Skip to main content

Significance of the Tumour Microenvironment in Radiotherapy

  • Chapter
Cancer Microenvironment and Therapeutic Implications

Abstract

The growth and development of solid tumours require that they develop a functional vascular supply. But, inadequecies of this primitive and chaotic tumour neo-vasculature result in development of oxygen deprived areas. Hypoxic cells existing in this environment are resistant to radiation therapy. Numerous approaches have been developed to deal with this hypoxia-induced radioresistance. These include increasing oxygen delivery to tumours, chemically radiosensitising hypoxic cells, or killing them with specific cytotoxins. More recent approaches have concentrated on the tumour vascular supply itself. Many of these hypoxia targeted therapies have shown benefit in clinical trials, but while additional testing is ongoing for some of them, newer agents are continually being developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams GE, Cooke MS. (1969). Electron-affinic sensitization. I. A structural basis for chemical radiosensitizers in bacteria. Int J Radiat Biol 15:457–471.

    Article  CAS  Google Scholar 

  • Adams GE, Flockhart IR, Smithen CE, et al. (1976). Electron-affinic sensitization VII: A correlation between structures, one-electron reduction potentials and efficiencies of some nitroimidazoles as hypoxic cell radiosensitizers. Radiat Res 67:9–20.

    Article  PubMed  CAS  Google Scholar 

  • Airley RE, Loncaster J, Raleigh J, et al. (2003). GLUT-1 and CAIX as intrinsic markers of hypoxia in carcinoma of the cervix: relationship to pimonidazole bindingy. Int J Cancer 104:85–91.

    Article  PubMed  CAS  Google Scholar 

  • Asquith JC, Watts ME, Patel K, et al. (1974). Electron-affinic sensitization V. Radiosensitization of hypoxic bacteria and mammalian cells in vitro by some nitroimidazoles and nitropyrazoles. Radiat Res 60:108–118.

    Article  PubMed  CAS  Google Scholar 

  • Bergers G, Benjamin LE. (2003). Tumorigenesis and the angiogenic switch. Nat Revs Cancer 3: 401–410.

    Article  CAS  Google Scholar 

  • Bergsjø P, Kolstad P. (1968). Clinical trial with atmospheric oxygen breathing during radiotherapy of cancer of the cervix. Scand J Clin Lab Invest 106 (suppl.):167–171.

    Google Scholar 

  • Brem S, Brem H, Folkman J, Finkelstein D, Patz A. (1976). Prolonged tumor dormancy by prevention of neovascularization in the vitreous. Cancer Res 36: 2807–2812.

    PubMed  CAS  Google Scholar 

  • Brizel DM, Scully SP, Harrelson JM, et al. (1996). Tumor oxygenation predicts for the likelihood of distant metastasis in human soft tissue sarcoma. Cancer Res 56:941–943.

    PubMed  CAS  Google Scholar 

  • Brizel DM, Sibley GS, Prosnitz LR, et al. (1997). Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 38:285–289.

    PubMed  CAS  Google Scholar 

  • Brown JM. (1979). Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism of reoxygenation. Br J Radiol 52:650–656.

    PubMed  CAS  Google Scholar 

  • Bussink J, Kaanders JHAM, van der Kogel AJ. (2003). Tumor hypoxia at the micro-regional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers. Radiother Oncol 67: 3–15.

    Article  PubMed  Google Scholar 

  • Carmeliet P. (2003). Angiogenesis in health and disease. Nat Med 9: 653–660.

    Article  PubMed  CAS  Google Scholar 

  • Chaplin DJ, Horsman MR, Aoki DS. (1991). Nicotinamide, fluosol DA and carbogen: a strategy to reoxygenate acutely and chronically hypoxic cells in vivo. Br J Cancer 63:109–113.

    PubMed  CAS  Google Scholar 

  • Chaplin DJ, Horsman MR, Siemann DW. (1993). Further evaluation of nicotinamide and carbogen as a strategy to reoxygenate hypoxic cells in vivo: importance of nicotinamide dose and pre irradiation breathing time. Br J Cancer 68:269–273.

