Skip to main content

Barriers to Drug Delivery in Cancer: Clinical Implications

  • Chapter
Cancer Microenvironment and Therapeutic Implications

Abstract

Abstract

A drug to be effective must satisfy two important requirements. First, it must act on diseased tissue sparing healthy tissue, second it must reach target tissue at adequate concentration to perform its therapeutic effect. As reported by several authors, conventional cancer treatments do not achieve this aim, resulting in suboptimal activity and inability to eradicate tumor tissue. The reasons for this failure are multiple and partially due to the unique physiology of tumor tissue. Tumors develop drug barriers, including high pressure zones and collapsed blood vessels, that make it difficult for blood-borne drugs to reach the tumor’s inner core. In this review, we describe tumor physiology resulting in barriers and forces that govern drug distribution inside tumor regions. Furthermore, we present strategies to overcome these impediments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armulik A, Abramsson A, and Betsholtz C: Endothelial/pericyte interactions. Circ Res. 2005 Sep 16; 97(6):512–23.

    Article  PubMed  CAS  Google Scholar 

  • Aukland K, and Reed RK: Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev. 1993 Jan;73(1):1–78.

    PubMed  CAS  Google Scholar 

  • Baish JW, Netti PA, and Jain RK: Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors. Microvasc Res. 1997; 53:128–141.

    Article  PubMed  CAS  Google Scholar 

  • Baronzio G, Freitas I, and Kwaan HC: Tumor microenvironment and hemorheological abnormalities. Semin Thromb Hemost. 2003 Oct; 29(5):489–97.

    Article  PubMed  Google Scholar 

  • Baxter LT, and Jain RK: Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc Res. 1989 Jan; 37(1):77–104.

    Article  PubMed  CAS  Google Scholar 

  • Berg HC: Random walks in biology. Princeton University Press, Princeton, NJ. 1992.

    Google Scholar 

  • Boucher Y, Baxter LT, and Jain RK: Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res. 1990 Aug 1; 50(15):4478–84.

    PubMed  CAS  Google Scholar 

  • Boucher Y, Brekken C, Netti PA, Baxter LT, and Jain RK: Intratumoral infusion of fluid: estimation of hydraulic conductivity and implications for the delivery of therapeutic agents. Br J Cancer. 1998 Dec; 78(11):1442–8.

    PubMed  CAS  Google Scholar 

  • Boucher Y, and Jain RK: Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res. 1992 Sep 15; 52(18):5110–4.

    PubMed  CAS  Google Scholar 

  • Brekken C, Hjelstuen MH, Bruland ØS, et al.: Hyaluronidase-induced periodic modulation of the interstitial fluid pressure increases selective antibody uptake in human osteosarcoma xenografts. Anticancer Res. 2000 Sep– Oct; 20(5B):3513–9.

    PubMed  CAS  Google Scholar 

  • Brown JM, and Giaccia AJ: The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 1998 Apr 1; 58(7):1408–16.

    PubMed  CAS  Google Scholar 

  • Butler TP, Grantham FH, Gullino PM: Bulk transfer of fluid in the interstitial compartment of mammary tumors. Cancer Res. 1975; 35:3084–8.

    PubMed  CAS  Google Scholar 

  • Campbell RB: Tumor physiology and delivery of nanopharmaceuticals. Anticancer Agents Med Chem. 2006 Nov; 6(6):503–12.

    Article  PubMed  CAS  Google Scholar 

  • Chang R: Physical chemistry, for the chemical and biological sciences. University Science Books, Sausalito. 2000.

    Google Scholar 

  • Davis AJ, and Tannock JF: Repopulation of tumour cells between cycles of chemotherapy: a neglected factor. Lancet Oncol. 2000 Oct; 1:86–93.

    Article  PubMed  CAS  Google Scholar 

  • Delorme S, and Krix M: Contrast-enhanced ultrasound for examining tumor biology. Cancer Imaging. 2006 Sep 27; 6:148–52.

    Article  PubMed  Google Scholar 

  • Denko C, Fontana LA, Hudson KM, et al.: Investigating hypoxic tumor physiology through gene expression patterns. Oncogene. 2003; 22:5907–5914.

