of the Orchidaceae. Plant Syst. Evol. 149: 119–134.CrossRefGoogle Scholar
  902. Burns-Balogh P and P Bernhardt. 1988. Floral evolution and phylogeny in the tribe Thelymitreae (Orchidaceae: Neottioideae). Plant Syst. Evol. 159: 19–47.CrossRefGoogle Scholar
  903. Burns-Balogh P and V Funk. 1986. A phylogenetic analysis of the Orchidaceae. Smithsonian Contr. Bot. 61: 1–79.Google Scholar
  904. Cameron KM. 2002. Intertribal relationships within Orchidaceae as inferred from analyses of five plastid genes. In Botany 2002: Botany in the Curriculum. Abstracts, p. 116. Madison, WI.Google Scholar
  905. Cameron KM. 2004. Utility of plastid psaB gene sequences for investigating intrafmilial relationships within Orchidaceae. Mole. Phylogenet. Evol. 31: 1157–1180.CrossRefGoogle Scholar
  906. Cameron KM and MW Chase. 1996. Systematic investigations of the vanilloid orchids: evidence from DNA sequences, anatomy, and morphology. Am. J. Bot. 83: 143–144.Google Scholar
  907. Cameron KM and MW Chase. 1998a. Systematic of Vanilloideae (Orchidaceae). In Monocots II, pp. 13–14 (abstract). Sydney.Google Scholar
  908. Cameron KM and MW Chase. 1998b. Seed morphology of vanilloid orchids (Vanilloideae: Orchidaceae). Lindleyana 13: 148–169.Google Scholar
  909. Cameron KM and MW Chase. 2000. Nuclear 18S rDNA sequences of Orchidaceae confirm the subfamilial status and circumscription of Vanilloideae. In: KL Wilson and DA Morrison, eds. Monocots: systematic and evolution, pp. 457–464. CSIRO, Collingwood.Google Scholar
  910. Cameron KM, D Jarrell, and MW Chase. 1994. Evidence from rbcL sequences and phylogenetic relationships of major lineages within Orchidaceae. Am. J. Bot. 81(6): 145 (abstract).Google Scholar
  911. Cameron KM, MW Chase, WM Whitten, PJ Kores, DC Jarrelll, VA Albert, T Yukawa, HG Hills, and DH Goldman. 1999. A phylogenetic analysis of the Orchidaceae: evidence from rbcL nucleotide sequences. Am. J. Bot. 86: 208–224.CrossRefGoogle Scholar
  912. Carlquist S and EL Schneider. 2006. Origins and nature of vessels in Monocotyledons: 8. Orchidaceae. Am. J. Bot. 93: 963–971.CrossRefGoogle Scholar
  913. Carlsward BS, WM Whitten, NH Williams, and B Bytebier. 2006. Molecular phylogenetics of Vandeae (Orchidaceae) and the evolution of leaflessness. Am. J. Bot. 93: 770–786.CrossRefGoogle Scholar
  914. Chase MW, JF Freudenstein, and KM Cameron. 2003. DNA data and Orchidaceae systematics: a new phylogenetic clas-sification. In: KW Dixon, SP Pell, RL Barrett, and PJ Cribb, eds. Orchid Conservation, pp. 69–89. Kota Kinabalu, Sabah.Google Scholar
  915. Clements MA, DL Jones, IK Scarma, ME Nightingale, MJ Garratt, KJ Fitzgerald, AM Mackenzie, and BPJ Molloy. 2002. Phylogenetics of Diuridae (Orchidaceae) based on the internal transcribed spacer (ITS) regions of nuclear ribo-somal DNA. Lindleyana 17: 135–171.Google Scholar
  916. Clifford HT and JG Conran 1998. Blandfordiaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 148–150. Springer, Berlin/Heidelberg/New York.Google Scholar
  917. Clifford HT and PS Lavarack. 1974. The role of vegetative and reproductive attributes in the classification of the Orchidaceae. Bot. J. Linn. Soc. 6: 97–110.CrossRefGoogle Scholar
  918. Cribb P and T Cox 1998. Phylogeny of the Cypripedioideae. In Monocots II, p. 17 (abstract). Sydney.Google Scholar
  919. Darwin C. 1862. On the various contrivances by which British and foreign orchids are fertilized. Murray, London.Google Scholar
  920. De Vos MP. 1948. The development of the ovule and seed in the Hypoxideae: 1. Ianthe Salisb. South Afr. J. Bot. 14: 159–169.Google Scholar
  921. De Vos MP. 1949. The development of the ovule and seed in the Hypoxideae: II. The genera Pauridia Harv. and Forbesia Ecldon. South Afr. J. Bot. 15: 13–22.Google Scholar
  922. Di Fulvio TE and MS Cave. 1964. Embryology of Blandfordia nobilis Smith (Liliaceae) with special reference to its taxo-nomic position. Phytomorphology 14: 487–499.Google Scholar
  923. Dodson CH. 1962. The importance of pollination in the evolution of the orchids of tropical America. Am. Orchid Soc. Bull. 31: 525–534, 641–649, 731–735.Google Scholar
  924. Dora G and JM Edwards. 1991. Taxonomic status of Lanaria lanata and isolation of a novel biflavone. J. Nat. Prod. 54: 796–801.CrossRefGoogle Scholar
  925. Douzery JP, AM Pridgeon, PJ Kores, H Kurzweil, P Linder, and MW Chase. 1999. Molecular phylogenetics of Diseae (Orchidaceae): a contribution from nuclear ribosomal ITS sequences. Am. J. Bot. 86: 887–899.PubMedCrossRefGoogle Scholar
  926. Dressler RL. 1961. The structure of the orchid flower. Missouri Bot. Gard. Bull. 49: 60–69.Google Scholar
  927. Dressler RL. 1981. The orchids: natural history and classification. Harvard University Press, Cambridge, MA/London.Google Scholar
  928. Dressler RL. 1983. Classification of the Orchidaceae and their probable origin. Telopea 2: 413–424.Google Scholar
  929. Dressler RL. 1986. Recent advances in orchid phylogeny. Lindleyana 1: 5–20.Google Scholar
  930. Dressler RL. 1987. Cladistic analysis of the Orchidaceae: a commentary. Lindleyana 2: 66–71.Google Scholar
  931. Dressler RL. 1990a. The Neottieae in orchid classification. Lindleyana 5: 101–109.Google Scholar
  932. Dressler RL. 1990b. The Spiranthoideae: grade or subfamily? Lindleyana 5: 110–116Google Scholar
  933. Dressler RL. 1993. Phylogeny and classification of the orchid family. Dioscorides Press, Portland, OR.Google Scholar
  934. Dressler RL and MW Chase. 1995. Whence the orchids? In: PJ Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, pp. 217–226. Royal Botanic Gardens, Kew.Google Scholar
  935. Dressler RL and CH Dodson. 1960. Classification and phylo-geny in the Orchidaceae. Ann. Missouri Bot. Gard. 47: 25–68.CrossRefGoogle Scholar
  936. Fay MF, Rudall PJ, Sullivan S, Stobart KL, de Bruijn AY, Reeves G, Qamaruz-Zaman F, Hong WP, Joseph J, Hahn WJ, Conran JG, and Chase MW. 2000. Phylogenetic studies of Asparagales based on four plastid DNA regions. In: KL Wilson, and DA Morrison, eds. Monocots: systematics and evolution, pp. 360–371. CSIRO, Collingwood.Google Scholar
  937. Freudenstein JV. 1991. A systematic study of endothecial thickenings in the Orchidaceae. Am. J. Bot. 78: 766–781.CrossRefGoogle Scholar
  938. Freudenstein JV and Chase MW. 2001. Analysis of mito-chondrial nad1b-c intron sequences in Orchidaceae: Utility and coding of length-change characters. Syst. Bot. 26: 643–657.Google Scholar
  939. Freudenstein JV and FN Rasmussen. 1997. Sectile pollinia and relationships in the Orchidaceae. Plant Syst. Evol. 205: 125–146.CrossRefGoogle Scholar
  940. Freudenstein JV and FN Rasmussen. 1999. What does morphology tell us about orchid relationships? — a cladistic analysis. Am. J. Bot. 86: 225–248.CrossRefGoogle Scholar
  941. Freudenstein JV, DM Senyo, and MW Chase. 2000. Mitochondrial DNA and relationships in the Orchidaceae. In: KL Wilson and DA Morrison, eds. Monocots: systematic and evolution, pp. 421–429. CSIRO, Collingwood.Google Scholar
  942. Freudenstein JV, EM Harris, and FN Rasmussen. 2002. The evolution of anther morphology in orchids: incumbent anthers, superposed pollinia, and the vandoid complex. Am. J. Bot. 89: 1747–1755.CrossRefGoogle Scholar
