The plankton community of Lake Matano: factors regulating plankton composition and relative abundance in an ancient, tropical lake of Indonesia

  • Elisabeth Sabo
  • Denis Roy
  • Paul B. Hamilton
  • Peter E. Hehanussa
  • Roger McNeely
  • G. Douglas Haffner
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 205)


Recent evidence reveals that food webs within the Malili Lakes, Sulawesi, Indonesia, support community assemblages that are made up primarily of endemic species. It has been suggested that many of the species radiations, as well as the paucity of cosmopolitan species in the lakes, are related to resource limitation. In order to substantiate the possibility that resource limitation is playing such an important role, a study of the phytoplankton and zooplankton communities of Lake Matano was implemented between 2000 and 2004. We determined species diversity, relative abundances, size ranges, and total biomass for the phytoplankton and zooplankton, including the distribution of ovigerous individuals throughout the epilimnion of Lake Matano in three field seasons. The phytoplankton community exhibited very low biomass (<15 μg l−1) and species richness was depressed. The zooplankton assemblage was also limited in biomass (2.5 mg l−1) and consisted only of three taxa including the endemic calanoid Eodiaptomus wolterecki var. matanensis, the endemic cyclopoid, Tropocyclops matanensis and the rotifer Horaella brehmi. Zooplankton were very small (<600 lm body length), and spatial habitat partitioning was observed, with Tropocylops being confined to below 80 m, while rotifer and calanoid species were consistently observed above 80 m. Less than 0.1% of the calanoid copepods in each year were egg-bearing, suggesting very low population turnover rates. It was concluded that chemical factors as opposed to physical or biological processes were regulating the observed very low standing crops of phytoplankton which in turn supports a very minimal zooplankton community restricted in both species composition and abundance. As chemical factors are a function of the catchment basin of Lake Matano, it is predicted that resource limitation has long played an important role in shaping the unique endemic assemblages currently observed in the food web of the lake.


Lake Matano Phytoplankton Zooplankton Community structure Tropical limnology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bramburger, A. J., 2004. Floristics and taxonomy of the endemic diatom flora of the ancient Malili Lakes, Sulawesi Island, Indonesia. Thesis, Faculty of Graduate Studies and Research, University of Windsor, Windsor.Google Scholar
  2. Bramburger, A. J., P. B. Hamilton, P. E. Hehanussa & G. D. Haffner, 2008. Spatial patterns of planktonic and benthic diatom distribution and assemblage in Lake Matano (Sulawesi Island, Indonesia). Proceedings of the 19th International Diatom Symposium (in press).Google Scholar
  3. Brehm, H., 1933. Mitteilungen von der Wallacea-Expedition Woltereck. Mitteilung IV. Einige neue Diaptomiden. Zoologischer Anzeiger 103: 295–304.Google Scholar
  4. Brooks, J. L., 1950. Speciation in ancient lakes (concluded). The Quarterly Review of Biology 25: 131–176.PubMedCrossRefGoogle Scholar
  5. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28–35.PubMedCrossRefGoogle Scholar
  6. Bucka, H. & R. Zurek, 1992. Trophic relations between phyto-and zooplankton in a field experiment in the aspect of the formation and decline of water blooms. Acta Hydrobiologica 34: 139–155.Google Scholar
  7. Carlotti, F. & H. J. Hirche, 1997. Growth and egg production of female Calanus finmarchicus: An individual-based physiological model and experimental validation. Marine Ecology Progress Series 149: 91–104.CrossRefGoogle Scholar
  8. Crowe, S. A., A. H. O’Neill, S. Katsev, P. Hehanussa, G. D. Haffner, B. Sundby, A. Mucci & D. Fowle, 2008. The biogeochemistry of tropical lakes: A case study from Lake Matano, Indonesia. Limnology and Oceanography 53: 319–331.Google Scholar
  9. Defaye, D., 2007. A new Tropocyclops (Copepoda, Cyclopidae) from Lake Matano, Indonesia. Zootaxa 54: 17–29.Google Scholar
  10. Dumont, H. J. & H. Segers, 1996. Estimating lacustrine zoo-plankton species richness and complementarity. Hydrobiologia 341: 125–132.CrossRefGoogle Scholar
