Skip to main content

Significance of Tumor Microenvironment on the Genesis of: Interstitial Fluid, Angiogenesis, Haemostatic/Haemorheologic Abnormalities. Pathogenesis and Therapeutic Aspects

  • Chapter
Cancer Microenvironment and Therapeutic Implications

Abstract

In order for tumors to grow more than a few millimetres in size, new vasculature must be established. However, the new vascular support is generally inefficient, poorly organized and cannot keep up with the pace of the tumor proliferation. This creates undernourished and hypoxic regions in a new environment, with neo-vasculature having a perturbed structure and function. Two abnormalities are peculiarly important. The first is an excessive leakiness of the endothelium due to a malfunction of Starling’s law that regulates liquid distribution across the endothelium, resulting in increased accumulation of liquid in the tumor interstitium. The second is the enhanced procoagulant activity of the endothelium, as shown by numerous clinical and experimental findings on the interaction between the tumor and the coagulation and fibrinolytic systems. Through these interactions, tumor growth and dissemination are enhanced while the tumor can generate a matrix supporting neoangiogenesis. In the unique tumor microenvironment, both endothelial cells and tumor cells express a wide variety of factors, including procoagulants, cell adhesion molecules, vasomotor substances and cell survival signals. The up-regulation by tumor microenvironment of MET oncogenes and other hemostatic oncogenes further contribute to alterations of the hemostatic balance. Platelets (PLTs), leukocytes (LKs), and red blood cells (RBCs) behave differently in the tumor capillary lumen, than in normally capillary lumen, such as being more hemoconcentrated. These alterations create the conditions for an anomalous hemorheology and leukocyte endothelium interaction. PLTs, LKs, and RBCs may bind to the fibrin that envelopes tumor cells in the capillary lumen, and form a cocoon-like structure that protect them from colliding with the endothelium, and from immune surveillance, and thus not eliminated by the body’s defensive system. This feature contributes partially to tumor progression and metastasization. We believe that these findings may have important therapeutic implications. In this overview, an attempt will be made to describe how tumor cells abrogate normal physiologic mechanisms to suit the environment for their own purposes and review the common pathways between coagulation, angiogenesis and the unique tumor patho-physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albini A., Tosetti F., Benelli R., and Noonan D.M.: Tumor inflammatory angiogenesis and its chemoprevention. Cancer Res. 2005 Dec 1; 65(23):10637–41.

    Article  PubMed  CAS  Google Scholar 

  • Andre P., Denis C.V., Ware J., etal.: Platelets adhere and translocate on von Willebrand factor presented by endothelium in stimulated veins. Blood. 2000; 96:3322–3328.

    PubMed  CAS  Google Scholar 

  • Andrea N., and Ansell J.: Management of thrombosis in the cancer patient. Support Oncol. 2003; 1:235–245.

    Google Scholar 

  • Armulik A., Abramsson A., and Betsholtz C.: Endothelial/Pericyte Interactions. Circ res. 2005; 97:512–523.

    Article  PubMed  CAS  Google Scholar 

  • Aukland K., and Reed R.K.: Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev. 1993; 73:1–78.

    PubMed  CAS  Google Scholar 

  • Baluk P., Hashizume H., and McDonald D.M.: Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev. 2005 Feb; 15(1):102–11.

    Article  PubMed  CAS  Google Scholar 

  • Baronzio G.F., and Freitas I.: Tumor environment genesis and implications on cancer immune response. In “Atlas effector of Antitumor Immunity”, Kiselevsky M.V. Editor., Springer Science+Business New York, Berlin 2008, pp. 25–43.

    Chapter  Google Scholar 

  • Baronzio G.F., Freitas I., and Kwaan H.C.: Tumor microenvironment and hemorheological abnormalities. Semin Thromb Hemost. 2003;29:489–97.

    Article  PubMed  Google Scholar 

  • Blom J.W., Doggen C.J., Osanto S. etal.: Malignancies, prothrombotic mutations and the risk of venous thrombosis. JAMA. 2005; 293:715–722.

    Article  PubMed  CAS  Google Scholar 

  • Boccaccio C., and Comoglio P.M.: A functional role for hemostasis in early cancer development. Cancer Res. 2005; 65:8579–82.