  943. Freudenstein JV, C van den Berg, DH Goldman, PJ Kores, M Molvray, and MW Chase. 2004. An expanded plastid DNA phylogeny of Orchidaceae and analysis of jackknife branch support strategy. Am. J. Bot. 91: 149–157.CrossRefGoogle Scholar
  944. Garay LA. 1960. On the origin of the Orchidaceae, part 1. Bot. Mus. Lean. 19: 57–96.Google Scholar
  945. Garay LA. 1972. On the origin of the Orchidaceae, part 2. J. Arnold Arbor. 53: 202–215.Google Scholar
  946. Geerinck D. 1969. Genera des Haemodoraceae et des Hypoxidaceae. Bull. Jard. Bot. Nat. Belg. 39: 47–82.CrossRefGoogle Scholar
  947. Goldblatt P. 1995. The status of R. Dahlgren's orders Liliales and Melanthiales. In: PJ Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: sys-tematics and evolution, pp. 181–200. Royal Botanic Gardens, Kew.Google Scholar
  948. Govindappa DA. 1967. Contribution to the embryology of Hypoxis aurea Lour. J. Indian Bot. Soc. 46: 193–198.Google Scholar
  949. Govindappa DA and K Shamakumari. 1957. Development of embryo in Hypoxis aurea Lour. J. Indian Bot. Soc. 36(3): 324–327.Google Scholar
  950. Hillard OM and BL Burtt. 1978. Notes on some plants of Southern Africa, chiefly from Natal. Part 7 (Hypoxidaceae). Notes Roy. Bot. Gard. Edinb. 36: 43–76.Google Scholar
  951. Jain S, V Gupta, and MR Vijayaraghavan 1986. Structure and histochemistry of raphide idioblasts in Apostasia wallichii (R. Br.). Curr. Sci. 55: 932–934.Google Scholar
  952. Johansen B and S Frederiksen. 2002. Orchid flowers: development and evolution. In: Cronk QCB, RM Bateman, and JA Hawkins, eds. Developmental genetics and plant evolution, pp. 206–219. Taylor & Francis, London.Google Scholar
  953. Judd WS. 2000. The Hypoxidaceae in the Southeastern United States. Harvard Pap. Bot. 5: 79–98.Google Scholar
  954. Judd WS, WL Stern, and VI Cheadle. 1993. Phylogenetic position of Apostasia and Neuwiedia (Orchidaceae). Bot. J. Linn. Soc. 113: 87–94.CrossRefGoogle Scholar
  955. Kocyan A and PK Endress. 2001a. Floral structure and development and systematic aspects of some “lower” Asparagales. Plant Syst. Evol. 229: 187–216.CrossRefGoogle Scholar
  956. Kocyan A and PK Endress. 2001b. Floral structure and development of Apostasia and Neuwiedia (Apostasioideae) and their relationships to other Orchidaceae. Int. J. Plant Sci. 162: 847–867.CrossRefGoogle Scholar
  957. Kocyan A, Y-L Qiu, PK Endress, and E Conti. 2004. A phyloge-netic analysis of Apostasioideae (Orchidaceae) based on ITS, trnL-F and matK sequences. Plant Syst. Evol. 247: 203–213.CrossRefGoogle Scholar
  958. Kores PJ, KM Cameron, M Molvray, and MW Chase. 1997. The phylogenetic relationships of Orchidoideae and Spiranthoideae (Orchidaceae) as inferred from rbcL plastid sequences. Lindleyana 12: 1–11.Google Scholar
  959. Kores PJ, PH Weston, M Molvray, and MW Chase. 2000. Phylogenetic relationships within the Diurideae (Orchidaceae): inferences from plastid matK DNA sequences. In: KL Wilson and DA Morrison, eds. Monocots: systematic and evolution, pp. 449–456. CSIRO, Collingwood.Google Scholar
  960. Kores PJ, M Molvray, PH Weston, SD Hopper, AP Brown, KM Cameron, and MW Chase. 2001. A phylogenetic analysis of Diurideae (Orchidaceae) based on plastid DNA sequence data. Am. J. Bot. 88: 1903–1914.CrossRefGoogle Scholar
  961. Kosenko VN. 1994a. Morphology of pollen grains of the families Phormiaceae, Blandfordiaceae, and Doryanthaceae. Bot. Zhurn. 79: 1–12 (in Russian with English summary).Google Scholar
  962. Kosenko VN. 1994b. Pollen morphology of the families Phormiaceae, Blandfordiaceae, and Doryanthaceae. Bot. Zhurn. 79(7): 1–12 (in Russian with English summary).Google Scholar
  963. Kristiansen KA, FN Rasmussen, and HN Rasmussen. 2001. Seedlings of Neuwiedia (Orchidaceae subfamily Apostasioideae) have typical orchidaceous mycotrophic pro-tocorms. Am. J. Bot. 88: 956–959.PubMedCrossRefGoogle Scholar
  964. Kumar M and KS Manilal. 1988. Floral anatomy of Apostasia odorata and the taxonomic status of apostasioids (Orchidaceae). Phytomorphology 38: 159–162.Google Scholar
  965. Kurzweil H. 1987a. Developmental studies in orchid flowers. I. Epidendroid and vandoid species. Nord. J. Bot. 7: 427–442.CrossRefGoogle Scholar
  966. Kurzweil H. 1987b. Developmental studies in orchid flowers. II. Orchidoid species. Nord. J. Bot. 7: 443–451.CrossRefGoogle Scholar
  967. Kurzweil H. 1988. Developmental studies in orchid flowers. III. Neottioid species. Nord. J. Bot. 8: 271–282.CrossRefGoogle Scholar
  968. Kurzweil H. 1993. Developmental studies in orchid flowers. IV. Cypripedioid species. Nord. J. Bot. 13: 423–430.CrossRefGoogle Scholar
  969. Kurzweil H. 1998. Floral ontogeny of orchids: a review. Beitr. Biol. Pflanz 71: 45–100.Google Scholar
  970. Kurzweil H. 2000. The value of early floral ontogeny in the sys-tematics of Orchidaceae. In: KL Wilson and DA Morrison, eds. Monocots: systematic and evolution, pp. 436–440. CSIRO, Collingwood.Google Scholar
  971. Kurzweil H and A Kocyan A. 2002. Ontogeny of orchid flowers. In: J Arditti and T Kull, eds. Orchid biology: reviews and perspectives. VIII, pp. 83–138. Kluwer, Dordrecht.Google Scholar
  972. Lindley J. 1830–1840. The genera and species of Orchidaceous plants. Ridgways, London.Google Scholar
  973. Lodkina MM. 1985. Orchidaceae. In: A Takhtajan, ed., Comparative seed anatomy, vol. 1, pp. 142–150. Nauka, Leningrad (in Russian).Google Scholar
  974. Molvray M and P Kores. 1995. Character analysis of the seed coat in the Spiranthoideae and Orchidoideae, with special reference to the Diurideae (Orchidaceae). Am. J. Bot. 82: 1443–1454.CrossRefGoogle Scholar
  975. Molvray M, P Kores, and MW Chase. 2000. Polyphyly of myco-heterotrophic orchids and functional influences on floral and molecular characters. In: KL Wilson and DA Morrison, eds. Monocots: systematic and evolution, pp. 441–448. CSIRO, Collingwood.Google Scholar
  976. Nelson E. 1965. Zur organophyletischen Natur des Orchideenlabellums. Bot. Jahrb. Syst. 84: 175–214.Google Scholar
  977. Nelson E. 1967. Das Orchideenlabellum ein Homologon des einfachen medianen Petalums der Apostasiaceen oder ein zusammengesetztes Organ? Bot. Jahrb. Syst. 87: 22–35.Google Scholar
  978. Nemirovich-Danchenko EN. 1985. Hypoxidaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, 117–119. Nauka, Leningrad (in Russian).Google Scholar
  979. Newton GD and NH Williams. 1978. Pollen morphology of the Cypripedioideae and the Apostasioideae (Orchidaceae). Selbyana 2: 169–182.Google Scholar
  980. Neyland R and LE Urbatsch. 1996a. Evolution in the number and position of fertile anthers in Orchidaceae inferred from ndhF chloroplast gene sequences. Lindleyana 11: 47–53.Google Scholar
  981. Neyland R and LE Urbatsch. 1996b. Phylogeny of subfamily Epidendroideae (Orchidaceae) inferred from ndhF chloro-plast gene sequences. Am. J. Bot. 83: 1195–1206.CrossRefGoogle Scholar
  982. Nishimura G and M Tamura. 1993. Seed coat formation in Apostasia nipponica. J. Jpn. Bot. 68: 219–223.Google Scholar
  983. Nordal I. 1998. Hypoxidaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 286–295. Springer, Berlin/Heidelberg/New York.Google Scholar
