Skip to main content

The Female Gametophyte Inside the Ovule

  • Chapter
Book cover Conifer Reproductive Biology
  • 1324 Accesses

Summary

The sporophyte develops its specialized female reproductive structures well before meiosis can take place: the female strobilus and its megasporophylls develop integumented ovules (or megasporangia). Within each ovule's nucellar tissue forms sporogenous cells which give rise to a megaspore mother cell (MMC). The megaspore mother cell undergoes meiosis and the product of female meiosis is the linear tetrad of four megaspores. Only the megaspore closest to the chalazal end survives. The surviving megaspore divides to become a multicellular, translucent female gametophyte. Multiple egg cells, each housed in its own archegonium, will form from the female gametophyte. This haploid female gametophyte in conifers is not a synonym for an endosperm. Both gymnosperms and angiosperms have a haploid female gametophyte but only angiosperms form a triploid endosperm from multiple fertilizations. While all modern conifers follow this basic plan for female gametogenesis, the range of variation among taxa is surprising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bramlett, D. and C. O'Gwynn. 1980. Recognizing developmental stages in southern pine flowers: the key to controlled pollinations, USDA Forest Service Southeastern Experiment Station, 14 pages.

    Google Scholar 

  • Brenner, E. and D. Stevenson. 2006. Using genomics to study evolutionary origins of seeds. Editor: C.G. Williams. In: Landscapes, Genomics and Transgenic Conifers. Springer, Dordrecht, The Netherlands.

    Google Scholar 

  • Brown, R. 1844. On the plurality and development of the embryos in the seeds of Coniferae. Annual Magazine of Natural History 13: 368–374.

    Google Scholar 

  • Buchholz, J. 1939. The embrogeny of Sequoia sempervirens. American Journal of Botany 26: 248–257.

    Article  Google Scholar 

  • El-Maataoui, M., C. Pichot, et al. 1998. Cytological basis for a tetraspory in Cupressus sem-pervirens L. megagametogenesis and its implications in genetic studies. Theoretical Applied Genetics. 96: 776–779.

    Article  Google Scholar 

  • Emig, W. 1935. The megagametophyte of Pinus. I. Introduction. American Journal of Botany 22: 500–503.

    Article  Google Scholar 

  • Engels, F. and M. Gianordoli. 1983. The basic anatomy of Metasequoia female gametophytes. Acta Botanica Neerlandica 32: 295–305.

    Google Scholar 

  • Ferguson, M. 1904. Contributions to the life history of Pinus with special reference to sporogenesis, the development of gametophytes and fertilization. Proceedings of the Washington Academy of Sciences 6: 1–202.

    Google Scholar 

  • Greenwood, M. 1980. Reproductive development in loblolly pine. I. The early development of male and female strobili in relation to the long shoot growth behavior. American Journal of Botany 67: 1414–1422.

    Article  Google Scholar 

  • Haig, D. 1992. Brood reduction in gymnosperms. Editors: M. Elgar and B. Crespi. In: Cannibalism: Ecology and Evolution Among Diverse Taxa. Oxford University Press, Oxford, pp. 62–84.

    Google Scholar 

  • Harrison, D. and M. Slee. 1992. Long shoot terminal bud development and the differentiation of pollen- and seed-cone buds in Pinus caribaea var. hondurensis. Canadian Journal of Forest Research 22: 1565–1668.

    Article  Google Scholar 

  • Hart, J. 1987. A cladistic analysis of conifers: preliminary results. Journal of Arnold Arboretum 68: 269–307.

    Google Scholar 

  • Haupt, A. 1941. Oogenesis and fertilization in Pinus lambertiana and P. monophylla. Botanical Gazette 102: 482–498.

    Article  Google Scholar 

  • Konar, R. and A. Moitra. 1980. Ultrastructure, cyto- and histochemistry of female gametophyte of gymnosperms. Gamete Research 3: 67–97.

    Article  CAS  Google Scholar 

  • Konar, R. and Y. Oberoi. 1969. Recent work on reproductive structures of living conifers and taxads — a review. Botanical Review 35: 89–116.

    Article  Google Scholar 

  • Lawson, A. 1904. The gametophytes, archegonia, fertilization and the embryo of Sequoia sempervirens. Annals of Botany 18: 1–28.

