Skip to main content

Separate Female and Male Meioses

  • Chapter
Book cover Conifer Reproductive Biology

Summary

The purpose of this advanced-topics chapter is to examine what is known about meiosis for Pinus, other genera within the Pinaceae family and to a lesser extent, other conifers and gymnosperms. Meiosis is the process by which the chromosomal complement is reduced by half. The resulting haploid spores, male and female, develop into multicellular gametophytes. Male and female meioses are both followed by cell division and subsequent growth of multicellular gameto-phytes. As a general rule, meiosis reshuffles existing genetic variation, generates de novo variation and ensures genome stability. But each taxon has its own recombination modification system and here the particulars are presented for Pinus, other members of the Pinaceae family and a few close relatives. Strict diploidy is a safe assumption for the Pinaceae. Oddly, most members of the Pinaceae have a uniform karyotype: 12 pairs of metacentric chromosomes. Meiosis I is characterized by few chiasmata per chromosome. Male and female meiosis in Pinus spp. are divergent, occurring at different times and producing different tetrad types. Meiotic recombination rates are higher in male gametes than female gametes. An consequence of heterospory, or separate male and female spores, is meiotic divergence between the sexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahuja, M. and D. Neale. 2002. Origins of polyploidy in coast redwood (Sequoia sempervirens (D.Don.) Endl.) and relationship of coast redwood to other genera of Taxodiaceae. Silvae Genetica 51: 93–100.

    Google Scholar 

  • Baird, S., N. Barton, et al. 2003. The distribution of surviving blocks of an ancestral genome. Theoretical Population Biology 64: 451–471.

    Article  PubMed  CAS  Google Scholar 

  • Bickeböller, H. and E. Thompson. 1996. The probability distribution of the amount of an individual's genome surviving to the next generation. Genetics 143: 1043–1049.

    PubMed  Google Scholar 

  • Brandham, P. and M.-J. Doherty. 1998. Genome size variation in the Aloaceae, an angiosperm family displaying karyotypic orthoselection. Annals of Botany 82: 67–73.

    Article  Google Scholar 

  • Cai, X. and S. Xu. 2007. Meiosis-driven genome variation in plants. Current Genomics 8: 151–161.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, J., L. Tulsieram, et al. 1991. Segregation of random amplified DNA markers in F1 progeny of conifers. Theoretical and Applied Genetics 83: 194–200.

    Article  Google Scholar 

  • Chamberlain, C. 1899. Oogenesis in Pinus Laricio. Botanical Gazette 27: 268–281.

    Article  Google Scholar 

  • Davies, B., I. O'Brien, et al. 1997. Karyotypes, chromosome bands and genome size variation in New Zealand endemic gymnosperms. Plant Systematics and Evolution 208: 169–185.

    Article  Google Scholar 

  • Dial, S. and R. Stalter. 1980. The karyotype of Pinus glabra. Journal of Heredity 71: 297.

    Google Scholar 

  • Donnelly, K. 1983. The probability that related individuals share some section of the genome identical by descent. Theoretical Population Biology 23: 34–64.

    Article  PubMed  CAS  Google Scholar 

  • Doudrick, R., J. Heslop-Harrison, et al. 1995. Karyotype of slash pine (Pinus elliottii var. elliottii) using patterns of fluorescence in situ hybridization and flurochrome banding. Journal of Heredity 86: 289–296.

    Google Scholar 

  • El-Kassaby, Y., A. Colangeli, et al. 1983. Numerical analysis of karyotypes in the Pseudotsuga genus. Canadian Journal Botany 61: 536–544.

    Google Scholar 

  • Ferguson, M. 1904. Contributions to the life history of Pinus with special reference to sporogenesis, the development of gametophytes and fertilization. Proc. Wash. Acad. Sci. 6: 1–202.

    Google Scholar 

  • Fisher, R. 1949. The Theory of Inbreeding. Academic, New York.

    Google Scholar 

  • Fisher, R. 1953. A fuller theory of ‘junctions’ in inbreeding. Heredity 8: 187–198.