  984. Oganezova GG. 1995. On the systematic position of the families Haemodoraceae, Hypoxidaceae and Taccaceae. Bot. Zhurn. 80: 12–25 (in Russian with English summary).Google Scholar
  985. Okada H. 1988. Karyomorphological observations of Apostasia nuda and Neuwiedia veratrifolia (Apostasioideae, Orchidaceae). J. Jpn. Bot. 63: 344–350.Google Scholar
  986. Oliviera VC and MG Sajo. 1999. Anatomia foliar de especies de Orchidaceae. Rev. Brasil. Bot. 22: 365–374.Google Scholar
  987. Poddubnaya-Arnoldi VA. 1967. Comparative embryology of the Orchidaceae. Phytomorphology 17: 312–320.Google Scholar
  988. Prakash N, and Ramsey M. 2000. Embryological development in Blandfordia and Neoastelia with comments on their systematic position. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 214–217. CSIRO, Collingwood.Google Scholar
  989. Pridgeon AM and MW Chase. 1995. Subterranean axes in tribe Diurideae (Orchidaceae): morphology, anatomy, and systematic significance. Am. J. Bot. 82: 1473–1495.CrossRefGoogle Scholar
  990. Pridgeon AM, WS Stern, and DH Benzing. 1983. Tilosomes in roots of Orchidaceae: morphology and systematic occurrence. Am. J. Bot. 70: 1365–1377.CrossRefGoogle Scholar
  991. Pridgeon AM, PJ Cribb, and MW Chase. 1999. Genera orchi-dacearum, vol. 1. General Introduction, Apostasioideae, Cypripedioideae. Oxford University Press, Oxford.Google Scholar
  992. Pridgeon AM, R Solano, and MW Chase. 2001a. Phylogenetic relationships in Pleurothallidinae (Orchidaceae): combined evidence from nuclear and plastid DNA sequences. Am. J. Bot. 88: 2286–2308.CrossRefGoogle Scholar
  993. Pridgeon AM PJ Cribb, and FN Rasmussen FN, eds. 2001b. Genera orchidacearum, vol. 2, Pt. 1. Orchidoideae. Oxford University Press, Oxford.Google Scholar
  994. Pridgeon AM, Cribb PJ, and FN Rasmussen, eds. 2003. Genera orchidacearum, vol. 2, Pt. 2. Orchidoideae, Vanilloideae. Oxford University Press, Oxford.Google Scholar
  995. Rao VS. 1969. The floral anatomy and relationships of the rare Apostasias. J. Indian Bot. Soc. 68: 374–385.Google Scholar
  996. Rao VS. 1974. The relationships of the Apostasiaceae on the basis of floral anatomy. Bot. J. Linn. Soc. 68: 319–327.CrossRefGoogle Scholar
  997. Rasmussen F. 1982. The gynostemium of the neottioid orchids. Opera Bot. 65: 7–96.Google Scholar
  998. Rasmussen F. 1986. Ontogeny and phylogeny in Orchidaceae. Lindleyana 1: 114–124.Google Scholar
  999. Rasmussen FN. 1995. Relationships of Burmanniales and Orchidales. In: P Rudall, J Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematic and evolution, pp. 227–241. Royal Botanic Gardens. Kew.Google Scholar
  1000. Rasmussen FN. 2000. Ins and outs of Orchid phylogeny. In: KL Wilson and DA Morrison, eds. Monocots: systematic and evolution, pp. 430–435. CSIRO, Collingwood.Google Scholar
  1001. Roife RA. 1909, 1910. The evolution of the Orchidaceae. Orchid Rev. 17: 129–132, 193–196, 289–292, 353–356, 1909; 18: 33–36, 87–99, 129–132, 162–166, 289–294, 321–325, 1910.Google Scholar
  1002. Rosso SW. 1966. The vegetative anatomy of the Cypripedioideae (Orchidaceae). Bot. J. Linn. Soc. 59: 309–341.CrossRefGoogle Scholar
  1003. Rudall PJ. 1998. Lanariaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 340–342. Springer, Berlin/Heidelberg/New York.Google Scholar
  1004. Rudall PJ, MW Chase, DF Cutler, J Rusby, and AY De Bruijn. 1998. Anatomical and molecular systematics of Asteliaceae and Hypoxidaceae. Bot. J. Linn. Soc. 127: 1–12.CrossRefGoogle Scholar
  1005. Scharf W. 1892. Beiträge zur Anatomic der Hypoxideen und einiger verwandter Pflanzen: Lanaria plumosa Ait. Beih. Bot. Centralbl. 52: 242–243.Google Scholar
  1006. Schill R. 1978. Palynologische Untersuchungen zur sys-tematischen Stellung der Apostasiaceae. Bot. Jahrb. Syst. 99: 353–352.Google Scholar
  1007. Schlechter R. 1926. Die System der Orchidaceen. Notizbl. Bot. Gart. Berlin-Dahlem 9: 563–591.CrossRefGoogle Scholar
  1008. Schlechter R. 1992. Die Orchideen, ed. 3, vol. 1A (FG Brieger, F Butzin, and K Senghas, eds). Paul Parey, Berlin.Google Scholar
  1009. Schlechter R. 1996. Die Orchideen, ed. 3, vol. 1B (FG Brieger, F Butzin, and K Senghas, eds). Paul Parey, Berlin.Google Scholar
  1010. Schlechter R. 2003. Die Orchideen, ed. 3, Literaturverzeichnis und Register zu Band I/A, B und C (K Senghas, ed.). Paul Parey, Berlin.Google Scholar
  1011. Sharma AK. 1969. Evolution and taxonomy of monocotyledons. In: CD Darlington, ed. Chromosomes Today, 2: 241–249.Google Scholar
  1012. Skottaberg C. 1960. Astelia on Mauritius. Sven. Bot. Tidskr. 54: 477–482.Google Scholar
  1013. Skottsberg C. 1934a. Studies in the genus Astelia Banks et Solander. K. Vetenscapakad. Handl. III. 14: 1–106.Google Scholar
  1014. Skottsberg C. 1934b. Astelia and Pipturus of Hawaii. Bernice P. Bishop. Mus. Bull. 117: 1–77.Google Scholar
  1015. Sood SK and PR Mohana Rao. 1988. Studies in the embryology of the diandrous orchid Cypripedium cordigerum (Cypripedieae, Orchidaceae). Plant Syst. Evol. 160: 159–168.CrossRefGoogle Scholar
  1016. Stern WL 1993. Comparative vegetative anatomy and systemat-ics of Spiranthoideae (Orchidaceae). Bot. J. Linn. Soc. 113: 161–197.CrossRefGoogle Scholar
  1017. Stern WL and BS Carlsward. 2004. Vegetative constants in the anatomy of epiphytic orchids. Orchid Rev. 112: 119–122.Google Scholar
  1018. Stern WL and BS Carlsward. 2006. Comparative vegetative anatomy and systematics of the Oncidiinae (Maxillarieae, Orchidaceae). Bot. J. Linn. Soc. 152: 91–107.CrossRefGoogle Scholar
  1019. Stern WL and WS Judd. 2000. Comparative anatomy and sys-tematics of the orchid tribe Vanilleae excluding Vanilla. Bot. J. Linn. Soc. 134: 179–202.CrossRefGoogle Scholar
  1020. Stern WL and WS Judd. 2001. Comparative anatomy and sys-tematics of Catasetinae (Orchidaceae). Bot. J. Linn. Soc. 136: 153–178.CrossRefGoogle Scholar
  1021. Stern WL and WM Whitten. 1999. Comparative vegetative anatomy of Stanhopeinae (Orchidaceae). Bot. J. Linn. Soc. 129: 87–103.CrossRefGoogle Scholar
  1022. Stern WL, VA Cheadle, and J Thorsch. 1993. Apostasiads, systematic anatomy, and the origins of Orchidaceae. Bot. J. Linn. Soc. 111: 411–455.CrossRefGoogle Scholar
  1023. Stern WL, MW Morris, WS Judd, AM Pridgeon, and RL Dressler. 1993. Comparative vegetative anatomy and systematics of Spiranthoideae (Orchidaceae). Bot. J. Linn. Soc. 113: 161–197.CrossRefGoogle Scholar
  1024. Stern WL, WS Judd, and BS Karlsward. 2004. Systematic and comparative anatomy of Maxillarieae (Orchidaceae), sans Oncidiinae. Bot. J. Linn. Soc. 144: 251–274.CrossRefGoogle Scholar
  1025. Swamy BGL. 1948. Vascular anatomy of orchid flowers. Bot. Mus. Leafl. 13: 61–95.Google Scholar
  1026. Szlachetko DL. 1995. Systema Orchidalium. Fragmenta Florist Geobot. 3 (Suppl.): 1–152.Google Scholar
  1027. Szlachetko DL and NB Margonska HB. 2002. Gynostemia orchidalium II. Orchidaceae (Epidendroideae). Acta Bot. Fenn. 173: 1–275.Google Scholar
  1028. Szlachetko DL and Rutkowski P. 2000. Gynostemia orchida-lium I. Apostasiaceae, Cypripediaceae, Orchidaceae (Thelymitroideae, Orchidoideae, Tropidioideae, Spiran-thoideae, Neottioideae, Vanilloideae). Acta Bot. Fenn. 169: 1–380.Google Scholar