    Article  PubMed  CAS  Google Scholar 

  • Dewhirst MW, Tso CY, Oliver R, et al.: Morphologic and hemodynamic comparison of tumor and healing normal tissue microvasculature. Int J Radiat Oncol Biol Phys. 1989 Jul; 17(1):91–9.

    PubMed  CAS  Google Scholar 

  • Dill KA, and Bromberg S: Molecular driving force. Statistical Thermodynamics in Chemistry and Biology.Garland Science, New York, London. 2003.

    Google Scholar 

  • Dreher MR, Liu W, Michelich CR, et al.: Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst. 2006 Mar 1; 98(5):335–44.

    PubMed  CAS  Google Scholar 

  • Dvorak HF: Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986 Dec 25; 315(26):1650–9.

    PubMed  CAS  Google Scholar 

  • Egeblad M, Littlepage LE, Werb Z: The fibroblastic coconspirator in cancer progression. Cold Spring Harb Symp Quant Biol. 2005; 70:383–8.

    Article  PubMed  CAS  Google Scholar 

  • Einstein: Investigations on the theory of the Brownian movement. Dover Publications, New York, republication of the translation originally published in the 1926 edition, 1956.

    Google Scholar 

  • Freitas I, Baronzio GF, Bono B, et al.: Tumor interstitial fluid: misconsidered component of the internal milieu of a solid tumor. Anticancer Res. 1997; 17:165–72.

    PubMed  CAS  Google Scholar 

  • Fukumura D, and Jain RK: Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem. 2007 Jul 1; 101(4):937–49.

    Article  PubMed  CAS  Google Scholar 

  • Gillies RJ, Schornack PA, Secomb TW, et al.: Causes and effects of heterogeneous perfusion in tumors. Neoplasia. 1999 Aug;1(3):197–207.

    Article  PubMed  CAS  Google Scholar 

  • Gribbon P, and Hardingham TE: Macromolecular diffusion of biological polymers measured by confocal fluorescence recovery after photobleaching. Biophys J. 1998 August; 75(2): 1032–1039.

    Article  PubMed  CAS  Google Scholar 

  • Griffon-Etienne G, Boucher Y, Brekken C,et al.: Taxane-induced apoptosis decompresses blood vessels and lowers interstitial fluid pressure in solid tumors: Clinical implications. Cancer Res. 1999 Aug 1; 59(15):3776–82.

    PubMed  CAS  Google Scholar 

  • Gullino PM, and Grantham FH: The vascular space of growing tumors. Cancer res. 1964 nov; 24:1727–32

    PubMed  CAS  Google Scholar 

  • Gullino PM, Grantham FH, Smith SH: The interstitial water space of tumors. Cancer Res. 1965; 25:727–31.

    PubMed  CAS  Google Scholar 

  • Gullino PM, and Grantham FH: the influence of the host and neoplastic cell population on the collagen content of a tumor mass. J Natl Cancer Inst. 1962; 27:679–693.

    Google Scholar 

  • Gullino PM: The internal milieu of tumors. Prog Exp Tumor Res. 1966; 8:1–25.

    PubMed  CAS  Google Scholar 

  • Gullino PM: Techniques for the study of tumor physiopathology. Methods Cancer Res. 1970; 5:45–91.

    Google Scholar 

  • Guyton AC, and Hall JE: The microcirculation and the lymphatic system: Capillary fluid exchange, interstitial fluid, and lymph flow. In “Textbook of Medical physiology. Guyton A.C, Hall J.E. editors. Elsevier Saunders publishers, New York. 2006; pp. 181–194.

    Google Scholar 

  • Heldin C.H., Rubin K, Pietras K, et al.: High interstitial fluid pressure –an obstacle in cancer therapy. Nat. Rev Cancer 2004; 4:806–813.

    Article  PubMed  CAS  Google Scholar 

  • Habash RW, Bansal R, Krewski D, et al.: Thermal therapy, part 1: an introduction to thermal therapy. Crit Rev Biomed Eng. 2006; 34(6):459–89.

    PubMed  Google Scholar 

  • Hirst DG, Kennovin GD, Tozer GM, et al.: The modification of blood flow in tumours and their supplying arteries by nicotinamide. Acta Oncol. 1995; 34(3):397–400.

    Article  PubMed  CAS  Google Scholar 

  • Hobbs SK, Monsky WL, Yuan F, et al.: Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA. 1998 Apr 14; 95(8):4607–12.