    Article  Google Scholar 

  • Gaut, B. and J. Doebley. 1997. DNA sequence evidence for the segmental allotetraploid origin of maize. Proceedings of the National Academy of Sciences USA 94: 6809–6814.

    Article  CAS  Google Scholar 

  • Groover, A., C. Williams, et al. 1995. Sex-related differences in meiotic recombination frequency in Pinus taeda L. Journal of Heredity 86: 157–158.

    Google Scholar 

  • Grotkopp, E., M. Rejmánek, et al. 2004. Evolution of genome size in pines (Pinus spp.) and its life-history correlates: supertree analyses. Evolution 58: 1705–1729.

    PubMed  CAS  Google Scholar 

  • Guo, S. 1994. Computation of identity by descent proportions shared by two siblings. American Journal of Human Genetics 54: 1104–1109.

    PubMed  CAS  Google Scholar 

  • Guo, S. 1995. Proportion of genome shared identical by descent by relatives: concept, computation, and application. American Journal of Human Genetics 56: 1468–1476.

    PubMed  CAS  Google Scholar 

  • Gwaze, D., Y. Zhou, et al. 2003. Haplotypic QTL mapping in an outbred pedigree. Genetical Research 81: 43–50.

    Article  PubMed  CAS  Google Scholar 

  • Hair, J. and E. Beuzenberg. 1958. Chromosomal evolution in the Podocarpaceae. Nature 181: 1584–1586.

    Article  Google Scholar 

  • Haldane, J. 1919. The combination of linkage values and the calculation of distances between the loci of linked factors. Journal of Genetics 8: 299–309.

    Article  Google Scholar 

  • Haley, C., S. Knott, et al. 1994. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 136: 1195–1207.

    PubMed  CAS  Google Scholar 

  • Hall, S.E., W. Dvorak, et al. 2000. Flow cytometric analysis of DNA content for tropical and temperate New World pines. Annals of Botany 86: 1081–1086.

    Article  CAS  Google Scholar 

  • Hanson, L. 2001. Chromosome number, karyotype and DNA C-value of the Wollemi pine (Wollemia nobilis, Araucariaceae). Botanical Journal of the Linnaean Society 135: 271–274.

    Google Scholar 

  • Hizume, M., T. Kondo, et al. 2001. Flow cytometric determination of genome size in the Taxodiaceae, Cupressaceae sensu stricto and Sciadopityaceae. Cytologia 66: 307–311.

    Google Scholar 

  • Jones, N. and A. Houben. 2003. B chromosomes in plants: escapees from the A chromosome genome. Trends in Plant Science 8: 417–423.

    Article  PubMed  CAS  Google Scholar 

  • Joyner, K., X.-R. Wang, et al. 2001. DNA content for Asian pines parallels New World relatives Can. J. Bot. 79: 192–191.

    Article  Google Scholar 

  • Kedharnath, S. and L. Upadhaya. 1967. Chiasma frequency in Pinus roxburghii Sarg. and P. elliottii Englem. Silvae Genetica 16: 112–113.

    Google Scholar 

  • Khoshoo, T. 1959. Polyploidy in gymnosperms. Evolution 13: 24–29.

    Article  Google Scholar 

  • Komulainen, P., G. Brown, et al. 2003. Comparing EST-based genetic maps between Pinus sylvestris and Pinus taeda. Theoretical and Applied Genetics 107: 667–678.

    Article  PubMed  CAS  Google Scholar 

  • Korol, A., I. Preygel, et al. 1994. Recombination Variability and Evolution. Chapman & Hall, London.

    Google Scholar 

  • Kostia, S., S.-L. Varvio, et al. 1995. Microsatellite sequences in a conifer, Pinus sylvestris. Genome 38: 1244–1248.

    PubMed  CAS  Google Scholar 

  • Lagercrantz, U. 1998. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150: 1217–1228.

    PubMed  CAS  Google Scholar 

  • Lee, C. 1954. Sex chromosomes in Gingko biloba. American Journal of Botany 41: 545–549.

    Article  Google Scholar 

  • Leitch, I., L. Hanson, et al. 2001. Nuclear DNA C-values complete familial representation in gymnosperms. Annals of Botany 88: 843–849.