    PubMed  CAS  Google Scholar 

  • Chaplin DJ, Olive PL, Durand RE. (1987). Intermittent blood flow in a murine tumor: radiobiological effects. Cancer Res 47:597–601.

    PubMed  CAS  Google Scholar 

  • Churchill-Davidson I. (1968). The oxygen effect in radiotherapy – historical review. Front Rad Ther Oncol 1:1–15.

    Google Scholar 

  • Dische S. (1979). Hyperbaric oxygen: the Medical Research Council trials and their clinical significance. Br J Radiol 51:888–894.

    Google Scholar 

  • Dische S. (1985). Chemical sensitizers for hypoxic cells: a decade of experience in clinical radiotherapy. Radiother Oncol 3:97–115.

    Article  PubMed  CAS  Google Scholar 

  • Dische S, Anderson PJ, Sealy R et al. (1983). Carcinoma of the cervix – anaemia, radiotherapy and hyperbaric oxygen. Br J Radiol 56:251–255.

    PubMed  CAS  Google Scholar 

  • Dische S, Machin D, Chassagne D. (1993). A trial of Ro 03-8799 (pimonidazole) in carcinoma of the uterine cervix: an interim report from the Medical Research Council Working Party on advanced carcinoma of the cervix. Radiother Oncol 26:93–103.

    Article  Google Scholar 

  • Dobrowsky W, Huigol NG, Jayatilake RS, et al. (2007). AK-2123 (sanazol) as a radiation sensitizer in the treatment of stage III cervical cancer: results of an IAEA multicentre randomized trial. Radiother Oncol 82: 24–29.

    Article  PubMed  CAS  Google Scholar 

  • Dobrowsky W, Naude J, Dobrowsky E, et al. (1995). Mitomycin C (MMC) and unconventional fractionation (V-CHART) in advanced head and neck cancer. Acta Oncol 34:270–272.

    Article  PubMed  CAS  Google Scholar 

  • Dorie MJ, Brown JM. (1993). Tumor-specific, schedule dependent interaction between tirapazamine (SR 4233) and cisplatin. Cancer Res 53:4633–4636.

    PubMed  CAS  Google Scholar 

  • Du Sault LA. (1963). The effect of oxygen on the response of spontaneous tumours in mice to radiotherapy. Br J Radiol 36:749–754.

    Google Scholar 

  • Eschwége F, Sancho-Garnier H, Chassagne D, et al. (1997). Results of a European randomized trial of etanidazole combined with radiotherapy in head and neck carcinomas. Int J Radiat Oncol Biol Phys 39: 275–281.

    PubMed  Google Scholar 

  • Evans JC, Bergsjø P. (1965). The influence of anemia on the results of radiotherapy in carcinoma of the cervix. Radiol 84:709–717.

    CAS  Google Scholar 

  • Ferrara N, Gerber HP, LeCouter J. (2003). The biology of VEGF and its receptors. Nat Med 9: 669–676.

    Article  PubMed  CAS  Google Scholar 

  • Folkman J. (1986). How is blood vessel growth regulated in normal and neoplastic tissue? Cancer Res 46: 467–473.

    PubMed  CAS  Google Scholar 

  • Gatenby RA, Kessler HB, Rosenblum JS, et al. (1988). Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy. Int J Radiat Oncol Biol Phys 14:831–838.

    PubMed  CAS  Google Scholar 

  • Gerweck LE, Gillette EL, Dewey WC. (1974). Killing of chinese hamster cells in vitro by heating under hypoxic or aerobic conditions Eur J Cancer 10:691–693.

    PubMed  CAS  Google Scholar 

  • Gerweck LE, Nygaard TG, Burlett M. (1979). Response of cells to hyperthermia under acute and chronic hypoxic conditions. Cancer Res 39:966–972.