  1029. Terekhin ES and OP Kamelina. 1969. Endosperm of the Orchidaceae. Bot. Zhurn. 54: 657–666 (in Russian).Google Scholar
  1030. Thompson MF. 1976, 1978, 1970. Studies in the Hypoxidaceae. I. Vegetative morphology and anatomy. II. Floral morphology and anatomy. III. The genus Pauridia. Bothalia 12: 111– 117, 429–435, 621–625.Google Scholar
  1031. Tohda H. 1986. Seed morphology in Orchidaceae. III. Tribe Neottieae. Sci. Report Tohoku Univ. 4th ser, 39: 103–119.Google Scholar
  1032. Van den Berg C, DH Gioldman, JV Freudenstein, AM Pridgeon, KM Cameron, and MW Chase. 2005. An overview of the phylogenetic relationships within Epidendroideae inferred from multiple DNA regions and recircumscription of Epidendreae and Arethuseae (Orchidaceae). Am. J. Bot. 92: 613–624.CrossRefGoogle Scholar
  1033. Vermuelen P. 1955. The rostellum of the Orchideae. Am. Orchid Soc. Bull. 24: 239–245.Google Scholar
  1034. Vermuelen P. 1959. The different structure of the rostellum in Ophrydeae and Neottieae. Acta Bot. Neerl. 8: 338–355.Google Scholar
  1035. Vermuelen P. 1966. The system of the Orchidales. Acta Bot. Neerl. 15: 224–253.Google Scholar
  1036. Vinogradova TN and EV Andronova. 2002. Development of orchid seeds and seedlings. In: J Arditti and T Kull, eds. Orchid biology: reviews and perspectives, vol. 8, pp. 167– 234. Kluwer, Dordrecht.Google Scholar
  1037. Vogel EF De. 1969. Monograph of the tribe Apostasieae (Orchidaceae). Blumea 17: 313–350.Google Scholar
  1038. Wheeler JM. 1966. Cytotaxonomy of the large Asteliads (Liliaceae) of the North Island of New Zealand. N. Z. J. Bot. 4: 95–113.Google Scholar
  1039. Williams NH. 1979. Subsidiary cells in the Orchidaceae: Their general distribution with special reference to development in the Oncidieae. Bot. J. Linn. Soc. 78: 41–66.CrossRefGoogle Scholar
  1040. Wilson KL and DA Morrison, eds. 2000. Monocots: systematics and evolution. CSIRO, Collingwood.Google Scholar
  1041. Yam TW, EC Yeung, XL Ye, SY Zee, and J Arditti. 2002. Orchid embryos. In: J Arditti and T Kull, eds. Orchid biology: reviews and perspectives, vol. 8, pp. 287–385. Kluwer, Dordrecht.Google Scholar
  1042. Arroyo SC. 1982. Anatomia vegetativa de Ixiolirion Fisch. ex Herb. (Liliales) y su significado taxonomia. Parodiana 1: 271–286.Google Scholar
  1043. Arroyo S. 1986. Leaf anatomy in the Tecophilaeaceae. Bot. J. Linn. Soc. 93: 323–328.CrossRefGoogle Scholar
  1044. Baker JG. 1878. Systema Iridearum. Bot. J. Linn. Soc. 16: 61–180.Google Scholar
  1045. Brummitt RK, H Banks, MAT Johnson, KA Docherty, K Jones, MW Chase, and PJ Rudall. 1998. Taxonomy of Cyanastroideae (Tecophilaeaceae): a multidisciplinary approach. Kew Bull. 53: 769–803.CrossRefGoogle Scholar
  1046. Carter S. 1962. Revision of Walleria and Cyanastrum (Tecophilaeaceae). Kew Bull. 16: 190–200.Google Scholar
  1047. Cheadle V. 1969. Vessels in Amaryllidaceae and Tecophilaeaceae. Phytomorphology 19(1): 8–16.Google Scholar
  1048. Cheadle VI. 1963. Vessels in Iridaceae. Phytomorphology 13: 245–248.Google Scholar
  1049. Clausen RT. 1940. A review of Cyanastraceae. Gentes Herb. 4: 293–304.Google Scholar
  1050. Clifford HT. 1998. Doryanthaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 336–338. Springer, Berlin/Heidelberg/New York.Google Scholar
  1051. Dahlgren R and AE van Wyk. 1988. Structures and relationships of families endemic to or centered in southern Africa. Monograph Syst. Bot. Missouri Bot. Gard. 25: 1–94.Google Scholar
  1052. De Vo s M. 1963. Studies on the embryology and relationships of South African genera of the Haemodoraceae: Lanaria Ait. South Afr. J. Bot. 29: 79–90.Google Scholar
  1053. Donato R, C Leach, and G Conran. 2000. Relationships of Dietes (Iridaceae) inferred from ITS2 sequences. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 407–413. CSIRO, Collingwood.Google Scholar
  1054. Goldblatt P. 1971. Cytological and morphological studies in the southern African Iridaceae. South Afr. J. Bot. 37: 317–460.Google Scholar
  1055. Goldblatt P. 1979. Preliminary cytology of Australasian Iridaceae. Ann. Missouri Bot. Gard. 66: 851–855.CrossRefGoogle Scholar
  1056. Goldblatt P. 1981. Systematics, phylogeny, and evolution in Dietes (Iridaceae). Ann. Missouri Bot. Gard. 68: 131–152.Google Scholar
  1057. Goldblatt P. 1982. Chromosome cytology in relation to suprage-neric systematics of Neotropical Iridaceae. Syst. Bot. 7: 186–198.CrossRefGoogle Scholar
  1058. Goldblatt P. 1990. Phylogeny and classification of Iridaceae. Ann. Missouri Bot. Gard. 77: 607–627.CrossRefGoogle Scholar
  1059. Goldblatt P. 1993. The woody Iridaceae: Nivenia, Klattia, and Witsenia: Systematic biology and evolution. Timber Press, Portland, OR.Google Scholar
  1060. Goldblatt P. 1998. Reduction of Bamardiella, Galaxia, Gynandriris, Hexaglottis, Homeria, and Roggeveldia in Moraea (Iridaceae: Irideae). Novon 8: 371–377.CrossRefGoogle Scholar
  1061. Goldblatt P. 2002. Phylogeny and classification of the Iridaceae and the relationships of Iris. Ann. Bot. n.s. (Italy). 1(2): 13–28.Google Scholar
  1062. Goldblatt P and JC Manning. 1989. Chromosome number in Walleria (Tecophilaeaceae). Ann. Missouri Bot. Gard. 76: 925–926.CrossRefGoogle Scholar
  1063. Goldblatt P and JC Manning. 2006. Radiation of pollination systems in the Iridaceae of sub-Saharan Africa. Ann. Bot. 97: 317–344.PubMedCrossRefGoogle Scholar
  1064. Goldblatt P and P Rudall. 1993. Leaf anatomy and systematics of the Homeriinae (Iridaceae). Bot. J. Linn. Soc. 111: 379–397.CrossRefGoogle Scholar
  1065. Goldblatt P and M Takei. 1997. Chromosome cytology of Iridaceae. Patterns of variation, determination of ancestral base numbers, and modes of karyotype change. Ann. Missouri Bot. Gard. 84: 285–304.CrossRefGoogle Scholar
  1066. Goldblatt P, JE Henrich, and P Rudall. 1984. Occurrence of crystals in Iridaceae and allied families and their phyloge-netic significance. Ann. Missouri Bot. Gard. 71: 1013–1020.CrossRefGoogle Scholar
  1067. Goldblatt P, P Rudall, VL Cheadle, LJ Dorr, and CA Williams. 1987. Affinities of the Madagascan endemic Geosiris, Iridaceae or Geosiridaceae. Adansonia 9: 239–248.Google Scholar
  1068. Goldblatt P, P Rudall, and JE Henrich. 1990. The genera of the Sisyrhinchium alliance (Iridaceae-Iridoideae): Phylogeny and relationships. Syst. Bot. 15: 497–510.CrossRefGoogle Scholar
  1069. Goldblatt P, JC Manning, and A Bari. 1991. Sulcus and opercu-lum structure in the pollen grains of Iridaceae subfamily Iridoideae. Ann. Missouri Bot. Gard. 78: 950–961.CrossRefGoogle Scholar
  1070. Goldblatt P, JC Manning, and P Rudall. 1998. Iridaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 295–333. Springer, Berlin/Heidelberg/New York.Google Scholar
  1071. Hartwell J, AV Cox, KM Cameron, ER Caddick, and MW Chase. 1994. Molecular systematics of the “lower” asparagoid lily families. Am. J. Bot. 81(6): 160 (abstract).Google Scholar
  1072. Jonker EP. 1939. Les Geosiridacees: Une nouvelle famille de Madagascar. Rec. Trav. Bot. Neerl. 36: 473–479.Google Scholar
  1073. Kenton A and CA Heywood. 1984. Cytological studies in South American Iridaceae. Plant Syst. Evol. 146: 87–104.CrossRefGoogle Scholar
