Summary

Conifers are cone-bearing seed plants with an ancient evolutionary history. Opening with an introduction to Australia's Wollemi pine, one finds that modern conifer taxa (seven families, 71 genera, 620+ species) are persistent Mesozoic relics. As such, their evolutionary history begins with the terrestrial invasion of land plants and the greening of the earth, the rise of the Paleozoic forest and the Jurassic plant diet of herbivorous dinosaurs. All modern conifers, not just Wollemi pine (Wollemia nobilis), are living fossils. Conifers have persisted despite continental drift, climate oscillations, volcanism and the rapid spread of angiosperms. Modern conifers, as a whole, are distributed worldwide although a few regions of the world such as China, Mexico and New Caledonia have high concentrations of conifer taxa. Although many conifer species have large, wideranging census populations, others such Wollemi pine are critically endangered. Vestiges of the ancient conifer diaspora can be seen in the fossilized Metasequoia-dominated forests in Canadian High Arctic and from the endemic Da Lat ecosystem in Vietnam which includes the flat-leaved Pinus krempfii. Conifers are among the oldest extant seed plant lineage and their peculiar reproductive biology holds clues about seed plant evolution.

Keywords

Biomass Permian Silurian Europe Cretaceous 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvin, K. 1960. Further conifers of the Pinaceae from the Wealden Formation of Belgium. Institut Royal des Sciences Naturelles de Belgique Memoires 146: 1–39.Google Scholar
  2. Andrews, H. 1963. Early seed plants. Science 142: 925–931.PubMedCrossRefGoogle Scholar
  3. Boufford, D. and S. Spongeford. 1983. Eastern Asia-eastern North American phytogeographical relationships — a history from the time of Linnaeus to the twentieth century. Annals of the Missouri Botanical Garden 70: 423–439.CrossRefGoogle Scholar
  4. Brenner, E. and D. Stevenson. 2006. Using genomics to study evolutionary origins of seeds. Editor: C.G. Williams. In: Landscapes, Genomics and Transgenic Conifers. Springer, Dordrecht, The Netherlands. pp. 85–106.CrossRefGoogle Scholar
  5. Brundett, M. 2002. Coevolution of roots and mycorrhizas of land plants. New Phytologist 154: 275–304.CrossRefGoogle Scholar
  6. Brunsfeld, S., P. Soltis, et al. 1994. Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae. Systematic Botany 19: 253–262.CrossRefGoogle Scholar
  7. Buchholz, J. 1951. A flat-leaved pine from Annam, Indo-china. American Journal of Botany 38: 245–252.CrossRefGoogle Scholar
  8. Chapman, D. 1995. Plant transitions to land Chapter 3. Editors: M. Gordon and E. Olson. In: Invasions of the Land: The Transition of Organisms from Aquatic to Terrestial Life. Columbia University Press, New York. 312 pp.Google Scholar
  9. Chin, K. and B. Gill. 1996. Dinosaurs, dung beetles and conifers: participants in a Cretaceous food web. Palaios 11: 280–285.CrossRefGoogle Scholar
  10. Contreras-Medina, R. and I. Vega. 2002. On the distribution of gymnosperm genera, their areas of endemism and cladistic biogeography. Australian Systematic Botany 15: 193–203.CrossRefGoogle Scholar
  11. Costanza, S. 1985. Pennsylvanioxylon of middle and upper Pennsylvanian coals from the Illinois basin and its comparison with Mesoxylon. Palaeontographica Abt. B 197: 81–121.Google Scholar
  12. Cox, C. and P. Moore. 2005. Biogeography: An Ecological and Evolutionary Approach. Blackwell, Malden, MA, Seventh Edition, 440 pp.Google Scholar
  13. deFerré, Y. 1948. Quelques particularities anatomiques d'un pin indochinois: Pinus krempfii. Bulletin de la société d'histoire naturelle de Toulouse 83: 1–6.Google Scholar
  14. DiMichele, W., S. Mamay, et al. 2001. An early Permian flora with late Permian and Mesozoic affinities for north-central Texas. Journal of Palaeontology 75: 449–460.CrossRefGoogle Scholar
  15. Eckenwalder, J. 1976. Re-evaluation of Cupressaceae and Taxodiaceae: a proposed merger. Madrono 23: 237–256.Google Scholar