    Article  PubMed  CAS  Google Scholar 

  • Höckel M, and Vaupel P: Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 2001 Feb 21; 93(4):266–76.

    Article  PubMed  Google Scholar 

  • Hofmann M, Guschel M, Bernd A, et al.: Lowering of tumor interstitial fluid pressure reduces tumor cell proliferation in a xenograft tumor model. Neoplasia. 2006 Feb; 8(2):89–95.

    Article  PubMed  Google Scholar 

  • Horsman MR, Chaplin DJ, and Brown JM: Radiosensitization by nicotinamide in vivo: a greater enhancement of tumor damage compared to that of normal tissues. Radiat Res. 1987 Mar; 109(3):479–89.

    Article  PubMed  CAS  Google Scholar 

  • Hoshi M, and Sato H: Angiotensin II-induced hypertension chemotherapy (IHC) for advanced gastrointestinal, pancreatic and hepatobiliary carcinoma. Intern Med. 1995 Apr; 34(4):298–9.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa T, Kamimura H, Tsuchiya A, et al.: Clinical efficacy of intra-arterial pharmacokinetic chemotherapy with 5-fluorouracil, CDDP, gemcitabine, and angiotensin-II in patients with advanced pancreatic cancer. Hepatogastroenterology. 2007 Dec; 54(80):2378–82.

    PubMed  CAS  Google Scholar 

  • Jain M, Venkatraman G, and Batra SK: Optimization of radioimmunotherapy of solid tumors: biological impediments and their modulation. Clin Cancer Res. 2007a Mar 1; 13(5):1374–82.

    Google Scholar 

  • Jain RK, and Baxter LT: Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res. 1988 Dec 15; 48(24 Pt 1):7022–32.

    PubMed  CAS  Google Scholar 

  • Jain RK, and Gerlowski LE: Extravascular transport in normal and tumor tissues. Crit Rev Oncol Hematol. 1986; 5(2):115–70.

    Article  PubMed  CAS  Google Scholar 

  • Jain RK: Determinants of tumor blood flow: a review. Cancer Res. 1988 May 15; 48(10):2641–58.

    PubMed  CAS  Google Scholar 

  • Jain RK: Transport of molecules in the tumor interstitium: a review. Cancer Res. 1987 Jun 15; 47(12):3039–51.

    PubMed  CAS  Google Scholar 

  • Jain RK: Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev. 1990 Nov; 9(3):253–66.

    Article  PubMed  CAS  Google Scholar 

  • Jain RK: Barriers to drug delivery in solid tumors. Sci Am. 1994; 271:58–65.

    Article  PubMed  CAS  Google Scholar 

  • Jain RK, Fenton B: Intratumor lymphatic vessels: a case of mistaken identy or malfunction. J Natl Cancer Inst. 2002, 94: 417– 421.

    PubMed  Google Scholar 

  • Jain RK. Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science. 2005a Jan 7; 307(5706):58–62.

    Google Scholar 

  • Jain RK: Interstitial transport in tumors: barriers and strategies for improvement. AACR 96th Annual meeting. 2005b; 2005:108–113.

    Google Scholar 

  • Jain RK, Tong RT, and Munn LL: Effects of vascular normalization by antiangiogenetic therapy on interstitial hypertension, peritumor edema, and lymphatic metastaseis: insight from a mathematical model. Cancer Res 2007b; 67: 2729–35.

    Google Scholar 

  • Jirtle RL. Chemical modification of tumor blood flow. Int J Hyperthermia. 1988 Jul–Aug;4(4):355–71.

    Article  PubMed  CAS  Google Scholar 

  • Kedem O, and Katchalsky A: Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta. 1958 Feb; 27(2):229–46.

    Article  PubMed  CAS  Google Scholar 

  • Kyle AH, Huxham LA, Chiam AS, et al.: Direct assessment of drug penetration into tissue using a novel application of three-dimensional cell culture. Cancer Res. 2004 Sep 1; 64(17):6304–9.

    Article  PubMed  CAS  Google Scholar 

  • Konerding MA, Malkusch W, Klapthor B, et al.: Evidence for characteristic vascular patterns in solid tumours: quantitative studies using corrosion casts. Br J Cancer. 1999 May; 80(5–6):724–32.