    Article  CAS  Google Scholar 

  • Levin, D. and A. Wilson 1976. Rates of evolution in seed plants: net increase in diversity of chromosome numbers and species numbers through time. Proceedings of the National Academy of Sciences USA 73: 2086–2090.

    Article  CAS  Google Scholar 

  • Liu, Z.-L., D. Zhang, et al. 2003. Chromosomal localization of 5S and 18S-5.8S-25S ribosomal DNA sites in five Asian pines using fluorescence in situ hybridization. Theoretical and Applied Genetics 106: 198–204.

    PubMed  CAS  Google Scholar 

  • MacPherson, P. and W. Filion. 1981. Karyotype analyis and the distribution of constitutive heterochromatin in five species of Pinus. Journal of Heredity 72: 193–198.

    Google Scholar 

  • Maliepaard, C., J. Jansen, et al. 1997. Linkage analysis in a full-sib family of an outbreeding plant species: overview and consequences for applications. Genetical Research 70: 237–250.

    Article  Google Scholar 

  • Mather, K. and J. Jinks. 1971. Biometrical Genetics. Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Mergen, F., G. Stairs, et al. 1963. Microsporogenesis in Pinus echinata and Pinus taeda. Silvae Genetics 12: 127–129.

    Google Scholar 

  • Miki, S. and S. Hikita 1951. Probable chromosome number of fossil Sequoia and Metasequoia found in Japan. Science 113: 3–4.

    Article  PubMed  CAS  Google Scholar 

  • Moir, R. and D. Fox. 1977. Supernumerary chromosome distribution in provenances of Picea sitchensis (Bong.) Carr. Silvae Genetica 26: 26–33.

    Google Scholar 

  • Moran, G., J. Bell, et al. 1983. Greater meiotic recombination in male vs. female gametes in Pinus radiata. Journal of Heredity 74: 62.

    Google Scholar 

  • Murray, B. 1998. Nuclear DNA amounts in gymnosperms. Annals of Botany 82(Suppl A): 3–15.

    Article  CAS  Google Scholar 

  • Narayan, R. 1988. Constraints upon the organization and evolution of chromosomes in Allium. Theor. Appl. Genet. 75: 319–329.

    Article  Google Scholar 

  • Ohri, D. and T. Khoshoo. 1986. Genome size in gymnosperms. Plant Systematics and Evolution 153: 119–132.

    Article  Google Scholar 

  • Parida, A., S. Raina, et al. 1990. Quantitative DNA variation between and within chromosome complements of Vigna species (Fabaceae). Genetica 82: 125–133.

    Article  CAS  Google Scholar 

  • Paterson, A. 1996. Genome Mapping in Plants. Academic, San Diego, CA.

    Google Scholar 

  • Pederick, L. 1967. The structures and identification of chromosomes of Pinus radiata D. Don Silvae Genetica 16: 69–77.

    Google Scholar 

  • Pederick, L. 1970. Chromosome relationships between Pinus species. Silvae Genetica 19: 171–180.

    Google Scholar 

  • Pettit, J. 1970. Heterospory and the origin of the seed habit. Biological Reviews 45: 401–415.

    Article  Google Scholar 

  • Plomion, C. and D. O'Malley. 1996. Recombination rate differences for pollen parents and seed parents in Pinus pinaster. Heredity 77: 341–350.

    Article  CAS  Google Scholar 

  • Prager, E., D. Fowler, et al. 1976. Rates of evolution in conifers (Pinaceae). Evolution 30: 637–649.

    Article  Google Scholar 

  • Raina, S. and H. Rees. 1983. DNA variation between and within chromosome complements of Vicia species. Heredity 51: 335–346.

    Article  Google Scholar 

  • Reinisch, A., J. Dong, et al. 1994. A detailed RFLP Map of Cotton, Gossypium hirsutum X G. barbadense — Chromosome organization and evolution in a disomic polyploid genome. Genetics 138: 829–847.