  16. Escapa, I., R. Cuneo, et al. 2008. A new genus of the Cupressaceae (sensu lato) from the Jurassic of Patagonia: implications for conifer megasporangiate cone homologies. Review of Palaeobotany and Palynology 151: 110–122.CrossRefGoogle Scholar
  17. Farjon, A. 1996. Biodiversity of Pinus (Pinaceae) in Mexico: speciation and paleo-endemism. Botanical Journal of the Linnaean Society 121: 365–384.Google Scholar
  18. Farjon, A. 1998. World Checklist and Bibliography of Conifers. Royal Botanic Gardens, Kew.Google Scholar
  19. Farjon, A. 2007. In defence of a conifer taxonomy which recognizes evolution. Taxon 56: 639–641.Google Scholar
  20. Farjon, A. and B. Styles. 1997. Pinus (Pinaceae). New York Botanical Garden, New York.Google Scholar
  21. Farjon, A., T. Nguyen, et al. 2002. A new genus and species in Cupressaceae (Coniferales) from Northern Vietnam, Xanthocyparis vietnamensis. Novon 12: 179–189.CrossRefGoogle Scholar
  22. Gensel, P. and H. Andrews. 1984. Plant Life in the Devonian. Praeger, New York.Google Scholar
  23. Gernandt, D., S. Magallan, et al. 2008. Use of simultaneous analyses to guide fossil-based calibrations of Pinaceae phylogeny. International Journal of Plant Sciences 169: 1086–1099.CrossRefGoogle Scholar
  24. Haig, D. and M. Westoby. 1989. Selective forces in the emergence of the seed habit. Biological Journal of the Linnean Society 38: 215–238.CrossRefGoogle Scholar
  25. Hart, J. 1987. A cladistic analysis of conifers: preliminary results. Journal of Arnold Arboretum 68: 269–307.Google Scholar
  26. Hernandez-Castillo, G., G. Rothwell, et al. 2001. Thucydiaceae Fam. Nov., with a review and re-evaluation of Paleozoic Walchian conifers. International Journal of Plant Sciences 162: 1155–1185.CrossRefGoogle Scholar
  27. Jahren, A. 2007. The Arctic forest of the middle Eocene. Annual Review of Earth and Planetary Sciences 35: 509–540.CrossRefGoogle Scholar
  28. Keller, A. and M. Hendrix. 1997. Paleoclimatologic analysis of a Late Jurassic petrified forest, south-eastern Mongolia. Palaios 12: 282–291.CrossRefGoogle Scholar
  29. Kerp, J., R. Poort, et al. 1990. Aspects of Permian paleobotany and palynology: conifer dominated rotliegend floras from the Saar-Nahe Basin (Late Carboniferous Early Permian, SW Germany) with special reference to the reproductive biology of early conifers. Review of Paleobotany and Palynology 62: 205–248.CrossRefGoogle Scholar
  30. Knoll, A. 1986. Patterns of change in plant communities through geological time. Editors: J.A. Diamond and T.J. Case. In: Community Ecology. Harper & Row, New York. Chapter 7, pp. 126–141.Google Scholar
  31. Krupkin, A., A. Liston, et al. 1996. Phylogenetic analysis of the hard pines (Pinus subgenus Pinus, Pinaceae) from chloroplast DNA restriction site analysis. American Journal of Botany 83: 489–498.CrossRefGoogle Scholar
  32. Labandeira, C., J. Kvacek, et al. 2007. Pollination drops, pollen and insect pollination of Mesozoic gymnosperms. Taxon 56: 663–695.Google Scholar
  33. LePage, B. 2003. The evolution, biogeography and paleoecology of the Pinaceae based on fossil and extant representatives. Acta Horticulturae 615: 29–52.Google Scholar
  34. LePage, B. and J. Basinger. 1995. Evolutionary history of the genus Pseudolarix Gordon (Pinaceae). International Journal of Plant Sciences 156: 910–950.CrossRefGoogle Scholar
  35. LePage, B., R. Currah, et al. 1997. Fossil ectomycorrhizae from the Middle Eocene. American Journal of Botany 84: 410–412.CrossRefGoogle Scholar
  36. LePage, B., B. Beauchamp, et al. 2003. Late early Permian plant fossils from the Canadian High Arctic: a rare paleoenvironmental/climatic window in northwest Pangea. Palaeogeography, Palaeoclimatology, Palaeoecology 191: 345–372.CrossRefGoogle Scholar
  37. LePage, B., C. Williams, et al. 2005. The Geobiology and Ecology of Metasequoia. Springer, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  38. Li, H. 1953. Present distribution and habits of the conifers and the taxads. Evolution 7: 245–261.CrossRefGoogle Scholar