    Article  PubMed  CAS  Google Scholar 

  • Konerding MA, Miodonski AJ, and Lametschwandtner A: Microvascular corrosion casting in the study of tumor vascularity: a review. Scanning Microsc. 1995; 9(4):1233–43; discussion 1243–4.

    PubMed  CAS  Google Scholar 

  • Kristjansen PE, Boucher Y, and Jain RK: Dexamethasone reduces the interstitial fluid pressure in a human colon adenocarcinoma xenograft. Cancer Res. 1993 Oct 15; 53(20):4764–6.

    PubMed  CAS  Google Scholar 

  • Kuh HJ, Jang SH, Wientjes MG, et al.: Determinants of paclitaxel penetration and accumulation in human solid tumor. J Pharmacol Exp Ther. 1999 Aug; 290(2):871–80.

    PubMed  CAS  Google Scholar 

  • Kunz M, and Ibrahim SM. Molecular responses to hypoxia in tumor cells. Mol Cancer. 2003 Apr 17; 2:23.

    Article  PubMed  Google Scholar 

  • Kuszyk BS, Corl FM, Franano FN, et al.: Tumor transport physiology: implications for imaging and imaging-guided therapy. AJR Am J Roentgenol. 2001 Oct; 177(4):747–53.

    PubMed  CAS  Google Scholar 

  • Lee I, Boucher Y, and Jain RK: Nicotinamide can lower tumor interstitial fluid pressure: mechanistic and therapeutic implications. Cancer Res. 1992 Jun 1; 52(11):3237–40.

    PubMed  CAS  Google Scholar 

  • Leunig M, Goetz AE, Dellian M, et al.: Interstitial fluid pressure in solid tumors following hyperthermia: possible correlation with therapeutic response. Cancer Res. 1992 Jan 15; 52(2):487–90.

    PubMed  CAS  Google Scholar 

  • Maeda H, Wu J, Sawa T, et al.: Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000 Mar 1; 65(1–2):271–84.

    Article  PubMed  CAS  Google Scholar 

  • McDonald DM, and Baluk P: Significance of blood vessel leakiness in cancer. Cancer Res. 2002 Sep 15; 62(18):5381–5.

    PubMed  CAS  Google Scholar 

  • Miles KA: Perfusion CT for the assessment of tumour vascularity: which protocol? Br J Radiol. 2003; 76(1):S36–42.

    Article  PubMed  Google Scholar 

  • Milosevic M, Fyles A, and Hill R: Interstitial fluid pressure in cervical cancer: guide to targeted therapy. Am J Clin Oncol. 2001 Oct; 24(5):516–21.

    Article  PubMed  CAS  Google Scholar 

  • Milosevic MF, Fyles AW, Wong R, et al.: Interstitial fluid pressure in cervical carcinoma: within tumor heterogeneity, and relation to oxygen tension. Cancer. 1998 Jun 15; 82(12):2418–26.

    Article  PubMed  CAS  Google Scholar 

  • Minchinton AI, and Tannock IF: Drug penetration in solid tumours. Nat Rev Cancer. 2006 Aug; 6(8):583–92.

    Article  PubMed  CAS  Google Scholar 

  • Morikawa S, Baluk P, Kaidoh T, et al.: Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol. 2002 Mar; 160(3):985–1000.

    PubMed  Google Scholar 

  • Nakahara T, Norberg SM, Shalinsky DR, et al.: Effect of inhibition of vascular endothelial growth factor signaling on distribution of extravasated antibodies in tumors. Cancer Res. 2006 Feb 1; 66(3):1434–45.

    Article  PubMed  CAS  Google Scholar 

  • Nagy JA, Benjamin L, Zeng H, et al.: Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis. 2008; 11(2):109–19.

    Article  PubMed  CAS  Google Scholar 

  • Navalitloha Y, Schwartz ES, Groothuis EN, et al.: Therapeutic implications of tumor interstitial fluid pressure in subcutaneous RG-2 tumors. Neuro Oncol. 2006 Jul; 8(3):227–33.

    Article  PubMed  Google Scholar 

  • Neeman M, and Dafni H: Structural, functional, and molecular Mr imaging of the microvasculature. Annu Rev Biomed Eng. 2003; 5:29–56.