    Google Scholar 

  • Lawson, A. 1907. The gametophytes and embryo of the Cupressineae with special reference to Libocedrus decurrens. Annals of Botany 21: 281–301.

    Google Scholar 

  • Lill, B. 1976. Ovule and seed development in Pinus radiata, postmeiotic development, fertilization and embryogeny. Canadian Journal of Botany 54: 2141–2154.

    Article  Google Scholar 

  • Matten, L., T. Fine, et al. 1984. The megagametophyte of Hydrasperma tenuis long from the uppermost Devonian of Ireland. American Journal of Botany 71: 1461–1464.

    Article  Google Scholar 

  • O'Malley, D. and J. Kelly. 1988. Genetic analysis of a megagametophyte color polymorphism in Gingko biloba. Journal of Heredity 79: 51–53.

    Google Scholar 

  • O'Malley, D., R. Guries, et al. 1988. Electrophoretic evidence for mosaic ‘diploids’ in megagame-tophytes of knobcone pine (Pinus attentuata Lemm.). Silvae Genetica 37: 85–88.

    Google Scholar 

  • Owens, J. and M. Molder. 1977. Seed-cone differentiation and sexual reproduction in western white pine (Pinus monticola). Canadian Journal of Botany 55: 2574–2590.

    Article  Google Scholar 

  • Owens, J. and M. Molder. 1979. Sexual reproduction of Larix occidentalis. Canadian Journal of Botany 57: 152–169.

    Article  Google Scholar 

  • Owens, J. and M. Molder. 1980. Sexual reproduction in western red cedar (Thuja plicata). Canadian Journal of Botany 58: 1376–1393.

    Google Scholar 

  • Owens, J., S. Simpson, et al. 1982. Sexual reproduction of Pinus contorta. II. Postdormancy ovule, embryo and seed development. Canadian Journal of Botany 60: 2071–2083.

    Google Scholar 

  • Pichot, C. and M. El-Maataoui. 1997. Flow cytometric evidence for multiple ploidy levels in the endosperm of some gymnosperm species. Theoretical and Applied Genetics 94: 865–870.

    Article  Google Scholar 

  • Porcher E and Lande R. 2005. Reproductive compensation in the evolution of plant mating systems. New Phytologist 166: 673–684.

    Article  PubMed  Google Scholar 

  • Runions, C. and J. Owens. 1999. Pollination of Picea orientalis (Pinaceae): saccus morphology governs pollen buoyancy. American Journal of Botany 86: 190–197.

    Article  Google Scholar 

  • Sarvas, R. 1962. Investigations on the flowering and seed crop of Pinus silvestris. Communicationes Instituti Forestalis Fennica 53: 1–198.

    Google Scholar 

  • Singh, H. 1978. Embryology of Gymnosperms. Gebruder Borntraeger, Berlin.

    Google Scholar 

  • Singh, H. and Y. Oberoi. 1962. A contribution to the life history of Biota orientalis Endl. Phytomorphology 12: 373–393.

    Google Scholar 

  • Singh, H. and J. Owens. 1982. Sexual reproduction in Abies grandis. Canadian Journal of Botany 60: 2197–2214.

    Google Scholar 

  • Skinner, D. 1992. Ovule and embryo development, seed production and germination in orchard grown control pollinated loblolly pine (Pinus taeda L.) from coastal South Carolina. Department of Biology. University of Victoria, Victoria, BC, 88 pp.

    Google Scholar 

  • Stanlake, E. and J. Owens. 1974. Female gametophyte and embryo development in western hemlock (Tsuga heterophylla). Canadian Journal of Botany 52: 885–893.

    Article  Google Scholar 

  • Thomas, R. 1951. Reproduction in Pinus virginiana Miller. Vanderbilt University, Nashville TN, 80 p.

    Google Scholar 

  • Tomlinson, P. 1994. Functional morphology of saccate pollen in conifers with special reference to the Podocarpaceae. International Journal of Plant Sciences 155: 699–715.

    Article  Google Scholar 

  • Williams, C. 2008. Selfed embryo death in Pinus taeda: a phenotypic profile. New Phytologist 178: 210–222.

    Article  PubMed  Google Scholar 

  • Willson, M. and N. Burley. 1983. Mate Choice in Plants. Princeton University Press, Princeton, NJ.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

(2009). The Female Gametophyte Inside the Ovule. In: Conifer Reproductive Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9602-0_4

Download citation

Publish with us

Policies and ethics