  1074. Kosenko VN. 1994. Pollen morphology of the families Phormiaceae, Blandfordiaceae, and Doryanthaceae. Bot. Zhurn. 79(7): 1–12 (in Russian with English summary).Google Scholar
  1075. Kubitzki K. 1998. Ixioliriaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 334–335. Springer, Berlin/Heidelberg/New York.Google Scholar
  1076. Lakshmanan KK and VJ Phillip. 1971. A contribution to the embryology of Iridaceae. Proc. Indian Acad. Sci. 73: 110–116.Google Scholar
  1077. Larsen PO, ET Sorensen, E Wieczorkowska, and P Goldblatt. 1981. Meta-carboxy-substituted aromatic amino acids and t-glutamyi peptides: chemical characters for classification in the Iridaceae. Biochem. Syst. Ecol. 18: 575–579.Google Scholar
  1078. Le Thomas A, M Suarez, and P Goldblatt. 2002. Pollen of Nivenioideae and its phylogenetic implications. Ann. Bot. n.s. (Italy). 1(2): 67–72.Google Scholar
  1079. Lewis GJ. 1954. Some aspects of the morphology, phylogeny, and taxonomy of the South African Iridaceae. Ann. S. Afr. Mus. 40: 15–113.Google Scholar
  1080. Manning JC and P Goldblatt. 1991. Systematic and phyloge-netic significance of the seed coat in the shrubby African Iridaceae, Nivenia, Klattia, and Witsenia. Bot. J. Linn. Soc. 107: 387–404.CrossRefGoogle Scholar
  1081. Nemirovich-Danchenko EN. 1985. Tecophilaeaceae, Cyanastraceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 106–108. Nauka, Leningrad (in Russian).Google Scholar
  1082. Newman F V. 1928, 1929. The life history of Doryanthes excelsa: I. Some ecological and vegetative features on spore production, Proc. Linn. Soc. N. S. W. 53: 499–538. II. The gametophytes, seed production, chromosome number, and general conclusions. Proc. Linn. Soc. N. S. W. 54: 411–435.Google Scholar
  1083. Nietsch H. 1940. Zur systematischen Stellung von Cyanastrum. Oesterr. Bot. Z. 90: 31–52.CrossRefGoogle Scholar
  1084. Oganezova GG. 1981. Anatomical and morphological study in Ixiolirion tataricum ssp. montanum. Bot. Zhurn. 66: 702– 713 (in Russian with English summary).Google Scholar
  1085. Oganezova GG. 1997a. The seed structure of some Iridaceae in connection with their systematics, geography and phylog-eny. I. Subfamilies Nivenioideae and Irudoideae. Bot. Zhurn. 82(2): 14–29 (in Russian with English summary).Google Scholar
  1086. Oganezova GG. 1997b. The seed structure of some Iridaceae in connection with their systematics, geography and phylog-eny. II. Subfamily Ixioideae. Bot. Zhurn. 82(3): 7–22 (in Russian with English summary).Google Scholar
  1087. Ornduff R. 1979. Chromosome numbers in Cyanella (Tecophilaeaceae). Ann. Missouri Bot. Gard. 66: 581–583.CrossRefGoogle Scholar
  1088. Reeves G, MW Chase, P Goldblatt, P Rudall, MF Fay, AV Cox, B Lejeune, and T Souza-Chies. 2001. Molecular systematics of Iridaceae: evidence from four plastid DNA regions. Am. J. Bot. 88: 2074–2087.CrossRefGoogle Scholar
  1089. Reeves G, P Goldblatt, PJ Rudall, and MW Chase. 2002. Molecular systematics of Iridaceae: a combined analysis of four plastid DNA sequence matrices. Ann. Bot. n.s. (Italy) 1(2): 29–42.Google Scholar
  1090. Rübsamen-Weustenfeld T, V Muldelka, and U Hamann. 1994. Zur Embryologie, Morphologic, und systematischen Stellung von Geosiris aphylla Baillon (monocotyledoneae-Geosiri-daceae /Iridaceae) mit einigen embryologischen Daten zur Samenanlage von Isophysis tasmanica (Hook.) T. Moore (Iridaceae). Bot. Jahrb. Syst. 115: 475–545.Google Scholar
  1091. Rudall P. 1984. Taxonomic and evolutionary implications of rhizome structure and secondary thickening in Iridaceae. Bot. Gaz. 145: 524–534.CrossRefGoogle Scholar
  1092. Rudall P. 1986. Taxonomic significance of leaf anatomy in Australasian Iridaceae. Nord. J. Bot. 6: 277–289.CrossRefGoogle Scholar
  1093. Rudall P. 1991. Leaf anatomy of Tigridieae (Iridaceae). Plant Syst. Evol. 175: 1–10.CrossRefGoogle Scholar
  1094. Rudall P. 1993. Leaf anatomy and systematics of Mariceae (Iridaceae). Kew Bull. 48: 151–160.CrossRefGoogle Scholar
  1095. Rudall P. 1994. Anatomy and systematics of Iridaceae. Bot. J. Linn. Soc. 114: 1–21.CrossRefGoogle Scholar
  1096. Rudall P. 1995. Iridaceae. In: DF Cutler and M Gregory, eds. Anatomy of the Monocotyledons, vol. 8. Clarendon, Oxford.Google Scholar
  1097. Rudall P. 2003. Unique floral structures and iterative evolutionary themes in Asparagales: Insights from a morphological cladistic analysis. Bot. Rev. 68: 488–509.CrossRefGoogle Scholar
  1098. Rudall P and P Burns. 1989. Leaf anatomy of the woody South African Iridaceae. Kew Bull. 44: 525–532.CrossRefGoogle Scholar
  1099. Rudall P and P Goldblatt. 1991. Leaf anatomy and phylog-eny of Ixioideae (Iridaceae). Bot. J. Linn. Soc. 106: 329–345.CrossRefGoogle Scholar
  1100. Rudall P and P Goldblatt. 1993. Leaf anatomy and systemat-ics of Homeriinae (Iridaceae). Bot. J. Linn. Soc. 111: 379–397.CrossRefGoogle Scholar
  1101. Rudall PJ and P Goldblatt. 2002. Floral anatomy and systematic position of Diplarrhena (Iridaceae): a new tribe Diplarrheneae. Ann. Bot. n.s. (Italy) 1(2): 59–66.Google Scholar
  1102. Rudall P and A Wheeler. 1988. Pollen morphology in Tigriidieae (Iridaceae). Kew Bull. 43: 693–701.CrossRefGoogle Scholar
  1103. Schulze W. 1971. Beiträge zur Pollenmorphologie der Iridaceae und ihre Bedeutung für die Taxonomie. Feddes Repert. 82: 101–124.Google Scholar
  1104. Schulze W. 1984. Beitrage zur Taxonomie der Liliifloren: 11. Tecophilaeaceae und Cyanastraceae. (Contributions to the taxonomy of the Liliiflorae: 11. Tecophylaeaceae and Cyanastraceae.) Wiss. Zeitschr. Friedrich-Schiller Univ. Jena, Mat. Naturwiss. Beitr. Phytotax., 32(6): 957–964.Google Scholar
  1105. Shneyer VS. 1983. The relationship between Iridaceae s.l. as revealed by the serological analysis of seed proteins. Bot. Zhurn. 68: 49–54 (in Russian with English summary).Google Scholar
  1106. Simpson MG. 1985. Pollen ultrastructure of the Tecophilaeaceae. Grana 24: 77–92.CrossRefGoogle Scholar
  1107. Simpson MG and P Rudall. 1998. Tecophilaeaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 429–436. Springer, Berlin/Heidelberg/New York.Google Scholar
  1108. Souza-Chies TT, G Bittar, S Nadot, L Carter, E Besin, and B Lejeune. 1997. Phylogenetic analysis of Iridaceae with parsimony and distance methods using the plastid gene rps4. Plant Syst. Evol. 204: 109–123.CrossRefGoogle Scholar
  1109. Tillich H-J. 1995. Früchte, Samen und Keimpflanzen bei den Cyanastraceae Engler 1900 and einiger vermuteten Verwandten. Feddes Repert. 106: 483–493.Google Scholar
  1110. Tillich H-J. 2003. Seedling morphology in Iridaceae: indications for relationships within the family and to related families. Flora 198: 220–242.Google Scholar
  1111. Traub HP. 1943. The Ixiolirion tribe. Herbertia 9: 53–59.Google Scholar
  1112. Wilson CA. 2003. Phylogenetic relationships in Iris series Californicae based on ITS sequences of nuclear ribosomal DNA. Syst. Bot. 28: 39–46.Google Scholar
  1113. Williams CA, JB Harborne, and P Goldblatt. 1986. Correlations between phenolic patterns and tribal classification in the family Iridaceae. Phytochemistry 25: 2135–2154.CrossRefGoogle Scholar
  1114. Zavada MS and G Scott. 1993. Pollen morphology of Cyanella species (Tecophilaeaceae). Grana 32: 189–192.Google Scholar