    PubMed  CAS  Google Scholar 

  • Grau C, Agarwal JP, Jabeen K, et al. (2003). Radiotherapy with or without mitomycin c in the treatment of locally advanced head and neck cancer: results of the IAEA multicentre randomized trial. Radiother Oncol 67:17–27.

    Article  PubMed  Google Scholar 

  • Grau C, Horsman MR, Overgaard J. (1992). Improving the radiation response in a C3H mouse mammary carcinoma by normobaric oxygen and carbogen breathing. Int J Radiat Oncol Biol Phys 22:415–419.

    PubMed  CAS  Google Scholar 

  • Grau C, Overgaard J. (1998). Significance of haemoglobin cincentration for treatment outcome. In: Medical Radiology: Blood Perfusion and Microenvironment of Human Tumours. Molls M, Vaupel P (eds.). Springer-Verlag, Heidelberg, pp.101–112.

    Google Scholar 

  • Gray LH, Conger AD, Ebert M, et al. (1953). The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 26:638–648.

    PubMed  CAS  Google Scholar 

  • Grogan M, Thomas GM, Melamed I, et al. (1999). The importance of hemoglobin levels during radiotherapy for cancinoma of the cervix. Cancer 86:1528–1536.

    Article  PubMed  CAS  Google Scholar 

  • Haffty BG, Son YH, Sasaki CT, et al. (1993). Mitomycin C as an adjunct to postoperative radiation therapy in squamous cell carcinoma of the head and neck: results from two randomized clinical trials. Int J Radiat Oncol Biol Phys 27:241–250.

    PubMed  CAS  Google Scholar 

  • Hahn GM. (1974). Metabolic aspects of the role of hyperthermia in mammalian cell inactivation and their possible relevance to cancer treatment. Cancer Res 34:3117–3123.

    PubMed  CAS  Google Scholar 

  • Hahn GM. (1982). Hyperthermia and cancer. New York, Plenum Press.

    Google Scholar 

  • Hahnfeldt P, Panigrahy D, Folkman J, Hlatky L. (1999). Tumor development under angiogenic signaling: a dynamic theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res 59: 4770–4775.

    PubMed  CAS  Google Scholar 

  • Hall EJ. (1994). Radiobiology for the radiobiologist. 4th Edition. Philadelphia, JB Lippincott.

    Google Scholar 

  • Hall EJ, Roizin-Towle L (1975). Hypoxic sensitizers: radiobiological studies at the cellular level. Radiol 117:453–457.

    CAS  Google Scholar 

  • Helmlinger G, Yuan F, Dellian M, Jain RK. (1997). Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3:177–182.

    Article  PubMed  CAS  Google Scholar 

  • Henk JM, Kunkler PB, Smith CW. (1977). Radiotherapy and hyperbaric oxygen in head and neck cancer. Final report of first controlled clinical trial. Lancet July:101–103.

    Google Scholar 

  • Henk JM, Smith CW. (1977). Radiotherapy and hyperbaric oxygen in head and neck cancer. Interim report of second clinical trial. Lancet July:104–105.

    Google Scholar 

  • HenkeM, Laszig R, Rube C, et al.(2003).Erythropoietin to treat head and neck cancer patients with anaemia undergoing radiotherapy: randomized, double-blind, placebo-controlled trial. Lancet 362:1255–1260.

    Article  CAS  Google Scholar 

  • Hirst DG, Wood PJ. (1991). Could manipulation of the binding affinity of haemoglobin for oxygen be used clinically to sensitize tumours to radiation? Radiother Oncol 20 (Suppl.):53–57.

    Article  PubMed  Google Scholar 

  • Hoeckel M, Schlenger K, Aral B, et al. (1996). Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515.

    Google Scholar 

  • Horsman MR. (1995). Nicotinamide and other benzamide analogs as agents for overcoming hypoxic cell radiation resistance in tumours. Acta Oncol 34:571–587.

    Article  PubMed  CAS  Google Scholar 

  • Horsman MR. (1998). Measurement of tumor oxygenation. Int J Radiat Oncol Biol Phys 42: 701–704.