  39. Looy, C., W. Brugman, et al. 1999. The delayed resurgence of forests after the Permian-Triassic ecologic crisis. Proceedings National Academy of Sciences U.S.A. 96: 13857–13862.CrossRefGoogle Scholar
  40. Looy, C., R. Twitchett, et al. 2001. Life at the end: Permian dead zone. Proceedings National Academy of Sciences U.S.A 98: 7879–7883.CrossRefGoogle Scholar
  41. Mapes, G. and G. Rothwell. 1998. Primitive pollen cone structure in upper Pennylsvanian (Stephanian) Walchian conifers. Journal of Paeontology 72: 571–576.Google Scholar
  42. Matten, L., T. Fine, et al. 1984. The megagametophyte of Hydrasperma tenuis long from the uppermost Devonian of Ireland. American Journal of Botany 71: 1461–1464.CrossRefGoogle Scholar
  43. Merrill, E. 1948. Metasequoia, another living fossil. Arnoldia 8: 1–8.Google Scholar
  44. Millar, C. 1993. The impact of the Eocene on the evolution of Pinus L. Annals of the Missouri Botanical Garden 80: 471–498.CrossRefGoogle Scholar
  45. Miller, C. 1977. Mesozoic conifers. Botanical Gazette 43: 217–280.Google Scholar
  46. Mirov, N. 1967. The Genus Pinus. Ronald Press, New York.Google Scholar
  47. Niklas, K., B. Tiffney, et al. 1983. Patterns in vascular land plant diversification. Nature 303: 614–616.CrossRefGoogle Scholar
  48. Niklas, K. 1997. The Evolutionary Biology of Plants. University of Chicago Press, Chicago, IL.Google Scholar
  49. Pettit, J. and C. Beck. 1968. Archaeosperma arnoldii - a cupulate seed from the Upper Devonian of North America. Contrib. Mus. Paleont. Univ. Michigan 22: 139–154.Google Scholar
  50. Price, R. and J. Lowenstein. 1989. An immunological comparison of Sciadopityaceae, Taxodiaceae and Cupressaceae. Systematic Botany 14: 141–149.CrossRefGoogle Scholar
  51. Richardson, D., P. Williams, et al. 1994. Pine invasions in the Southern Hemisphere: determinants of spread and invadibility. Journal of Biogeography 21: 511–527.CrossRefGoogle Scholar
  52. Rothwell, G. and S. Scheckler. 1988. Biology of ancestral gymnosperms. Editor: C. Beck. In: Origin and Evolution of Gymnosperms. Columbia University Press, New York. pp. 85–134.Google Scholar
  53. Stefanovic, S., M. Jager, et al. 1998. Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. American Journal of Botany 85: 688–697.CrossRefGoogle Scholar
  54. Stephan, G. and L. Tien. 1986. Development of pine resin production in Vietnam (translated from German). Soz. Forst. 36: 120–121.Google Scholar
  55. Stewart, W. and G. Rothwell. 1993. Paleobotany and the evolution of plants. Cambridge University Press, New York. 521 p.Google Scholar
  56. Taylor, T. and M. Millay. 1979. Pollination biology and reproduction of early seed plants. Review of Paleobotany and Palynology 27: 329–355.CrossRefGoogle Scholar
  57. Wang, S.-J. 1998. The cordaitean fossil plants from Cathaysian area in China. Acta Botanica Sinica 40: 573–579.Google Scholar
  58. Wang, X.-R., A. Szmidt, et al. 2000. The phylogenetic position of the endemic flat-needle pine Pinus krempfii (Pinaceae) from Vietnam, based on PCR-RFLP analysis of the chloroplast DNA. Plant Systematics and Evolution 220: 21–36.CrossRefGoogle Scholar
  59. Wen, J. 1999. Evolution of eastern Asian and eastern North American disjunct distributions in flowering plants. Annual Review of Ecology and Systematics 30: 421–455.CrossRefGoogle Scholar
  60. Westing, A. and C. Westing. 1981. Endangered species and habitats of Vietnam. Environmental Conservation 8: 59–63.CrossRefGoogle Scholar
  61. Williams, C., A. Johnson, et al. 2003. Reconstruction of Tertiary Metasequoia forests. I. Test of a method for biomass determination based on stem dimensions. Paleobiology 29: 256–270.CrossRefGoogle Scholar
  62. Willyard, A., J. Syring, et al. 2007. Fossil calibration of molecular divergence in Pinus: inferences for ages and mutation rates. Molecular Biology Evolution 24: 90–101.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Personalised recommendations