    Article  PubMed  CAS  Google Scholar 

  • Born G.V.R., Gorog P., and Kratzer M.A.A.: Interaction of the Platelets and the Vessel Walls. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. Aug. 18, 1981; 294:241–250.

    Article  CAS  Google Scholar 

  • Brock T.A., Dvorak H.F., and Senger D.R.: Tumor secreted vascular permeability factor increase cytosolic Ca2+ and von Willebrand Factor release in human endothelial cells. Am J Pathol. 1991; 138:213–221.

    PubMed  CAS  Google Scholar 

  • Butler T.P., Grantham F.H., and Gullino P.M.: Bulk transfer of fluid in the interstitial compartment of mammary tumors. Cancer Res. 1975; 35:3084–8.

    PubMed  CAS  Google Scholar 

  • Caine G.J., Stonelake P.S., Lip G.Y. etal.: The hypercoagulable state of malignancy: Pathogenesis and current debate. Neoplasia 2002; 4:465–473.

    Article  PubMed  CAS  Google Scholar 

  • Chang J., Powles T.J., Gregory R.K. etal.: The effect of tamoxifen and hormone replacement therapy on serum cholesterol, bone mineral density and coagulatuion factors in healthy popstmenopausal women participating in a randomized, controlled tamoxifen prevention study. Ann Oncol. 1996; 7: 671–675.

    PubMed  CAS  Google Scholar 

  • Chung I., and Lip G.Y.H.: Virchow’s triad revisited: Blood constituents. Pathophysiol Haemost Thromb 2003/2004; 33:449–454.

    Article  PubMed  Google Scholar 

  • Collen A., Smorenburg S.M., Peters E. etal.: Unfractionated and low molecular weight heparin affect fibrin structure and angiogenesis in vitro. Cancer Res. 2000; 60:6196–6200.

    PubMed  CAS  Google Scholar 

  • Colombo M.P., and Mantovani A.: Targeting myelomonocytic cells to revert inflammation-dependent cancer promotion. Cancer Res. 2005 Oct 15; 65(20):9113–6.

    Article  PubMed  CAS  Google Scholar 

  • Colvin B.T.: Physiology of hemostasis. Vox Sang. 2004; 87 Suppl1:43–6.

    Article  PubMed  Google Scholar 

  • Crowther M., Brown N.J., Bishop E.T., and Lewis C.E.: Microenvironmental influence on macrophage regulation of angiogenesis in wounds and malignant tumors. J Leukoc Biol. 2001 Oct; 70(4):478–90.

    PubMed  CAS  Google Scholar 

  • Czekay R.P., and Loskutoff D.J.: Unexpected role of plasminogen activator inhibitor 1 in cell adhesion and detachment. Exp Biol Med (Maywood). 2004; 229:1090–6.

    CAS  Google Scholar 

  • Denko N.C., and Giaccia A.J.: Tumor Hypoxia, the Physiological Link between Trousseau’s Syndrome (Carcinoma-induced Coagulopathy) and Metastasis. Cancer Res. 2001; 61: 795–798.

    PubMed  CAS  Google Scholar 

  • Desai A.A., Vogelzang N.J., Rini B.I. etal.: A high rate of venous thromboembolism in a multi-institutional phase II trial of weekly intravenous gemcitabine with continuous infusion fluorouracil and daily thalidomide in patients with metastatic renal cell carcinoma. Cancer. 2002; 95:1629–36.

    Article  PubMed  CAS  Google Scholar 

  • Duggan C., Marriott K., Edwards R. etal.: Inherited and acquired risk factors for venous thromboembolic disease among women taking tamoxifen to prevent breast cancer. J Clin Oncol. 2003 Oct 1; 21(19):3588–93.

    Article  PubMed  CAS  Google Scholar 

  • Dvorak H.F.: Vascular permeability factor/vascular endothelial growth factor: A critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol. 2002; 20:4368–80.

    Article  PubMed  CAS  Google Scholar 

  • Einav S., and Bluestein D.: Dynamics of blood flow and platelet transport in pathological vessels. Ann NY Acad Sci. 2004; 1015:351–366.