    PubMed  CAS  Google Scholar 

  • Horsman MR, Chaplin DJ, Overgaard J. (1990). Combination of nicotinamide and hyperthermia to eliminate radioresistant chronically and acutely hypoxic tumor cells. Cancer Res 50: 7430–7436.

    PubMed  CAS  Google Scholar 

  • Horsman MR, Nordsmark M, Khalil AA, et al. (1994). Reducing chronic and acute hypoxia in tumours by combining nicotinamide with carbogen breathing. Acta Oncol 33:371–376.

    Article  PubMed  CAS  Google Scholar 

  • Horsman MR, Overgaard J. (1992). Overcoming tumour radiation resistance resulting from acute hypoxia. Eur J Cancer 28A:717–718.

    Article  PubMed  CAS  Google Scholar 

  • Horsman MR, Overgaard J. (2007). Hyperthermia: a potent enhancer of radiotherapy. Clin Oncol 19: 418–426.

    Article  CAS  Google Scholar 

  • Horsman MR, Siemann DW. (2006). Pathophysiological effects of vascular targeting agents and the implications for combination therapies. Cancer Res 66: 11520–11539.

    Article  PubMed  CAS  Google Scholar 

  • Hui EP, Chan ATC, Pezzella F, et al. (2002). Coexpression of hypoxia-inducible factors 1α and 2α, carbonic anhydrase IX, and vascular endothelial growth factor in nasopharyngeal carcinoma and relationship to survival. Clin Cancer Res 8:2595–2604.

    PubMed  CAS  Google Scholar 

  • Jain RK. (2001). Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nature Med 7: 987–989.

    Article  PubMed  CAS  Google Scholar 

  • Kaanders JH, Bussink J, van der Kogel AJ. (2002). ARCON: a novel biology-based approach in radiotherapy. Lancet Oncol 3: 728–737.

    Article  PubMed  Google Scholar 

  • Kampinga HH, Dikomey E. (2001). Hyperthermic radiosensitization: mode of action and clinical relevance. Int J Radiat Biol 77:399–408.

    Article  PubMed  CAS  Google Scholar 

  • Karasawa K, Sunamura M, Okamoto A, et al. (2008). Efficacy of novel hypoxic cell sensitizer doranidazole in the treatment of locally advanced pancreatic cancer – long-term results of a placebo-controlled randomised study. Radiother Oncol 87: 326–330.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy KA, Rockwell S, Sartorelli AC. (1980). Preferential activation of mitomycin C to cytotoxic metabolites by hypoxic tumor cells. Cancer Res 40:2356–2360.

    PubMed  CAS  Google Scholar 

  • Kimura H, Braun RD, Ong ET, et al. (1996). Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res 56: 5522–5528.

    PubMed  CAS  Google Scholar 

  • Kolstad P. (1968). Intercapillary distance, oxygen tension and local recurrence in cervix cancer. Scand J Clin Lab Invest 106:145–157.

    Article  CAS  Google Scholar 

  • Kjellen E, Joiner MC, Collier JM, et al. (1991). A therapuetic benefit from combining normobaric carbogen or oxygen with nicotinamide in fractionated x-ray treatments. Radiother Oncol 22:81–91.

    Article  PubMed  CAS  Google Scholar 

  • Lauk S, Skates S, Goodman M, Suit HD. (1989). Morphometric study of the vascularity of oral squamous cell carcinomas and its relation to outcome of radiation therapy. Eur J Cancer Clin Oncol 25:1431–1440.

    Article  PubMed  CAS  Google Scholar 

  • Lavey RS, Dempsey WH. (1993). Erythropoietin increases hemoglobin in cancer patients during radiotherapy. Int J Radiat Oncol Biol Phys 27:1147–1152.

    PubMed  CAS  Google Scholar 

  • Le QT, Sutpin PD, Raychaudhuri S, et al. (2003). Identification of osteopontin as a prognostic plasma marker for head and neck squamous cell carcinomas. Clin Cancer Res 9:59–67.