  1115. Althoff DM, KA Segraves, J Leebens-Mack, and O Pellmyr. 2006. Patterns of speciation in the yucca moths: parallel species radiations within the Tegeticula yuccasella species complex. Syst. Biol. 55: 398–410.PubMedCrossRefGoogle Scholar
  1116. Alvarez A and E Kohler. 1987. Morfologia del polen de las Agavaceae y algunos generos afincs, Grana 26: 25–46.Google Scholar
  1117. Arroyo SC and DF Cutler. 1984. Evolutionary and taxonomic aspects of the internal morphology in Amaryllidaceae from South America and Southern Africa. Kew Bull. 39: 467–498.CrossRefGoogle Scholar
  1118. Artyushenko ZT. 1989. Aspects of research on Amaryllidaceae Jaume. Herbertia 45: 131–137.Google Scholar
  1119. Bastide J and F Viladomat. 2002. Alkaloids of Narcissus. In: GR Hanks, ed. Narcissu and Daffodil, pp. 141–214. Taylor & Francis, London.Google Scholar
  1120. Beaumont J, DF Cutler, T Raynolds, and JG Vaughan. 1985. The secretory tissue of aloes and their allies. Israel J. Bot. 34: 265–282.Google Scholar
  1121. Berg RY. 1978. Development of ovule, embryo sac, and endosperm in Brodiaea (Liliales). Nord. J. Bot. 25: 1–7.Google Scholar
  1122. Berg RY. 1998. Development of ovule, embryo sac, and endosperm in Dipterostemon and Dichelostemma (Alliaceae) relative to taxonomy. Am. J. Bot. 83: 790–801.CrossRefGoogle Scholar
  1123. Berg RY. 2003. Development of ovule, embryo sac, and endosperm in Triteleia (Themidaceae) relative to taxonomy. Am. J. Bot. 90: 937–948.CrossRefGoogle Scholar
  1124. Berg RY and JR Maze. 1966: Contribution to the embryology of Muilla, with a remark on the taxonomic position of the genus. Madroño 18: 143–151.Google Scholar
  1125. Blunden G and K Jewers. 1973. The comparative leaf anatomy of Agave, Beschorneria, Doryanthes, and Furcraea species (Agavaceae: Agaveae). Bot. J. Linn. Soc. 66: 157–179.CrossRefGoogle Scholar
  1126. Bogler DJ and BB Simpson. 1993. Molecular systematics of the Agavaceae: Evidence from sequencing the rDNA internal transcribed spacer region. Amer. J. Bot. 80(6): 133 (abstracts).Google Scholar
  1127. Bogler DJ and BB Simpson. 1995. A chloroplast DNA study of the Agavaceae. Syst. Bot. 20: 191–205.CrossRefGoogle Scholar
  1128. Bogler DJ and BB Simpson. 1996. Phylogeny of Agavaceae based on its rDNA sequence variation. Am. J. Bot. 83: 1225–1235.CrossRefGoogle Scholar
  1129. Bogler DJ, JC Pires and J Francisco-Ortega. 2006. Phylogeny of Agavaceae based on ndhF, rbcL, and ITS rDNA: Implications of molecular data for classification. In: JT Columbus, EA Friar, JM Porter, LM Prince, and MG Simpson, eds. Monocots: comparative biology and evolution (excluding Poales), pp. 313–328. Rancho Santa Ana Botanical Garden, Claremont.Google Scholar
  1130. Bouvier W. 1915. Beiträge zur vergleichenden Anatomie der Asphodeloideae (Tribus Asphodeleae und Hemerocallideae). Akad. Wiss. Wien Math.-Naturwiss. Kl. Denkschr. 91: 539–577.Google Scholar
  1131. Buchner L. 1948. Vergleichende embryologische Studien an Scilloideae. Oesterr. Bot. Z. 95: 428–451.CrossRefGoogle Scholar
  1132. Cave MS. 1948. Sporogenesis and embryo sac development of Hesperocallis and Leucocrinum in relation to their systematic position. Am. J. Bot. 35: 343–349.CrossRefGoogle Scholar
  1133. Cave MS. 1955: Sporogenesis and the female gametophyte of Phormium tenax. Phytomorphology 5: 247–253.Google Scholar
  1134. Cave MS. 1964. Cytological observations on some genera of the Agavaceae. Madroño 17: 163–170.Google Scholar
  1135. Cave MS. 1970. Chromosomes of California Liliaceae. Univ. Calif. Publ. Bot. 57: 1–48.Google Scholar
  1136. Cave MS. 1975. Embryological studies in Stypandra (Liliaceae). Phytomorphology 25: 95–99.Google Scholar
  1137. Chase MW, PJ Rudall, and JG Conran. 1996. New circumscriptions and a new family of asparagoid lilies: Genera formerly included in Anthericaceae. Kew Bull. 51: 667–680.CrossRefGoogle Scholar
  1138. Chase MW, PJ Rudall, MF Fay, and KL Stobart. 2000. Xeronemataceae, a new family of asparagoid lilies from New Caledonia and New Zealand. Kew Bull. 55: 865–870.CrossRefGoogle Scholar
  1139. Chase MW, A de Bruijn, G Reeves, AV Cox, PJ Rudall, MAT Johnson, and LE Equiarte. 2000. Phylogenetics of Asphodelaceae (Asparagales): an analysis of plastid rbcL and trnL-F DNA sequences. Ann. Bot. (London) 86: 935–956.CrossRefGoogle Scholar
  1140. Chakroun S and Ch Hebant. 1983. Developmental anatomy of Aphyllanthes monspeliensis, a herbaceous monocotyledon with secondary growth. Plant Syst. Evol. 141: 231–241.CrossRefGoogle Scholar
  1141. Cheadle VI. 1969 (1970). Vessels in Amaryllidaceae and Tecophilaeaceae. Phytomorphology 19: 8–16.Google Scholar
  1142. Chen ZK, FH Wang, and F Zhou. 1988a. On the origin, development and ultrastructure of the orbicules and pollenkit in the tapetum of Anemarrhena asphodeloides (Liliaceae). Grana 27: 273–282.Google Scholar
  1143. Chen ZK, FH Wang, and F Zhou. 1988b. The ultrastructural aspects of tapetum and Ubisch bodies in the Anemarrhena asphodeloides. Acta Bot. Sinica 30: 1–15 (in Chinese).Google Scholar
  1144. Chen ZK, F Zhou, FX Wang, and FH Wang. 1988c. Investigation on the development of male gametophyte in Anemarrhena asphodeloides. Acta Bot. Sinica 30: 569–573 (in Chinese).Google Scholar
  1145. Chen ZK, FH Wang, and ZH Li. 1990. Investigation on embryology of Anemarrhena asphodeloides. Acta Phytotaxon. Sinica 28: 223–227 (in Chinese).Google Scholar
  1146. Chung M-G and SB Jones, Jr. 1989. Pollen morphology of Hosta Tratt. (Funkiaceae) and related genera. Bull. Torrey Bot. Club 116: 31–44.CrossRefGoogle Scholar
  1147. Chupov VS. 1987. Taxonomic position of the genera Geitonoplesium and Simethis. Bot. Zhurn. 72: 904–908. (in Russian with English summary).Google Scholar
  1148. Chupov VS and NG Kutiavina. 1978. The comparative immuno-electrophoretic investigations of seed proteins of Liliaceae. Bot. Zhurn. 63: 473–493 (in Russian with English summary).Google Scholar
  1149. Chupov VS and NG Kutiavina. 1981. Serological studies in the order Liliales: II. Bot. Zhurn. 66: 408–418 (in Russian with English summary).Google Scholar
  1150. Clifford HT 1998. Xanthorroeaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 467–470. Springer, Berlin/Heidelberg/New York.Google Scholar
  1151. Clifford HT and JG Conran. 1998. Johnsoniaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 336–340. Springer, Berlin/Heidelberg/New York.Google Scholar
  1152. Clifford HT, RJF Henderson, and JG Conran 1998. Hemerocallidaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 245–252. Springer, Berlin/Heidelberg/New York.Google Scholar
  1153. Conran JG. 1998a. Anthericaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 114–121. Springer, Berlin/Heidelberg/New York.Google Scholar
  1154. Conran JG. 1998b. Aphyllanthaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 122–124. Springer, Berlin/Heidelberg/New York.Google Scholar
  1155. Conran JG. 1998c. Boryaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 151–154. Springer, Berlin/Heidelberg/New York.Google Scholar
  1156. Conran JG. 1998d. Herreriaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 253–255. Springer, Berlin/Heidelberg/New York.Google Scholar