    Article  PubMed  Google Scholar 

  • Erman M., Abali H., Oran B., etal.: Tamoxifen-induced tissue factor pathway inhibitor reduction: A clue for an acquired thrombophilic state? Ann Oncol. 2004 Nov; 15(11):1622–6.

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N., and Davis-Smyth T.: The biology of vascular endothelial growth factor. Endocr Rev. 1997; 18:4–25.

    Article  PubMed  CAS  Google Scholar 

  • Frede S., Berchner-Pfannschmidt U., and Fandrey J.: Regulation of hypoxia-inducible factors during inflammation. Methods Enzymol. 2007; 435:405–19.

    PubMed  CAS  Google Scholar 

  • Freitas I., Baronzio G.F., Bono B. etal.: Tumor interstitial fluid: misconsidered component of the internal milieu of a solid tumor. Anticancer Res. 1997; 17:165–72.

    PubMed  CAS  Google Scholar 

  • Freytes C.O.: Thromboembolic complications related to central venous access catheters in cancer patients. Semin Thromb Hemost. 2007; 33:389–396.

    Article  PubMed  Google Scholar 

  • Fukumura D., and Jain R.K.: Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res. 2007; 74:72–84.

    Article  PubMed  CAS  Google Scholar 

  • Gasic G.J.: Role of plasma, platelets, and endothelial cells in tumor metastasis. Cancer Metastasis Rev. 1984; 3:99–114.

    Article  PubMed  CAS  Google Scholar 

  • Goh P.P., Sze D.M., and Roufogalis B.D. Molecular and cellular regulators of cancer angiogenesis. Curr Cancer Drug Targets. 2007; 7:743–58.

    Article  PubMed  CAS  Google Scholar 

  • Gullino P.M., Grantham F.H., and Smith S.H.: The interstitial water space of tumors. Cancer Res. 1965.,25:727–31.

    PubMed  CAS  Google Scholar 

  • Gullino P.M.: The internal milieu of tumors. Prog Exp Tumor Res. 1966; 8:1–25.

    PubMed  CAS  Google Scholar 

  • Gunsilius E., Petzer A., Stockhammer G. etal.: Thrombocytes are the major source for soluble vascular endothelial growth factor in peripheral blood. Oncology. 2000; 58:169–74.

    Article  PubMed  CAS  Google Scholar 

  • Guyton A.C., Hall J.E.: The microcirculation and the lymphatic system: Capillary fluid exchange, interstitial fluid, and lymph flow. In “Textbook of Medical physiology”. Guyton A.C, and Hall J.E. editors. Elsevier Saunders publishers, Philadelphia, USA. 2006; pp. 181–194.

    Google Scholar 

  • Handin R.I.: Bleeding and Thrombosis. In “Harrison Principles of Internal Medecine”. Kaspoer D.L, Braunwald E, Fauci A., Hauser S.L., Longo D.L, and Jameson J.L. editors. McGraw Hill Editor. New York, Chicago London. 2005; pp. 337–343.

    Google Scholar 

  • Heit J.A., O’Fallon W.M., Petterson T.M., etal.: Relative impact of risk factors for deep vein thrombosis and pulmonary embolism: A population-based study. Arch Intern Med. 2002; 162:1245–1248.

    Article  PubMed  Google Scholar 

  • Heldin C.H., Rubin K., Pietras K. etal.: High interstitial fluid pressure– an obstacle in cancer therapy. Nat. Rev Cancer. 2004; 4:806–813.

    Article  PubMed  CAS  Google Scholar 

  • Hirsh J., Warkentin T.E., Shaughnessy S.G. etal.: Heparin and low-molecular-weight heparin. Chest. 2001; 119:64s–94s.

    Article  PubMed  CAS  Google Scholar 

  • Hirsh J.: Risk of thrombosis with lenalidomide and its prevention with aspirin. Chest. 2007; 131:275–277.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman M., and Monroe D.M.: Coagulation 2006: a modern view of hemostasis. Hematol Oncol Clin North Am. 2007; 21:1–11.