    PubMed  CAS  Google Scholar 

  • Lee D-J, Cosmatos D, Marcial VA, et al. (1995). Results of an RTOG phase III trial (RTOG 85–27) comparing radiotherapy plus etanidazole (SR-2508) with radiotherapy alone for locally advanced head and neck carcinomas. Int J Radiat Oncol Biol Phys 32:567–576.

    PubMed  CAS  Google Scholar 

  • Li GC, Kal HB. (1977). Effect of hyperthermia on the radiation response of two mammalian cell lines. Eur J Cancer 13: 65–69.

    PubMed  CAS  Google Scholar 

  • Machtay M, Pajak T, Suntharalingam M, et al. (2007). Radiotherapy with or without erythropoeitin for anemic patients with head and neck cancer: a randomized trial of the Radiation Therapy Oncology Group (RTOG 99-03). Int J Radiat Oncol Biol Phys 69: 1008–1017.

    PubMed  CAS  Google Scholar 

  • Mendenhall WM, Morris CG, Amdur RJ, Mendenhall NP, Siemann DW. (2005). Radiotherapy alone or combined with carbogen breathing for squamous cell carcinoma of the head and neck: a prospective randomized trial. Cancer 104: 333–337.

    Google Scholar 

  • McKeown SR, Cowen RL, Williams KJ. (2007). Bioreductive drugs: from concept to clinic. Clin Oncol 19: 427–442.

    Article  CAS  Google Scholar 

  • McKeown SR, Friery OP, McIntyre IA, Hejmadi MV, Patterson LH, Hirst DG. (1996). Evidence for a therapeutic gain when AQ4N or tirapazamine is combined with radiation. Br J Cancer 74:S39–S42.

    CAS  Google Scholar 

  • Moeller BJ, Cao Y, Vujaskovic Z, Li CY, Haroon ZA, Dewhirst MW. (2004). The relationship between hypoxia and angiogenesis. Sem Radiat Oncol 14: 215–221.

    Article  Google Scholar 

  • Moulder JE, Rockwell S. (1984). Hypoxic fractions of solid tumour. Int J Radiat Oncol Biol Phys 10:695–712.

    PubMed  CAS  Google Scholar 

  • Müller C. (1910). Eine neue Behandlungsmethode bösartiger Geschwülste. Munchen Med Wochen 28:1490–1493.

    Google Scholar 

  • Murata R, Horsman MR. (2004). Tumor specific enhancement of thermotherapy at mild temperatures by the vascular targeting agent 5,6-dimethylxanthenone-4-acetic acid. Int J Hyperthermia 20: 393–404.

    Article  PubMed  CAS  Google Scholar 

  • Murata R, Siemann DW, Overgaard J, Horsman MR. (2001a). Interaction between combretastatin A-4 disodium phosphate and radiation in murine tumours. Radiother Oncol 60: 155–161.

    Google Scholar 

  • Murata R, Siemann DW, Overgaard J, Horsman MR. (2001b).Improved tumor response by combining radiation and the vascular damaging drug 5,6-dimethylxanthenone-4-acetic acid. Radiat Res 156: 503–509.

    Google Scholar 

  • Murata R, Tsujitani M, Horsman MR. (2008). Enhanced local tumour control after single and fractionated radiation treatment using the hypoxic cell radiosensitizer doranidazole. Radiother Oncol 87: 331–338.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen OS. (1981). Effect of fractionated hyperthermia on hypoxic cells in vitro. Int J Radiat Biol 39:73–80.

    Article  CAS  Google Scholar 

  • Nordsmark M, Alsner J, Keller J, et al. (2001). Hypoxia in soft tissue sarcomas: adverse impact on survival and no association with p53 mutations. Br J Cancer 84:1070–1075.

    Article  PubMed  CAS  Google Scholar 

  • Nordsmark M, Bentzen SM, Rudat V, et al. (2005): Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol 77: 18–24.

    Article  PubMed  Google Scholar 

  • Nordsmark M, Overgaard M, Overgaard J. (1996). Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol 41: 31–39.