  1157. Conran JG. 1998e. Lomandraceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, 354–365. Springer, Berlin/Heidelberg/New York.Google Scholar
  1158. Conran JG and PJ Rudall. 1998. Anemarrhenaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 111–114. Springer, Berlin/Heidelberg/New York.Google Scholar
  1159. Conran JG and A Temby. 2000. Embryology and affinities of the Boryaceae (Asparagales). In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 401–406. CSIRO, Collingwood.Google Scholar
  1160. Conran JG, MW Chase, and PJ Rudall. 1997. Two new monocotyledon families: Anemarrhenaceae and Behniaceae (Lilianae: Asparagales) Kew Bull. 52: 995–999.CrossRefGoogle Scholar
  1161. Fahn A. 1954. The anatomical structure of the Xanthorroeaceae Dumort. Bot. J. Linn. Soc. 55: 158–184.CrossRefGoogle Scholar
  1162. Fahn A. 1961. The anatomical structure of the Xanthor-roeaceae Dumort. and its taxonomic position. In Recent advances in botany, pp. 155–160 Taylor & Francis, Toronto.Google Scholar
  1163. Fay MF and MW Chase. 1996. Resurrection of Themidaceae for the Brodiaea alliance, and recircumscription of Alliaceae, Amaryllidaceae and Agapanthaceae. Taxon 45: 441–451.CrossRefGoogle Scholar
  1164. Fay MF, J Hartwell, LR Caddick, A Cox, and MW Chase. 1994. A molecular evaluation of the monophyly of Alliaceae and Amaryllidaceae. Am. J. Bot. 81(6): 154 (abstracts).Google Scholar
  1165. Fay MF, PJ Rudall, S Sullivan, KL Stobart, AY de Bruijn, G Reeves, F Qamaruz-Zaman, W-P Hong, J Joseph, WJ Hahn, JG Conran, and MW Chase. 2000. Phylogenetic studies of Asparagales based on four plastid DNA regions. In: KL Wilson and DA Morrison, eds. Monocots: systemat-ics and evolution, pp. 360–371. CSIRO, Collingwood.Google Scholar
  1166. Fisher JB and PB Tomlinson. 1971. Morphological studies in Cordyline (Agavaceae): I. Introduction and general morphology. J. Arnold Arbor 52: 459–478.Google Scholar
  1167. Flory WS. 1977. Overview of chromosomal evolution in the Amaryllidaceae. Nucleus 20: 70–88.Google Scholar
  1168. Friesen N, RM Fritsch, and FR Blattner. 2006. Phylogeny and new infrageneric classification of Allium (Alliaceae) based on nuclear ribosomal DNA ITS sequences. Aliso 22: 372–395.Google Scholar
  1169. Fritsch RM and M Keusgen. 2006. Occurrence and taxonomic significance of cysteine sulphoxides in the genus Allium L. (Alliaceae). Phytochemistry 67: 1127–1135.PubMedCrossRefGoogle Scholar
  1170. Good-Avila SV, V Souza, BS Gaut, and L Eguiarte. 2006. Timing and rate of speciation in Agave (Agavaceae). Proc. Natl. Acad. Sci. USA 103: 9124–9129.PubMedCrossRefGoogle Scholar
  1171. Granick EB. 1944. A karyosystematic study of the genus Agave. Am. J. Bot. 31: 283–343.CrossRefGoogle Scholar
  1172. Guaglianone ER and S Arroyo-Leuenberger. 2002: The South American genus Oziroë (Hyacinthaceae-Oziroëoideae). Darwiniana 40: 61–76.Google Scholar
  1173. Henderson RJF. 1991. Studies in Dianella Lam. ex Juss. (Phormiaceae): 2. Austrobaileya. 3(3): 473–480Google Scholar
  1174. Henderson RFJ and HT Clifford. 1984. A recircumscription of the Phormiaceae Agardh. Taxon 33: 423–427.CrossRefGoogle Scholar
  1175. Hoover RF. 1939. A definition of the genus Brodiaea. Bull. Torr. Bot. Club 66: 161–166.CrossRefGoogle Scholar
  1176. Hoover RF. 1941. A systematic study of Triteleia. Am. Midland Naturalist 25: 73–100.CrossRefGoogle Scholar
  1177. Huang S-M and C Sterling. 1970. Laticifers in bulb scales of Allium. Am. J. Bot. 57: 1000–1002.CrossRefGoogle Scholar
  1178. Huynh KL. 1971. Etude de l'arrangement du pollen dans la tet-rade chez les angiospermes sur la base de donnees cytologiques: 3. Le pollen trilete du genre Dianella Lam. (Liliaceae). Beitr. Biol. Pfl. 47(2): 277–286.Google Scholar
  1179. Ito M, A Kawamoto, Y Kita, T Yukawa, and S Kurita. 1999. Phylogeny of Amaryllidaceae based on matK sequence data. Jpn. J. Plant Res. 112: 207–216.CrossRefGoogle Scholar
  1180. Jin X-B. 1985. The chromosomes of Hemerocallis (Liliaceae). Kew Bull. 41: 379–391.Google Scholar
  1181. Keighery GJ. 1984. The Johnsonieae (Liliaceae): biology and classification. Flora 175: 103–108.Google Scholar
  1182. Klercker JEF. 1883. Recherches sur la structure anatomique de l'Aphyllanthes monspeliensis Lin. Bib. K. Svensk. Vetensk. Akad. Handl. 8(6): 1–23.Google Scholar
  1183. Kocyan A and PK Endress. 2001. Floral structure and development and systematic aspects of some ‘lower’ Asparagales. Plant Syst. Ecol. 229: 187–216.CrossRefGoogle Scholar
  1184. Komar GA. 1976. The ultrastructure of seed appendages (elaio-somes) in Scilla sibirica, Scilla mischtschenkoana, and Chionodoxa gigantea (Liliaceae). Bot. Zhurn. 61: 332–341 (in Russian with English summary).Google Scholar
  1185. Komar GA. 1985. Alliaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 78–82. Nauka, Leningrad (in Russian).Google Scholar
  1186. Kong H. 2001. Study on the seeds micro-morphological characteristics of Hemerocallis and its taxonomic significance. Acta Bot. Bor.-Occid. Sinica 21(2): 373–376.Google Scholar
  1187. Kosenko VN. 1994. Pollen morphology of the families Phormiaceae, Blandfordiaceae, and Doryanthaceae. Bot. Zhurn. 79(7): 1–12 (in Russian with English summary).Google Scholar
  1188. Kosenko VN and OY Sventorzhetskaya. 1999. Pollen morphology in the family Asphodelaceae (Asphodeleae, Kniphofieae). Grana. 38: 218–227.CrossRefGoogle Scholar
  1189. Kubitzki K. 1998. Hostaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 256–260. Springer, Berlin/Heidelberg/New York.Google Scholar
  1190. Kubitzki K. 1998. Agapanthaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 58–60. Springer, Berlin/Heidelberg/New York.Google Scholar
  1191. Lebatha P, MH Buys, and B Stedje. 2006. Ledebouria, Resnova and Drimiopsis: a tale of three genera. Taxon 55: 643–652.Google Scholar
  1192. Lledó MD, AP Davis, MB Crespo, MW Chase, and MF Fay. 2004. Phylogenetic analysis of Leucojum and Galanthus (Amaryllidaceae) based on plastid matK and nuclear ribo-somal spacer (ITS) DNA sequences and morphology. Plant Syst. Evol. 246: 223–243.Google Scholar
  1193. McKelvey SD and K Sax. 1933. Taxonomic and cytological relationships of Yucca and Agave. J. Arnold Arbor. 14: 76–80.Google Scholar
  1194. McPherson MA, MF Fay, MW Chase, and SW Graham. 2004. Parallel loss of a slowly evolving intron from two closely related families in Asparagales. Syst. Bot. 29: 296–307.CrossRefGoogle Scholar
  1195. Maekawa F and K Kaneko. 1968. Evolution of karyotype in Hosta (Liliaceae). J. Jpn. Bot. 43: 132–140 (in Japanese with English summary).Google Scholar
  1196. Manning JC, P Goldblatt, and MF Fay. 2004. A revised generic synopsis of Hyacintheaceae in sub-Saharan Africa, based on molecular evidence, including new combinations and the new tribe Pseudoprospereae. Edinb. J. Bot. 60: 533–568.Google Scholar
  1197. Marais W and J Reilly. 1978. Chlorophytum and its related genera (Liliaceae). Kew Bull. 32: 653–663.CrossRefGoogle Scholar
  1198. Meerow AW. 1984. Karyotype evolution in the Amaryllidaceae. Herbertia 40: 139–154.Google Scholar
  1199. Meerow AW. 1985. The evolutionary significance of pancratoid floral morphology in the Amaryllidaceae. Am. J. Bot. 72(6): 962 (abstract).Google Scholar