    Article  PubMed  Google Scholar 

  • Horton J.: Venous thrombotic events in cancer: the bottom line. Cancer Control. 2005; 12: 31–37.

    PubMed  Google Scholar 

  • Jain R.K.: Transport of molecules in the tumor interstitium: a review. Cancer Res. 1987; 47: 3039–51.

    PubMed  CAS  Google Scholar 

  • Jain R.K.: Determinants of tumor blood flow: A review. Cancer Res. 1988; 48:2641–2658.

    PubMed  CAS  Google Scholar 

  • Juhan-Vague I., Renucci J.F., Grimaux M. etal.: Thrombin-activatable fibrinolysis inhibitor antigen levels in cardiovascular risk factors. Arterioscler Thromb Vasc Biol. 2000; 20:2156–2161.

    PubMed  CAS  Google Scholar 

  • Jurasz P., Alonso-Escolano D., and Radomski M.W.: Platelet– cancer interactions: Mechanisms and pharmacology of tumour cell-induced platelet aggregation. Br J Pharmacol. 2004 Dec; 143(7):819–26.

    Article  PubMed  CAS  Google Scholar 

  • Kakkar V.V., and De Lorenzo F.: Prevention of venous thromboembolism in general surgery. Baillieres Clin Hematol. 1998 Sep; 11(3):605–19.

    Article  CAS  Google Scholar 

  • Karihtala P., and Soini Y.: Reactive oxygen species and antioxidant mechanisms in human tissues and their relation to malignancies. APMIS. 2007; 115:81–103.

    Article  PubMed  CAS  Google Scholar 

  • Kim J.W., and Dang C.V.: Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res. 2006 Sep 15; 66(18):8927–30.

    Article  PubMed  CAS  Google Scholar 

  • Kwaan H.C.: The biologic role of components of the plasminogen-plasmin system. Prog Cardiovasc Dis. 1992a; 34:309–316.

    Google Scholar 

  • Kwaan H.C.: The plasminogen-plasmin system in malignancy. Cancer Metastasis Rev. 1992b; 11:291–311.

    Google Scholar 

  • Kwaan H.C., Wang J., Svoboda K., and Declerck P.J.: Plasminogen activator inhibitor 1 may promote tumour growth through inhibition of apoptosis. Br J Cancer. 2000; 82:1702–1708.

    Article  PubMed  CAS  Google Scholar 

  • Kwaan H.C., and Vicuna B.: Thrombosis and bleeding in cancer patients. Oncol Rev. 2007; 1: 14–27.

    Article  Google Scholar 

  • Lamagna C., Aurrand-Lions M., and Imhof B.A.: Dual role of macrophages in tumor growth and angiogenesis. J Leukoc Biol. 2006; 80:705–713.

    Article  PubMed  CAS  Google Scholar 

  • Lee A.Y.Y., and Levine M.N.: The thrombophilic state induced by therapeutic agents in the cancer patient. Semin Thromb Hemost 1999; 25:137–145.

    Article  PubMed  CAS  Google Scholar 

  • Letai A., and Kuter D.J.: Cancer, coagulation, and anticoagulation. Oncologist. 1999; 4:443–9.

    PubMed  CAS  Google Scholar 

  • Levick J.R.: “An Introduction to Cardiovascular Physiology”. 2nd ed. Butterworth/Heineman Publisher. Oxford, UK. 1995; pp. 158–187.

    Google Scholar 

  • Levine M.N., and Lee A.Y.Y.: Treatment of venous thromboembolism in cancer patients. Semin Thromb Hemost. 1999; 25:245–249.

    Article  PubMed  CAS  Google Scholar 

  • Lewis C., and Murdoch C.: Macrophage responses to hypoxia: Implications for tumor progression and anti-cancer therapies. Am J Pathol. 2005; 167:627–35.

    PubMed  CAS  Google Scholar 

  • Liao H.: Molecular regulation of the PAI-1 gene by hypoxia: contributions of Egr-1, HIF-1α, and C/EBPα. The FASEB J. 2007; 21:935–949.

    Article  CAS  Google Scholar 

  • Loreto M.F., De Martinis M., Corsi M.P. etal.: Coagulation and cancer: Implications for diagnosis and management. Pathol Oncol Res. 2000; 6:301–312.