    PubMed  CAS  Google Scholar 

  • Olive PL, Aquino-Parsons C. (2004). Measurement of tumor hypoxia using single cell methods. Sem Radiat Oncol 14:241–248.

    Article  Google Scholar 

  • Overgaard J. (1989). Sensitization of hypoxic tumour cells – clinical experience. Int J Radiat Biol 56:801–811.

    Article  PubMed  CAS  Google Scholar 

  • Overgaard J. (1994). Clinical evaluation of nitroimidazoles as modifiers of hypoxia in solid tumors. Oncol Res 6:509–518.

    PubMed  CAS  Google Scholar 

  • Overgaard J, Bichel P. (1977). The influence of hypoxia and acidity on the hyperthermic response of malignant cells in vitro. Radiol 123:511–514.

    CAS  Google Scholar 

  • Overgaard J, Eriksen JG, Nordsmark M, Alsner J, Horsman MR (2005). Plasma osteopontin predicts hypoxia and response to the hypoxic sensitizer nimoprazole in radiotherapy of head and neck cancer. Results from the randomized DAHANCA 5 trial. Lancet Oncol 6: 757–764.

    Article  PubMed  CAS  Google Scholar 

  • Overgaard J, Hansen HS, Andersen AP, et al. (1989). Misonidazole combined with split-course radiotherapy in the treatment of invasive carcinoma of the larynx and pharynx: report from the DAHANCA 2 study. Int J Radiat Oncol Biol Phys 16: 1065–1068.

    PubMed  CAS  Google Scholar 

  • Overgaard J, Hoff C, Sand Hansen H. et al. (2007). Randomized study of the importance of novel erythropoiesis stimulating protein (aranesp) for the effect of radiotherapy in patients with primary squamous cell carcinoma of the head and neck (HNSCC) – the Danish Head and Neck Cancer group DAHANCA 10 randomized trial. Eur J Cancer 5 (Suppl): 7.

    Google Scholar 

  • Overgaard J, Horsman MR. (1996). Modification of hypoxia induced radioresistance in tumours by the use of oxygen and sensitizers. Sem Radiat Oncol 6: 10–21.

    Article  Google Scholar 

  • Overgaard J, Nielsen OS. (1980). The role of tissue environmental factors on the kinetics and morphology of tumor cells exposed to hyperthermia. Ann NY Acad Sci 335:254–280.

    Article  PubMed  CAS  Google Scholar 

  • Overgaard J, Sand Hansen H, Overgaard M, et al. (1998). A randomised double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish head and neck cancer study (DAHANCA) protocol 5–85. Radiother Oncol 46:135–146.

    CAS  Google Scholar 

  • Petersen C, Zips D, Krause M, et al. (2001). Repopulation of FaDu human squamous cell carcinoma during fractionated radiotherapy correlates with reoxygenation. Int J Radiat Oncol Biol Phys 51: 483–493.

    PubMed  CAS  Google Scholar 

  • Piert M, Machulla HJ, Picchio M, et al. (2005). Hypoxia-specific tumor imaging with 18F-Fluoroazomycin arabinoside. J Nucl Med 46:106–113.

    PubMed  Google Scholar 

  • Powell ME, Hill SA, Saunders MI, Hoskin PJ, Chaplin DJ. (1997). Human tumor blood flow is enhanced by nicotinamide and carbogen breathing. Cancer Res 57: 5261–5264.

    PubMed  CAS  Google Scholar 

  • Power JA, Harris JW. (1977). Response of extremely hypoxic cells to hyperthermia: survival and oxygen enhancement ratios. Radiat Biol 123:767–770.

    CAS  Google Scholar 

  • Pugh CW, Ratcliffe PJ. (2003). Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9: 677–684.

    Article  PubMed  CAS  Google Scholar 

  • Raleigh JA, Dewhirst MW, Thrall DE. (1996). Measuring tumor hypoxia. Sem Radiat Oncol 6: 37–45.