    Article  PubMed  CAS  Google Scholar 

  • Netti P, and Jain RK: Interstitial transport in solid tumors, in Cancer Modeling and simulation. L Preziosi editor. CRC press, Boca Raton. 2003; pp. 51–74.

    Google Scholar 

  • Netti PA, Baxter LT, Boucher Y, et al.: Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery. Cancer Res. 1995 Nov 15; 55(22):5451–8.

    PubMed  CAS  Google Scholar 

  • Netti PA, Berk DA, Swartz MA, et al.: Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 2000 May 1; 60(9):2497–503.

    PubMed  CAS  Google Scholar 

  • Ohigashi H, Ishikawa O, Yokayama S, et al.: Intra-arterial infusion chemotherapy with angiotensin-II for locally advanced and nonresectable pancreatic adenocarcinoma: further evaluation and prognostic implications. Ann Surg Oncol. 2003 Oct; 10(8):927–34.

    Article  PubMed  Google Scholar 

  • Oparil S, Haber E. The renin-angiotensin system (first of two parts). N Engl J Med. 1974 Aug 22;291(8):389–401.

    Article  PubMed  CAS  Google Scholar 

  • Peters CE, Chaplin DJ, and Hirst DG: Nicotinamide reduces tumour interstitial fluid pressure in a dose- and time-dependent manner. Br J Radiol. 1997 Feb; 70:160–7.

    PubMed  CAS  Google Scholar 

  • Pietras K, Ostman A, Sjöquist M, et al.: Inhibition of platelet-derived growth factor receptors reduces interstitial hypertension and increases transcapillary transport in tumors. Cancer Res. 2001 Apr 1; 61(7):2929–34.

    PubMed  CAS  Google Scholar 

  • Pietras K, Rubin K, Sjöblom T, et al.: Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Res. 2002 Oct 1; 62(19):5476–84.

    PubMed  CAS  Google Scholar 

  • Pluen A, Netti PA, Jain RK, et al.: Diffusion of macromolecules in agarose gel: comparison of linear and globular configurations. Biophis J 1999; 77:542–555.

    Article  CAS  Google Scholar 

  • Raghavan R, Brady ML, and RodrÍguez-Ponce MI: Convection-enhanced delivery of therapeutics for brain disease, and its optimization. Neurosurg Focus. 2006 Apr 15; 20(4):E12.

    Article  PubMed  Google Scholar 

  • Rehman S, and Jayson GC: Molecular imaging of antiangiogenic agents. Oncologist. 2005 Feb; 10(2):92–103.

    Article  PubMed  CAS  Google Scholar 

  • Renkin EM: Capillary transport of macromolecules: pores and other endothelial pathways J Appl Physiol. 1985; 58:315–325.

    PubMed  CAS  Google Scholar 

  • Roberts WG, and Palade G: Increased microvascular permeability and endothelium fenestration induced by vascular endothelial growth factor. J Cell Sci. 1995 Jun; 108(Pt 6):2369–79.

    PubMed  CAS  Google Scholar 

  • Roberts WG, and Palade G: Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res. 1997 Feb 15; 57(4):765–72.

    PubMed  CAS  Google Scholar 

  • Rubin K, Sjöquist M, Gustafsson AM, et al.: Lowering of tumoral interstitial fluid pressure by prostaglandin E(1) is paralleled by an increased uptake of (51)Cr-EDTA. Int J Cancer. 2000 Jun 1; 86(5):636–43.

    Article  PubMed  CAS  Google Scholar 

  • Salnikov AV, Iversen VV, Koisti M, et al.: Lowering of tumor interstitial fluid pressure specifically augments efficacy of chemotherapy. FASEB J. 2003 Sep; 17(12):1756–8.

    PubMed  CAS  Google Scholar 

  • Schultz SG: Basic principles of membrane transport. Cambridge University Press 1980, Cambridge, London, New York, Melbourne.

    Google Scholar 

  • Semenza GL: Regulation of hypoxia-induced angiogenesis: a chaperone escorts VEGF to the dance. J Clin Invest. 2001 Jul; 108(1):39–40.

    PubMed  CAS  Google Scholar 

  • Sevick EM, and Jain RK: Geometric resistance to blood flow in solid tumors perfused ex vivo: effects of tumor size and perfusion pressure. Cancer Res. 1989 Jul 1; 49(13):3506–12.