    PubMed  CAS  Google Scholar 

  • Reyés-Valdes, M. 2000. A model for marker-based selection in gene introgression breeding programs. Crop Science 40: 91–98.

    Article  Google Scholar 

  • Reyés-Valdes, M. and C. Williams. 2002. A haplotypic approach to founder-origin probabilities and outbred QTL analysis. Genetical Research 80: 231–236.

    Article  PubMed  CAS  Google Scholar 

  • Rudolph, E. 1982. Women in the nineteenth century American botany: a generalized unrecognized constituency. American Journal of Botany 69: 1346–1355.

    Article  Google Scholar 

  • Sax, H. 1932. Chromosome pairing in Larix species. Journal of the Arnold Arboretum 13: 368–373.

    Google Scholar 

  • Sax, K. 1960. Meiosis in interspecific pine hybrids. Forest Science 6: 135–138.

    Google Scholar 

  • Sax, K. and H. Sax. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 65: 356–374.

    Google Scholar 

  • Saylor, L. 1961. A karyotypic analysis of selected species of Pinus. Silvae Genetica 10: 77–84.

    Google Scholar 

  • Saylor, L. and B. Smith. 1966. Meiotic irregularity in species and interspecific hybrids of Pinus. American Journal of Botany 53: 453–468.

    Article  Google Scholar 

  • Shepherd, M. and C. Williams. 2008. Comparative mapping among subsection Australes (genus Pinus, family Pinaceae). Genome 51: 320–331.

    Article  PubMed  CAS  Google Scholar 

  • Singh, H. 1978. Embryology of Gymnosperms. Gebruder Borntraeger, Berlin.

    Google Scholar 

  • Skinner, D. 1992. Ovule and embryo development, seed production and germination in orchard grown control pollinated loblolly pine (Pinus taeda L.) from coastal South Carolina. Master's Thesis, Department of Biology. Victoria, BC, University of Victoria: 88.

    Google Scholar 

  • Stebbins, G. 1948. The chromosomes and relationships of Metasequoia and Sequoia. Science 108: 95–98.

    Article  PubMed  Google Scholar 

  • Stefanov, V. 2000. Distribution of genome shared identical by descent by two individuals in the grandparent-type relationship. Genetics 156: 1403–1410.

    PubMed  CAS  Google Scholar 

  • Sybenga, J. 1975. Meiotic Configurations. Springer, Berlin.

    Google Scholar 

  • Tanksley, S., M. Ganal, et al. 1992. High density molecular linkage maps of the tomato and potato genomes. Genetics 132: 1141–1160.

    PubMed  CAS  Google Scholar 

  • Wakamiya, I., R. Newton, et al. 1993. Genome size and environmental factors in the genus Pinus. American Journal of Botany 80: 1235–1241.

    Article  Google Scholar 

  • Wendel, J. 1989. New World tetraploid cottons contain Old World cytoplasm. Proceedings of the National Academy of Sciences USA 86: 4132–4136.

    Article  CAS  Google Scholar 

  • Whitkus, R., J. Doebley, et al. 1992. Comparative genome mapping of sorghum and maize. Genetics 132: 1119–1130.

    PubMed  CAS  Google Scholar 

  • Williams, C. 1998. QTL mapping in outbred plants. pp. 81–94, Chapter 5. Editor: A. Paterson. In: Molecular Dissection of Complex Traits. CRC Series, Boca Raton, FL.

    Google Scholar 

  • Williams, C., K. Joyner, et al. 2002. Genomic consequences of interspecific Pinus spp. hybridisation. Biol. J. Linn. Soc. 75: 503–508.

    Article  Google Scholar 

  • Williams, C. and M. Reyés-Valdes. 2007. Estimating a founder's genomic proportion for each descendant in an outbred pedigree. Genome 50: 289–296

    Article  PubMed  Google Scholar 

  • Zhou, Y., D. Gwaze, et al. 2003. No clustering for linkage map based on low-copy and undermethylated microsatellites. Genome 46: 809–816.

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

(2009). Separate Female and Male Meioses. In: Conifer Reproductive Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9602-0_3

Download citation

Publish with us

Policies and ethics