    Article  Google Scholar 

  • Rasey JS, Koh WJ, Evans ML, et al. (1996). Quantifying regional hypoxia in human tumors with positron emission tomography of 18F-fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys 36:417–428.

    PubMed  CAS  Google Scholar 

  • R’ev’esz L, Siracka E, Siracky J, et al. (1989). Variation of vascular density within and between tumors of the uterine cervix and its predictive value for radiotherapy. Int J Radiat Oncol Biol Phys 11:97–103.

    Google Scholar 

  • Rockwell S. (1985). Use of a perfluorochemical emulsion to improve oxygenation in a solid tumor. Int J Radiat Oncol Biol Phys 11:97–103.

    PubMed  CAS  Google Scholar 

  • Rojas A. (1991). Radiosensitization with normobaric oxygen and carbogen. Radiother Oncol 20 (Suppl. 1):65–70.

    Article  PubMed  Google Scholar 

  • Roti Roti JL. (2004). Introduction: radiosensitization by hyperthermia. Int J Hyperthermia 20: 109–114.

    Article  PubMed  CAS  Google Scholar 

  • Rubin P, Hanley J, Keys HM et al, (1979). Carbogen breathing during radiation therapy. The RTOG study. Int J Radiat Oncol Biol Phys 5:1963–1970.

    PubMed  CAS  Google Scholar 

  • Sapareto SA, Raaphorst P, Dewey WC. (1979). Cell killing and the sequencing of hyperthermia and radiation. Int J Radiat Oncol Biol Phys 5:343–347.

    PubMed  CAS  Google Scholar 

  • Schwarz G. (1909). Ãœber Desensibiliserung gegen Röntgen- und Radiumstrahlen. Munchen Med Wochen 24:1–2.

    Google Scholar 

  • Seddon BM, Payne GS, Simmons L, et al. (2003). A phase I study of SR-4554 via intravenous administration for noninvasive investigation of tumor hypoxia by magnetic resonance spectroscopy in patients with malignancy. Clin Cancer Res 9:5101–5112.

    PubMed  CAS  Google Scholar 

  • Siemann DW, Bibby MC, Dark G, et al. (2005). Differentiation and definition of vascular-targeted therapies. Clin Cancer Res 11: 416–420.

    PubMed  CAS  Google Scholar 

  • Siemann DW, Chaplin DJ, Horsman MR. (2004). Vascular-targeting therapies for treatment of malignant disease. Cancer 100: 2491–2499.

    Article  PubMed  CAS  Google Scholar 

  • Siemann DW, Hill RP, Bush RS. (1977). The importance of the pre-irradiation breathing times of oxygen and carbogen (5‥ CO2; 95‥ O2) on the in vivo radiation response of a murine sarcoma. Int J Radiat Oncol Biol Phys 2: 903–911.

    PubMed  CAS  Google Scholar 

  • Siemann DW, Macler LM. (1986). Tumor radiosensitization through reductions in hemoglobin affinity. Int J Radiat Oncol Biol Phys 12:1295–1297.

    PubMed  CAS  Google Scholar 

  • Siemann DW, Rojiani AM. (2002). Enhancement of radiation therapy by the novel vascular targeting agent ZD6126. Int J Radiat Onocl Biol Phys 53: 164–171.

    Article  CAS  Google Scholar 

  • Stratford IJ, O’Neill P, Sheldon PW, et al. (1986). RSU 1069, a nitroimidazole containing an aziridine group: bioreduction greatly increases cytotoxicity under hypoxic conditions. Biochem Pharm 35:105–109.

    Article  PubMed  CAS  Google Scholar 

  • Stratford IJ, Stephens MA. (1989). The differential hypoxic cytotoxicity of bioreductive agents determined in vitro by the MTT assay. Int J Radiat Oncol Biol Phys 16: 973–976.

    PubMed  CAS  Google Scholar 

  • Stoeltzing O, Ellis LM. (2006). The role of microvasculature in metastasis formation. In: Vascular-targeted Therapies in Oncology. D.W. Siemann, Ed., John Wiley & Sons, Ltd., Chichester; 31–62.