    Article  PubMed  CAS  Google Scholar 

  • Lowe G.D.O.: Virchow’s triad revisited: Abnormal blood flow. Pathophysiol Haemost Thromb 2003/2004; 33:455–457.

    Article  PubMed  Google Scholar 

  • Lox C.D., Ronaghan C.A., Cobos E., etal.: Tamoxifen-induced changes in the plasma fibrinolytic factors in menopausal women with breast cancer. Clin Appl Thromb Hemost 1997; 3: 234–238.

    Article  Google Scholar 

  • Lwaleed B.A., Cooper A.J., Voegeli D. etal.: Tissue factor: A critical role in inflammation and cancer. Biol Res Nurs. 2007; 9:97–107.

    Article  PubMed  CAS  Google Scholar 

  • Maeda H., Wu J., Sawa T. etal.: Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J Control Release. 2000; 65:271–84.

    Article  PubMed  CAS  Google Scholar 

  • Mannucci P.M., Bettega D., Chantarangkul V. etal.: Effect of tamoxifen on measurements of hemostasis in healthy women. Arch Intern Med. 1996; 156:1806–10.

    Article  PubMed  CAS  Google Scholar 

  • McDonald D.M., and Baluk P.: Significance of blood vessel leakiness in cancer. Cancer Res. 2002; 62:5381–5385.

    PubMed  CAS  Google Scholar 

  • McDonald D.M., and Foss A.J.: Endothelial cells of tumor vessels: Abnormal but not absent. Cancer Metastasis Rev. 2000; 19:109–120.

    Article  PubMed  CAS  Google Scholar 

  • Milosevic M., Fyles A., and Hill R.: Interstitial fluid pressure in cervical cancer: Guide to targeted therapy. Am J Clin Oncol. 2001; 24:516–21.

    Article  PubMed  CAS  Google Scholar 

  • Morel O., Morel N., Hugel B., Jesel L., Vinzio S., Goichot B., Bakouboula B., Grunebaum L., Freyssinet J.M., and Toti F.: Les microparticules circulantes: Roles physiologiques et implications dans les maladies inflammatoires et thrombiques. Le Revue de Medicine Interne. 2005; 26:791–801.

    Article  CAS  Google Scholar 

  • Morel O., Morel N., Freyssinet J.M., and Toti F.: Platelet microparticles and vascular cells interactions: A checkpoint between the hemostatic and thrombotic responses. Platelets. 2008; 19:9–23.

    Article  PubMed  CAS  Google Scholar 

  • Morikawa S., Baluk P., Kaidoh T., etal.: Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol. 2002; 160:985–1000.

    PubMed  Google Scholar 

  • Murdoch C., Muthana M., and Lewis C.E.: Hypoxia regulates macrophage functions in inflammation. J Immunol. 2005 Nov 15; 175(10):6257–63.

    PubMed  CAS  Google Scholar 

  • Myohanen H., and Vaheri A.: Regulation and interactions in the activation of cell-associated plasminogen. Cell Mol Life Sci 2004; 61:2840–2858.

    Article  PubMed  CAS  Google Scholar 

  • Nagy J.A., Brown L.F., Senger D.R. etal.: Pathogenesis of tumor stroma generation: A critical role offor leaky blood vessels and fibrin deposition. Biochim Biophys Acta. 1989; 948:305–326.

    PubMed  CAS  Google Scholar 

  • Nierodzik M.L., and Karpatkin S.: Thrombin induces tumor growth, metastasis, and angiogenesis: Evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell. 2006 Nov; 10(5):355–62.

    Article  PubMed  CAS  Google Scholar 

  • Nijziel M.R., van Oerle R., Hillen H.F.P. etal.: From trousseau to angiogenesis: The link between the hemostatic system and cancer. Neth J Med. 2006; 64:403–10.

    PubMed  CAS  Google Scholar 

  • Noel A., Maillard C., Rocks N., Jost M., etal.: Membrane associated proteases and their inhibitors in tumour angiogenesis. J Clin Pathol. 2004 Jun; 57(6):577–84.