  11. Dumont, H. J., I. van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton, and benthos of continental waters. Oecologica 19: 75–97.CrossRefGoogle Scholar
  12. Fernando, C. H., 1987. Tropical freshwater zooplankton with special reference to South East Asia (Oriental Region). Reports of the National Geographic Society 87: 287–311.Google Scholar
  13. Fernando, C. H., 2002. A Guide to Tropical Freshwater Zoo-plankton. Identification, Ecology and Impact on Fisheries. Backhuys Publishers, Leiden, Netherlands: 291 pp.Google Scholar
  14. Haffner, G. D., P. E. Hehanussa & D. Hartoto, 2001. The biology and physical processes of large lakes of Indonesia. In Munawar, M. & R. E. Hecky (eds), The Great Lakes of the World: Food-web, Health, and Integrity. Backhuys Publishers, Leiden, Netherlands: 183–194.Google Scholar
  15. Hall, D. J., S. T. Threlkeld, C. W. Burns & P. H. Crowley, 1976. Size-efficiency hypothesis and size structure of zooplankton communities. Annual Review of Ecology and Systematics 7: 177–208.CrossRefGoogle Scholar
  16. Hobaek, A., M. Manca & T. Andersen, 2002. Factors influencing species richness in lacustrine zooplankton. Acta Oecologica 23: 155–163.CrossRefGoogle Scholar
  17. Holtan, H., L. Kamp-Nielsen & A. O. Stuanes, 1988. Phosphorus in soil, water and sediment: An overview. Hydrobiologia 170: 19–34.Google Scholar
  18. Hustedt, F., 1942. Süßwasser-Diatomeen des indomalayischen Archipels und der Hawaii-Inseln. Internationale Revue der Gesamten Hydrobiologie und Hydrographie 42: 1–252.CrossRefGoogle Scholar
  19. Hutchinson, G. E., 1967. A Treatise on Limnology, Vol. II. Introduction to Lake Biology and the Limnoplankton. John Wiley & Sons, New York.Google Scholar
  20. Kottelat, M., 1990a. Synopsis of the endangered Buntingi (Osteichthyes: Adrianichthydae and Oryziidae) of Lake Poso, Central Sulawesi, Indonesia, with a new reproductive guild and descriptions of three new species. Ichthyological Exploration of Freshwaters 1: 49–67.Google Scholar
  21. Kottelat, M., 1990b. The ricefishes (Oryziidae) of the Malili Lakes, Sulawesi, Indonesia, with description of a new species. Ichthyological Exploration of Freshwaters 1: 321–344.Google Scholar
  22. Kottelat, M., 1991. Sailfin silversides (Pisces: Telmatherinidae) of Lake Matano, Sulawesi, Indonesia, with descriptions of 6 new species. Ichthyological Exploration of Freshwaters 1: 321–344.Google Scholar
  23. Kugrens, P. & B. L. Clay, 2003. Cryptomonads. In Wehr, J. D. & R. G. Sheath (eds), Freshwater Algae of North America Ecology and Classification. Academic Press, Amsterdam: 715–755.CrossRefGoogle Scholar
  24. Lehmusluoto, P., B. Machbub, N. Teranna, F. Achmad, L. Boer, S. Brahmana, B. Steiadji, B. Pridadie, K. H. Timotius & F. Goeltenboth, 1999. Limnology in Indonesia. From the legacy of the past to the prospects for the future. In Wetzel, R. G. & B. Gopal (eds), Limnology in Developing Countries, Vol. 2. International Scientific Publications, New Delhi, India: 119–234.Google Scholar
  25. Lewis, W., 1996. Tropical lakes: How latitude makes a diference. In Schiemer, F. & K. T. Boland (eds), Perspectives in Tropical Limnology. SPB Academic Publishers, Amsterdam, Netherlands: 43–64.Google Scholar
  26. Lodge, D. M., 1993. Species invasions and deletions: Community effects and responses to climate and habitat change. In Kareiva, P. M., J. G. Kingsolver & R. B. Huey (eds), Biotic Interactions and Global Change. Sinauer Associates, Sunderland, MA: 367–387.Google Scholar
  27. Martens, K. & I. Schän, 1999. Crustacean biodiversity in ancient lakes: A review. Crustaceana 72: 899–910 (Part 8).CrossRefGoogle Scholar
  28. Nicholls, K. H. & D. E. Wujek, 2003. Crysophycean algae. In Wehr, J. D. & R. G. Sheath (eds), Freshwater Algae of North America Ecology and Classification. Academic Press, Amsterdam: 471–509.CrossRefGoogle Scholar
  29. Ogutu-Ohwayo, R. & R. E. Hecky, 1991. Fish introductions to Africa and some of their implications. Canadian Journal of Fisheries and Aquatic Sciences 48: 8–12.Google Scholar
  30. Pinto-Coelho, R., B. Pinel-Alloul, G. Méthot & K. E. Havens, 2005. Crustacean zooplankton in lakes and reservoirs of temperate and tropical regions: variation with tropical status. Canadian Journal of Fisheries and Aquatic Sciences 62: 348–361.CrossRefGoogle Scholar