    Chapter  Google Scholar 

  • Stuben G, Pottgen C, Knuhmann K, et al. (2003). Erythropoietin restores the anemia-induced reduction in radiosensitivity of experimental human tumors in nude mice. Int J Radiat Oncol Biol Phys 55:1358–1362.

    PubMed  Google Scholar 

  • Suit HD, Gerweck LE. (1979). Potential for hyperthermia and radiation therapy. Cancer Res 39:2290–2298.

    PubMed  CAS  Google Scholar 

  • Suit HD, Marshall N, Woerner D. (1972). Oxygen, oxygen plus carbondioxide, and radiation therapy of a mouse mammary carcinoma. Cancer 30:1154–1158.

    Article  PubMed  CAS  Google Scholar 

  • Tannock IF. (1968). The relationship between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br J Cancer 22:258–273.

    PubMed  CAS  Google Scholar 

  • Thews O, Koenig R, Kelleher DK, Kutzner J, Vaupel P. (1998). Enhanced radiosensitivity in experimental tumours following erythropoietin treatment of chemotherapy-induced anaemia. Br J Cancer 78:752–756.

    PubMed  CAS  Google Scholar 

  • Thomas GM. (2002). Raising hemoglobin: an opportunity for increasing survival? Oncol 63:19–28.

    CAS  Google Scholar 

  • Thomlinson RH, Gray LH. (1955). The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9:539–549.

    PubMed  CAS  Google Scholar 

  • Urtasun R, Band P, Chapman JD, Feldstein ML, Mielke B, Fryer C. (1976). Radiation and high-dose metronidazole in supratentorial glioblastomas. N Engl J Med 294: 1364–1367.

    Article  PubMed  CAS  Google Scholar 

  • Urtasun RC, Parliament MB, McEwan AJ et al. (1996). Measurement of hypoxia in human tumours by non-invasive spect imaging of iodoazomycin arabinoside. Br J Cancer 74 (Suppl.): S209–S212.

    CAS  Google Scholar 

  • Vaupel P. (2004). Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14: 198–206.

    Article  PubMed  Google Scholar 

  • Vaupel P, Kallinowski F, Okunieff P. (1989). Blood flow, oxygen and nutrient supply, and metabolic micro-environment of human tumors: a review. Cancer Res 49: 6449–6465.

    PubMed  CAS  Google Scholar 

  • Watson ER, Halnan KE, Dische S et al. (1978). Hyperbaric oxygen and radiotherapy: A medicalresearch council trial in carcinoma of the cervix. Br J Radiol 51:879–887.

    Article  PubMed  CAS  Google Scholar 

  • Weissberg JB, Son YH, Papac RJ, et al. (1989). Randomized clinical trial of mitomycin C as an adjunct to radiotherapy in head and neck cancer. Int J Radiat Oncol Biol Phys 17:3–9.

    PubMed  CAS  Google Scholar 

  • Wilson WW, Li AE, Cowan D, Siim BG. (1998). Enhancement of tumor radiation response by the anti-vascular agent 5,6-dimethylxanthenone-4-acetic acid. Int J Radiat Oncol Biol Phys 42: 905–908.

    PubMed  CAS  Google Scholar 

  • Winkler F, Kozin SV, Tong R et al. (2004). Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cell 6: 553–563.

    CAS  Google Scholar 

  • Zeman EM, Hirst VK, Lemmon MJ, Brown JM. (1988). Enhancement of radiation-induced tumor cell killing by the hypoxic cell toxin SR 4233. Radiother Oncol 12:209–218.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Horsman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Horsman, M.R., Siemann, D.W. (2009). Significance of the Tumour Microenvironment in Radiotherapy. In: Baronzio, G., Fiorentini, G., Cogle, C.R. (eds) Cancer Microenvironment and Therapeutic Implications. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9576-4_8

Download citation

Publish with us

Policies and ethics