    Article  PubMed  CAS  Google Scholar 

  • Norris L.A.: Blood coagulation. Best Pract Res Clin Obstet Gynaecol. 2003; 17:369–83.

    Article  PubMed  Google Scholar 

  • Ramos Y., and Nyska A.: Drug–induced thrombosis-experimental, clinical, and mechanicistic considerations. Toxicol Pathol. 2007; 35:208–225.

    Article  CAS  Google Scholar 

  • Rella C., Coviello M., Giotta F. etal.: A prothrombotic state in breast cancer patients treated with adjuvant chemotherapy. Breast Cancer Res Treat. 1996; 40:151–9.

    Article  PubMed  CAS  Google Scholar 

  • Richardson P.D., and Longmore D.B.: Rheological factors in platelet-vessel wall interactions. Philos Trans R Soc Lond B Biol Sci. 1981; 294:251–266.

    Article  PubMed  CAS  Google Scholar 

  • Riddel J.P., Bradley E.A., Miaskowski C. etal.: Theories of blood coagulation. J Pediatr Oncol Nurs. 2007; 24:123–31.

    Article  PubMed  Google Scholar 

  • Shepro D., and Morel N. M. Pericyte physiology. FASEB J. 1993; 7:1031–8.

    PubMed  CAS  Google Scholar 

  • Sierko E., and Wojtukiwiewicz M.Z.: Inhibition of platelet function: Does it offer a chance of better cancer progression control? Semin Thromb Hemost. 2007; 33:712–21.

    Article  PubMed  CAS  Google Scholar 

  • Sierko E., and Wojtukiwiewicz M.Z.: Platelets and angiogenesis in malignancy. Semin Thromb Hemost. 2004; 30:95–108.

    Article  PubMed  CAS  Google Scholar 

  • Simionescu N., and Simionescu M.: The cardiovascular system. In “Cell and Tissue Biology. ATextbook of Histology”. Leon Weiss Editor. Urban &; Schwarzenberg Publisher. Baltimore-Munich. 1998; pp. 355–398.

    Google Scholar 

  • Simon J.M.: Hypoxia and angiogenesis. Bull Cancer. 2007; 94:S160–5.

    PubMed  CAS  Google Scholar 

  • Smith R.E., Janjan N., Kretzschmar S., and Hackbarth D.: The effect of radiation therapy on von Willebrand factor in patients with angiosarcoma. Radiother Oncol. 1989; 16:297–304.

    Article  PubMed  CAS  Google Scholar 

  • Soff G.A., Sanderowitz J., Gately S., Verusio E. etal.: Expression of plasminogen activator inhibitor type 1 by human prostate carcinoma cells inhibits primary tumor growth, tumor-associated angiogenesis, and metastasis to lung and liver in an athymic mouse model. J Clin Invest. 1995; 96:2593–2600.

    Article  PubMed  CAS  Google Scholar 

  • Starling E.H. On the Absorption of Fluids from the Connective Tissue Spaces. J Physiol. 1896; 19:312–26.

    PubMed  CAS  Google Scholar 

  • Stevenson J.L., Choi S.H, and Varki A.: Differential metastasis inhibition by clinically relevant levels of heparins-correlation with selectin inhibition, non antithrombotic activity. Clin Cancer Res. 2005; 11:7003–7011.

    Article  PubMed  CAS  Google Scholar 

  • Stohrer M., Boucher Y., Stangassinger M. etal.: Oncotic pressure in solid tumors is elevated. Cancer Res. 2000; 60:,4251–5.

    PubMed  CAS  Google Scholar 

  • Uchiyama S., Yamazaki M. and Maruyama S.: Role of platelet-activating factor in aggregation of leukocytes and platelets in cerebral ischemia. Lipids. 1991; 26:1247–9

    Article  PubMed  CAS  Google Scholar 

  • Van Heeckeren W.J., Sanborn S.L., Narayan A. etal.: Complications from vascular disrupting agents and angiogenesis inhibitors: aberrant control of hemostasis and thrombosis. Curr Opin Hematol. 2007; 14:,468–80.

    Article  PubMed  Google Scholar 

  • Van Hinsbergh V.W.M.: The endothelium: vascular control of hemostasis. Eur J Obstet Gynecol Reprod Biol. 2001; 95:198–201.