    PubMed  CAS  Google Scholar 

  • Smith JH, and Humphrey JA: Interstitial transport and transvascular fluid exchange during infusion into brain and tumor tissue. Microvasc Res. 2007 Jan; 73(1):58–73.

    Article  PubMed  CAS  Google Scholar 

  • Starling EH: On the Absorption of Fluids from the Connective Tissue Spaces. J Physiol. 1896 May 5; 19(4):312–26.

    PubMed  CAS  Google Scholar 

  • Stohrer M, Boucher Y, Stangassinger M, et al.: Oncotic pressure in solid tumors is elevated. Cancer Res. 2000a; 60:4251–5.

    Google Scholar 

  • Stohrer M, Boucher Y, Stangassinger M, et al.: Oncotic pressure in solid tumors is elevated. Cancer Res. 2000b Aug 1; 60(15):4251–5.

    Google Scholar 

  • Sutherland RM: Cell and environment interactions in tumor microregions: the multicell spheroid model. Science. 1988 Apr 8; 240(4849):177–84.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Hori K, Abe I, et al.: Functional characterization of the microcirculation in tumors. Cancer Metastasis Rev. 1984; 3(2):115–26.

    Article  PubMed  CAS  Google Scholar 

  • Swabb EA, Wei J, and Gullino PM: Diffusion and convection in normal and neoplastic tissues. Cancer Res. 1974 Oct; 34(10):2814–22.

    PubMed  CAS  Google Scholar 

  • Swartz Ma, and Fleury ME: Interstitial flow and its effects in soft tissues. Ann Rev Biomed Eng 2007; 9:229–256.

    Article  CAS  Google Scholar 

  • Taghian AG, Abi-Raad R, Assaad SI, et al.: Paclitaxel decreases the interstitial fluid pressure and improves oxygenation in breast cancers in patients treated with neoadjuvant chemotherapy: clinical implications. J Clin Oncol. 2005 Mar 20; 23(9):1951–61.

    Article  PubMed  CAS  Google Scholar 

  • Tang N, Du G, Wang N, Liu C, et al.: Improving Penetration in Tumors With Nanoassemblies of Phospholipids and Doxorubicin. J Natl Cancer Inst 2007; 99:1004–1015

    Article  PubMed  CAS  Google Scholar 

  • Tannock IF, Lee CM, Tunggal JK, et al.: Limited penetration of anticancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy. Clin Cancer Res. 2002 Mar; 8(3):878–84.

    PubMed  CAS  Google Scholar 

  • Tannock IF: Limited Drug Access and Repopulation of Surviving Tumor Cells between Courses of Chemotherapy: Important and Neglected Causes of Clinical Drug Resistance Am. Assoc. Cancer Res. Educ. Book, April 1, 2005; 2005(1):103–107.

    Google Scholar 

  • Tannock IF: Tumor physiology and drug resistance. Cancer Metastasis Rev 2001; 20: 123–32.

    Article  PubMed  CAS  Google Scholar 

  • Taylor AE, and Parker J. Interstitial excluded volumes: The effect of charge. J Physiol 2003; 553:333.

    Article  PubMed  CAS  Google Scholar 

  • Tokuda K, Abe H, and Aida T: Modification of tumor blood flow and enhancement of therapeutic effect of ACNU on experimental rat gliomas with angiotensin II. J Neurooncol. 1990 Jun; 8(3):205–12.

    Article  PubMed  CAS  Google Scholar 

  • Tozer GM: Measuring tumour vascular response to antivascular and antiangiogenic drugs. Br J Radiol. 2003; 76 Spec No 1:S23–35.

    Google Scholar 

  • Trédan O, Galmarini CM, Patel K, et al.: Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007 Oct 3; 99(19):1441–54.

    Article  PubMed  CAS  Google Scholar 

  • Truskey GA, Yuan F, and Katz DF: Transport phenomena in biological system. Pearson Prentice Hall editor 2004, PartII Chapter; pp. 427–447.

    Google Scholar 

  • Tsunenari I, Yamate J, and Sakuma S: Three-dimensional angioarchitecture in transplantable rat fibrosarcomas. J Comp Pathol. 2002 Jan; 126(1):66–70.