  31. Poulet, S. A., A. Ianora, M. Laabir & W. C. M. Klein-Breteler, 1995. Towards the measurement of secondary production and recruitment in copepods. Journal of Marine Sciences 52: 359–368.CrossRefGoogle Scholar
  32. Ranga Reddy, Y., 1994. Copepoda: Calanoid: Diaptomidae. Guide to the Identification of the Microinvertebrates of the Continental Waters of the World, Vol. 5. Academic Publishing, The Hague, Netherlands: 221.Google Scholar
  33. Reynolds, C. S., S. N. Reynolds, I. F. Munawar & M. Munawar, 2000. The regulation of phytoplankton population dynamics in the world’s largest lakes. Aquatic Ecosystem Health Management 3: 1–21.Google Scholar
  34. Roy, D., M. F. Docker, G. D. Haffner & D. D. Heath, 2007. Body shape vs. colour associated initial divergence in the Telmatherina radiation in Lake Matano, Sulawesi, Indonesia. Journal of Evolutionary Biology 20: 1126–1137.PubMedCrossRefGoogle Scholar
  35. Roy, D., M. F. Docker, P. Hehanussa, D. D. Heath & G. D. Haffner, 2004. Genetic and morphological data supporting the hypothesis of adaptive radiation in the endemic fish of Lake Matano. Journal of Evolutionary Biology 17: 1268–1276. Roy, D., D. W. Kelly, C. H. J. M. Fransen, D. D. Heath & G. D. Haffner, 2006b. Evidence of small scale vicariance in Caridinia lanceolata (Decapoda: Atyidae) from thePubMedCrossRefGoogle Scholar
  36. Malili Lakes, Sulawesi. Evolutionary Ecology Research 8: 1087–1099.Google Scholar
  37. Roy, D., G. Paterson, P. B. Hamilton, D. D. Heath & G. D. Haffner, 2007. Resource-based adaptative divergence in the freshwater fish Telmatherina from Lake Matano, Indonesia. Molecular Ecology 16: 35–48.PubMedCrossRefGoogle Scholar
  38. Ruttner-Kolisko, A., 1974. Plankton Rotifers: Biology and Taxonomy. Die Binnengewässer Vol. 26/1 (Suppl.): 1–146.Google Scholar
  39. Sanderson, B. L. & T. M. Frost, 1996. Regulation of dinoflagellate populations: Relative importance of grazing, resource limitation, and recruitment from sediments. Canadian Journal of Fisheries and Aquatic Sciences 53: 1409–1417.CrossRefGoogle Scholar
  40. Sarasin, P. & F. Sarasin, 1897. Reisebericht aus Celebes. IV. Reise durch central-Celebes vom Golf von Boni nach den Golf von Tomieni. Gesellschaft für Erdkunde zu Berlin 30: 312–352.Google Scholar
  41. Standard Methods, 1995. For the examination of water and wastewater. American Public Health Association: 1268.Google Scholar
  42. Sun, J. & D. Liu, 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25: 1331–1346.CrossRefGoogle Scholar
  43. Talling, J. F., 1957. Some observations on the stratification of Lake Victoria. Limnology and Oceanography 2: 231–221.Google Scholar
  44. Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen phytoplankton Methodik. Mitteilungen der Internationale Vereinigung für Limnologie, Mitteilungen 9: 1–38.Google Scholar
  45. Von Rintelen, T. & M. Glaubrecht, 2003. New discoveries in old lakes: Three new species of Tylomelania Sarasin & Sarasin, 1879 (Gastropoda: Cerithoidea: Pachychilidae) from the Malili Lake system on Sulawesi, Indonesia. Journal of Molluscan Studies 69: 3–17.CrossRefGoogle Scholar
  46. Von Rintelen, T., A. B. Wilson, A. Meyer & M. Glaubrecht, 2004. Escalation and trophic specialization drive adaptive radiation of freshwater gastropods in ancient lakes on Sulawesi, Indonesia. Proceedings of the Royal Society of London, Series B, Biological Sciences 271: 2541–2549.CrossRefGoogle Scholar
  47. Wehr, J. D. & R. G. Sheath, 2003. Freshwater Algae of North America, Ecology and Classification. Academic Press, Amsterdam: 918 pp.Google Scholar
  48. Whitten, T., M. Mustafa & G. S. Henderson, 1987. The Ecology of Sulawesi. Gadjah Mada University Press, Singapore.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Elisabeth Sabo
    • 1
    • 2
  • Denis Roy
    • 1
  • Paul B. Hamilton
    • 3
  • Peter E. Hehanussa
    • 4
  • Roger McNeely
    • 3
  • G. Douglas Haffner
    • 1
  1. 1.Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorCanada
  2. 2.Environment CanadaGatineauCanada
  3. 3.Research DivisionCanadian Museum of NatureOttawaCanada
  4. 4.APCE c/o Limnology-LIPI Jalan Prof. Dr. Dody Tisna Amidjaja, Cibinong Science CentreLIPICibinongIndonesia

Personalised recommendations