  1200. Meerow AW. 1995. Towards a phylogeny of Amaryllidaceae. In: PJ Rudall, PJ Cribb, DF Cutler and CJ Humphries, eds. Monocotyledons: systematics and evolution, pp. 169–179. Royal Botanic Gardens, Kew.Google Scholar
  1201. Meerow AW and JR Clayton. 2004. Generic relationships among the baccate-fruited Amaryllidaceae (tribe Haemantheae) inferred from plastid and nuclear non-coding DNA sequences date. Plant Syst. Evol. 244: 141–155.CrossRefGoogle Scholar
  1202. Meerow AW and B Dehgan. 1988. Pollen morphology of the Eucharideae (Amaryllidaceae). Am. J. Bot. 75: 1857–1870.CrossRefGoogle Scholar
  1203. Meerow AW and DA Snijman. 1998. Amaryllidaceae. In: K. Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 83–110. Springer, Berlin/Heidelberg/New York.Google Scholar
  1204. Meerow AW and DA Snijman. 2001. Phylogeny of Amaryllidaceae tribe Amaryllideae based on nrDNA sequences and morphology. Am. J. Bot. 88: 2321–2330.CrossRefGoogle Scholar
  1205. Meerow AW, MF Fay, CL Guy, Q-B Li, FQ Zaman, and MW Chase. 1999. Systematics of Amarillidaceae based on cladistic analysis of plastid rbcL and trnL-F sequence data. Am. J. Bot. 86: 1325–1345.PubMedCrossRefGoogle Scholar
  1206. Meerow AW, Fay MF, Chase MW, Guy CL, Li QB. 2000. The new phylogeny of the Amaryllidaceae. Herbertia. 54: 180–203.Google Scholar
  1207. Meerow AW, CL Guy, Q-B Li, and S-L Yang. 2000. Phylogeny of the American Amaryllidaceae based on nrDNA sequences. Syst. Bot. 25: 708–726.CrossRefGoogle Scholar
  1208. Meerow AW, MF Fay, MW Chase, CL Guy, Q Li, D Snijman, and S-L Yang. 2000. Phylogeny of the Amarillidaceae: molecules and morphology. In: K Wilson and D Wallace, eds. Monocots: systematics and evolution, pp. 368–382. CSIRO, Collingwood.Google Scholar
  1209. Meerow AW, CL Guy, Q-B Li, and JR Clayton. 2002. Phylogeny of the tribe Hymenocallideae (Amaryllidaceae) based on morphology and molecular characters. Ann. Missouri Bot. Gard. 89: 400–413.CrossRefGoogle Scholar
  1210. Meerow AW, J Francisco-Ortega, DN Kuhn, and RJ Schnell. 2006. Phylogenetic relationships and biogeography within the Eurasian clade of Amaryllidaceae based on plastid ndhF and nrDNA ITS sequences: lineage sorting in a reticulate area? Syst. Bot. 31: 42–60.Google Scholar
  1211. Müller-Doblies U and D Müller-Doblies. 1978. Zum Bauplan von Ungernia, der einzigen endemischen Amaryllidaceen-Gattung Zentralasiens. Bot. Jahrb. Syst. 99: 249–263.Google Scholar
  1212. Müller-Doblies D and U Müller-Doblies. 1985. De Liliifloris notulae: 2. De taxonomia subtribus Strumariinae (Amaryllidaceae). Bot. Jahrb. Syst. 107: 17–47.Google Scholar
  1213. Müller-Doblies D and U Müller-Doblies. 1996. Tribes and subtribes and some species combinations in Amaryllidaceae J. St-Hil. emend R. Dahlgren et al. 1985. Feddes Repert. 107: 1–9.Google Scholar
  1214. Müller-Doblies U and D Müller-Doblies. 1997. A partial revision of the tribe Massonieae (Hyacinthaceae). Feddes Repert. 108: 49–96.Google Scholar
  1215. Nandi S. 1974a. Chromosome characteristics and their correlation with the phenotypic and ecological variants in Chlorophytum, Iphiopogon and Dianella. Bull. Bot. Soc. Bengal. 28(1–2): 117–122.Google Scholar
  1216. Nandi S. 1974b. Chromosome characteristics and their correlations with the phenotypic and ecological variants in Chlorophytum. Bull. Bot. Soc. Bengal 28: 117–122.Google Scholar
  1217. Nemirovich-Danchenko EN. 1985. Agavaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 88–92. Nauka, Leningrad (in Russian).Google Scholar
  1218. Nordal I, TE Eriksen, and M Fosing. 1990. Studies in the generic delimitation of Anthericaceae. Mitt. Staatsinst. Allg. Boy. Hamb. 23b: 535–559.Google Scholar
  1219. Oganezova GG. 1982. On the anatomical structure of fruit and seed of some Liliaceae in relation to systematics of the family: 2. Scilloideae. Bot. Zhurn. 67: 729–742 (in Russian with English summary).Google Scholar
  1220. Oganezova GG. 1986. Morphological and anatomical characters of seed and fruit in some members of the subfamily Allioideae (Liliaceae) in relation to their systematics and phylogeny. Bot. Zhurn. 71: 300–310 (in Russian with English summary).Google Scholar
  1221. Oganezova GG. 1987. Systematic position of some disputable genera for Asphodeloideae (Liliaceae) based on anatomical structure of their fruits and seeds. Bot. Zhurn. 72: 1009–1020 (in Russian with English summary).Google Scholar
  1222. Oganezova GG. 1990. Seed and fruit anatomy of some Amaryl-lidaceae in connection with their systematics and phylog-eny. Bot. Zhurn. 75: 615–630 (in Russian with English summary).Google Scholar
  1223. Oganezova GG. 2000. Systematic position of the Trilliaceae, Smilacaceae, Herreriaceae, Tecophilaeaceae, Dioscoreaceae families and the volume and phylogeny of the Asparagales (based on the seed structure).) Bot. Zhurn. 85(9): 9–25 (in Russian with English summary).Google Scholar
  1224. Pellmyr O. 2003. Yuccas, yucca moths, and coevolution: a review. Ann. Missouri Bot. Gard. 90: 35–55.CrossRefGoogle Scholar
  1225. Pellmyr O, JN Thompson, JM Brown, and RG Harrison. 1996. Evolution of pollination and mutualism in the yucca moth lineage. Am. Nat. 148: 827–847.CrossRefGoogle Scholar
  1226. Pfosser M and F Speta. 1999. Phylogenetics of Hyacinthaceae based on plastid DNA sequences. Ann. Missouri Bot. Gard. 86: 625–875.CrossRefGoogle Scholar
  1227. Pfosser M, W Wetschnig, S Ungar, and G Prenner. 2003. Phylogenetic relationships among genera of Massonieae (Hyacintheaceae) inferred from plastid DNA and seed morphology. J. Plant Res. 116: 115–132.PubMedGoogle Scholar
  1228. Pires JC and KJ Sytsma. 2002. A phylogenetic evaluation of a biosystematic framework: Brodiaea and related petaloid monocots (Themidaceae). Am. J. Bot. 89: 1342–1359.CrossRefGoogle Scholar
  1229. Pires JC, MF Fay, WS Davis, L Hufford, J Rova, MW Chase, and KJ Sytsma. 2001. Molecular and phylogenetic analyses of Themidaceae (Asparagales). Kew Bull. 56: 601–626.CrossRefGoogle Scholar
  1230. Pires JC, MF Fay, WS Davis, L Hufford, J Rova, MW Chase, and KJ Sytsma. 2001. Molecular and morphological phylo-genetic analyses of Themidaceae (Asparagales). Kew Bull. 56: 601–626.CrossRefGoogle Scholar
  1231. Pires JC, IJ Maureira, JP Rebman, GA Salazar, LI Cabrera, MF Fay, and MW Chase. 2004. Molecular data confirm the phylogenetic placement of the enigmatic Hesperocallis (Hesperocallidaceae) with Agave. Madroño 51: 307–311.Google Scholar
  1232. Rahn K. 1998a. Alliaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 70–78. Springer, Berlin/ Heidelberg/New York.Google Scholar
  1233. Rahn K. 1998b. Themidaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 436–440. Springer, Berlin/Heidelberg/New York.Google Scholar
  1234. Raju MUS. 1957. Some aspects of the embryology of Dianella nemorosa. J. Indian Bot. Soc. 36: 223–226.Google Scholar
  1235. Reynolds T, ed. 2004. Aloes, the Genus Aloe. CRC Press, Boca Raton, FL.Google Scholar
  1236. Rudall P. 1994. The ovule and embryo sac in Xanthorraeaceae sensu lato. Flora 189: 335–351.Google Scholar
  1237. Rudall PJ. 1999. Flower anatomy and systematics of Comospermum (Asparagales). Syst. Geogr. Plants 68: 195–202.CrossRef</