    Article  PubMed  CAS  Google Scholar 

  • Tunggal JK, Cowan DS, Shaikh H, et al.: Penetration of anticancer drugs through solid tissue: a factor that limits the effectiveness of chemotherapy for solid tumors. Clin Cancer Res. 1999 Jun; 5(6):1583–6.

    PubMed  CAS  Google Scholar 

  • Thurber GM, Schmidt MM, and Wittrup KD. Factors determining antibody distribution in tumors. Trends Pharmacol Sci. 2008 Feb; 29(2):57–61.

    PubMed  CAS  Google Scholar 

  • Van Holde KE, Johnson WC, and Ho PS: Principles of physical biochemistry. 2nd ed. Pearson, Prentice Hall, Prentice, NJ. 2006.

    Google Scholar 

  • Vaupel P, and Gabbert H: Evidence for and against a tumor type-specific vascularity. Strahlenther Onkol. 1986 Oct; 162(10):633–8.

    PubMed  CAS  Google Scholar 

  • Vaupel P, Kallinowski F, and Okunieff P: Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 1989 Dec 1; 49(23):6449–65.

    PubMed  CAS  Google Scholar 

  • Vaupel P: Physiological properties of malignant tumours. NMR Biomed. 1992 Sep–Oct; 5(5):220–5.

    PubMed  CAS  Google Scholar 

  • Vaupel P. Oxygenation of solid tumors. In “Drug Resistance in Oncology” Beverly A Teicher Editor. Marcel Dekker inc, New York. 1993.

    Google Scholar 

  • Vaupel PW: The influence of tumor blood flow and microenvironmental factors on the efficacy of radiation, drugs and localized hyperthermia. Klin Padiatr. 1997 Jul–Aug; 209(4):243–9.

    Article  PubMed  CAS  Google Scholar 

  • Vaupel P, Kelleher DK, and Thews O: Microtopology of local perfusion, oxygenation, metabolic and energetic status, and interstitial in malignant tumors: techniques and characterization. Exp Oncol. 2000; 22:15–25.

    Google Scholar 

  • Vernon RB, and Sage EH: Between molecules and morphology. Extracellular matrix and creation of vascular form. Am J Pathol. 1995 Oct; 147(4):873–83

    PubMed  CAS  Google Scholar 

  • Warren BA: The vascular morphology. In Peterson HI ed. “Tumor blood circulation” CRC press Boca raton 1979:1–47.

    Google Scholar 

  • Wiig H, Gyenge CC, and Tenstad O: The interstitial distribution of macromolecules in rat tumours is influenced by the negatively charged matrix components. J Physiol. 2005 Sep 1; 567(Pt 2):557–67.

    Article  PubMed  CAS  Google Scholar 

  • Winkler F, Kozin SV, Tong RT, et al.: Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell. 2004 Dec; 6(6):553–63.

    PubMed  CAS  Google Scholar 

  • Xian X, Håkansson J, Ståhlberg A, et al.: Pericytes limit tumor cell metastasis. J Clin Invest. 2006 Mar; 116(3):642–51.

    Article  PubMed  CAS  Google Scholar 

  • Yuan F: Transvascular drug delivery in solid tumors. Semin Radiat Oncol. 1998 Jul; 8(3):164–75.

    Article  PubMed  CAS  Google Scholar 

  • Zhang XY, Luck J, Dewhirst MW, and Yuan F: Interstitial hydraulic conductivity in a fibrosarcoma. Am J Physiol Heart Circ Physiol. 2000 Dec; 279(6):H2726–34.

    PubMed  CAS  Google Scholar 

  • Zhong H, De Marzo AM, Laughner E, et al.: Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 1999 Nov 15; 59(22):5830–5.

    PubMed  CAS  Google Scholar 

  • Ziche M, Alessandri G, and Gullino PM: Gangliosides promote the angiogenic response. Lab Invest. 1989; 61:629–704.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Baronzio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Baronzio, G., Freitas, I., Baronzio, A., Baronzio, M., Crespi, E., Netti, P.A. (2009). Barriers to Drug Delivery in Cancer: Clinical Implications. In: Baronzio, G., Fiorentini, G., Cogle, C.R. (eds) Cancer Microenvironment and Therapeutic Implications. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9576-4_5

Download citation

Publish with us

Policies and ethics