    Article  PubMed  Google Scholar 

  • Van Kempen L.C.L.T, Ruiter D.J., Goos N.P. etal.: The tumor microenvironment: A critical determinant of neoplastic evolution. Eur J Cell Biol. 2003; 82:539–48.

    Article  PubMed  Google Scholar 

  • Varki A.: Trousseau‘s syndrome: Multiple definitions and multiple mechanisms. Blood. 2007; 110:1723–1729.

    Article  PubMed  CAS  Google Scholar 

  • Vaupel P., and Mayer A.: Hypoxia in cancer: Significance and impact on clinical outcome. Cancer Metastasis Rev. 2007; 26:225–39.

    Article  PubMed  CAS  Google Scholar 

  • Vassalli J.D., Sappino A.P., and Belin D.: The plasminogen activator/plasmin system. J Clin Invest. 1991; 88:1067–1072.

    Article  PubMed  CAS  Google Scholar 

  • Verheul H.M., Jorna A.S., Hoekman K. etal.: Vascular endothelial growth factor-stimulated endothelial cells promote adhesion and activation of platelets. Blood. 2000; 96:4216–21.

    PubMed  CAS  Google Scholar 

  • Virchow R.: Neuer fall von todlichen. Emboli der lungenarterie. Arch Pathol Anat. 1856; 10: 225–28.

    Article  Google Scholar 

  • Vitseva O., Flockhart D.A., Jin Y. etal.: The effects of tamoxifen and its metabolites on platelet function and release of reactive oxygen intermediates. JPET 2005; 312:1144–1150.

    Article  CAS  Google Scholar 

  • von Tempelhoff G.F., Schönmann N., Heilmann L., etal.: Prognostic role of plasmaviscosity in breast cancer. Clin Hemorheol Microcirc. 2002; 26:55–61.

    Google Scholar 

  • Wang J., Weiss I., Svoboda K. etal.: Thrombogenic role of cells undergoing apoptosis. Br J Hematol. 2001; 115:382–91.

    Article  CAS  Google Scholar 

  • Weitz J.I.: Low-molecular-weight heparins. New Engl J Med. 1997; 337:688–698.

    Article  PubMed  CAS  Google Scholar 

  • Widakowich C., de Castro G., Jr, de Azambuja E. etal.: Review: side effects of approved molecular targeted therapies in solid cancers. Oncologist. 2007 Dec; 12(12):1443–55.

    Article  PubMed  CAS  Google Scholar 

  • Wojtukiewicz M.Z., Sierko E., Klement P., and Rak J.: The hemostatic system and angiogenesis in malignancy. Neoplasia. 2001; 3:371–84.

    Article  PubMed  CAS  Google Scholar 

  • Xian X., Håkansson J., Ståhlberg A., Lindblom P. etal.: Pericytes limit tumor cell metastasis. JClin Invest. 2006; 116:642–51.

    Article  CAS  Google Scholar 

  • Yu J.L., May L., Klement P. etal.: Oncogenes as regulators of tissue factor expression in cancer: Implications for tumor angiogenesis and anti-cancer therapy. Semin Thromb Hemost. 2004; 30:21–30.

    Article  PubMed  CAS  Google Scholar 

  • Zakarija A., and Kwaan H.C.: Adverse effects on haemostatic function caused by drugs used in hematologic malignancies. Sem Thromb Hemost. 2007; 33:355–364.

    Article  CAS  Google Scholar 

  • Zacharski L.R., Prandoni P., and Monreal M.: Warfarin versus low– molecular– weight heparin therapy in cancer patients. Oncologist 2005; 10:72–79.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Baronzio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Baronzio, G., Freitas, I., Hau, K. (2009). Significance of Tumor Microenvironment on the Genesis of: Interstitial Fluid, Angiogenesis, Haemostatic/Haemorheologic Abnormalities. Pathogenesis and Therapeutic Aspects. In: Baronzio, G., Fiorentini, G., Cogle, C.R. (eds) Cancer Microenvironment and Therapeutic Implications. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9576-4_3

Download citation

Publish with us

Policies and ethics