Skip to main content

Targeting Tumour Vascularization from Bench to Bedside: Suggestions for Combination with Hyperthermia

  • Chapter
Cancer Microenvironment and Therapeutic Implications

Abstract

Angiogenesis is an important pathway in tumour growth and progression. Overexpression of pro-angiogenic factor or down regulation of physiologic angiogenic inhibitors are the stimuli that induce new blood vessel formation from a pre-existing vascular bed. On the other hand tumour vasculature is a major important factor influencing the therapeutic application of hyperthermia used as anticancer therapy. Both endothelial cells and microvessels can be lethally damaged by the hyperthermia. Because tumour vasculature is a target of hyperthermia combined treatments with angiogenesis inhibiting agents or vascular disrupting agents and hyperthermia may lead to synergetic effects or potentiation of the combined therapy over each modality alone. In this chapter we summarize the state of the art regarding the combination between drugs that targeting tumour vasculature and hyperthermia, furthermore the pre-clinical rationale for future clinical trials is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Baguley BC. (2003). Antivascular therapy of cancer: DMXAA. Lancet Oncol., 4:141–8.

    Article  PubMed  CAS  Google Scholar 

  • Bergers G, Hanahan D, Coussens LM. (1998). Angiogenesis and apoptosis are cellular parameters of neoplastic progression in transgenic mouse models of tumorigenesis. Int. J. Dev. Biol., 42(7):995–1002.

    PubMed  CAS  Google Scholar 

  • Blakey DC, Westwood FR, Walker M, Hughes GD, Davis PD, Ashton SE, Ryan AJ. (2002). Antitumor activity of the novel vascular targeting agent ZD6126 in a panel of tumor models. Clin. Cancer Res., 8:1974–83.

    PubMed  CAS  Google Scholar 

  • Brattstrom D, Bergqvist M, Hesselius P, Larsson A, Wagenius G, Brodin O. (2004). Serum VEGF and bFGF adds prognostic information in patients with normal platelet counts when sampled before, during and after treatment for locally advanced non-small cell lung cancer. Lung Cancer, 43(1):55–62.

    Article  PubMed  CAS  Google Scholar 

  • Brooks PC, Strömblad S, Klemke R, Visscher D, Sarkar FH, Cheresh DA. (1995) Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. J. Clin. Invest., 96(4):1815–22.

    Article  PubMed  CAS  Google Scholar 

  • Byrne AM, Bouchier-Hayes DJ, Harmey JH. (2005). Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J. Cell. Mol. Med. 9(4):777–94.

    Article  PubMed  CAS  Google Scholar 

  • Calderwood SK, Theriault JR, Gong J. (2005). How is the immune response affected by hyperthermia and heat shock proteins? Int. J. Hyperthermia, 21(8):713–6.

    Article  PubMed  CAS  Google Scholar 

  • Dameron KM, Volpert OV, Tainsky MA, Bouck N. (1994). Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science, 9;265(5178):1582–4.

    Article  PubMed  CAS  Google Scholar 

  • Davis PD, Tozer GM, Naylor MA, Thomson P, Lewis G, Hill SA. (2002). Enhancement of vascular targeting by inhibitors of nitric oxide synthase. Int. J. Radiat. Oncol. Biol. Phys., 54:1532–6.

    PubMed  CAS  Google Scholar 

  • Denekamp J. (1982). Endothelial cell proliferation as a novel approach to targeting tumour therapy. Br. J. Cancer, 45:136–9.

    PubMed  CAS  Google Scholar 

  • Denekamp J. (1990). Vascular attack as a therapeutic strategy for cancer. Cancer Metastasis Rev. 9:267–82.

    Article  PubMed  CAS  Google Scholar 

  • Denekamp J, Hobson B. (1983). Vascular occlusion and tumour cell death. Eur J Cancer Clin Oncol., 19: 271–5.

    Article  PubMed  CAS  Google Scholar 

  • Dewhirst MW, Vujaskovic Z, Jones E, Thrall D. (2005). Re-setting the biologic rationale for thermal therapy. Int. J. Hyperthermia, 21(8):779–90.

    Article  PubMed  Google Scholar 

  • Distler O, Neidhart M, Gay RE, Gay S. (2002). The molecular control of angiogenesis. Int. Rev. Immunol., 21(1):33–49.

    Article  PubMed  CAS  Google Scholar 

  • Eikesdal HP, Bjerkvig R, Mella O, Dahl O. (2001a). Combretastatin A-4 and hyperthermia;a potent combination for the treatment of solid tumors. Radiother. Oncol., 60:147–54.

    Google Scholar 

  • Eikesdal HP, Bjerkvig R, Raleigh JA, Mella O, Dahl O. (2001b). Tumor vasculature is targeted by the combination of combretastatin A-4 and hyperthermia. Radiother. Oncol., 61: 313–20.

    Google Scholar 

  • Eikesdal HP, Bjorkhaug ST, Dahl O. (2002). Hyperthermia exhibits anti-vascular activity in the s.c. BT4An rat glioma: lack of interaction with the angiogenesis inhibitor batimastat. Int. J. Hyperthermia, 18(2):141–52.

    Article  PubMed  CAS  Google Scholar 

  • Eikesdal HP, Schem BC, Mella O, Dahl O. (2000). The new tubulin-inhibitor combretastatin A-4 enhances thermal damage in the BT4An rat glioma. Int. J. Radiat. Oncol. Biol. Phys. 1;46(3):645–52.

    PubMed  CAS  Google Scholar 

  • Enhancement effect of an anti-angiogenic agent, TNP-470, on hyperthermia-induced growth suppression of human esophageal and gastric cancers transplantable to nude mice. Anticancer Res., 15(4):1355–8.

    Google Scholar 

  • Falk MH, Issels RD. (2001). Hyperthermia in oncology. Int. J. Hyperthermia, 17(1):1–18.

    Article  PubMed  CAS  Google Scholar 

  • Folkman J. (1971). Tumor angiogenesis: therapeutic implications. N. Engl. J. Med., 285(21): 1182–6.

    PubMed  CAS  Google Scholar 

  • Folkman J. (2002). Role of angiogenesis in tumor growth and metastasis. Semin Oncol., 29(6): 15–8.

    Article  PubMed  CAS  Google Scholar 

  • Folkman J. (2004). Endogenous angiogenesis inhibitors. A.P.M.I.S., 12(7–8):496–507.

    Google Scholar 

  • Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol., 16(9):4604–13.

    PubMed  CAS  Google Scholar 

  • Gadaleta C, Catino A, Mattioli V. (2006). Radiofrequency thermal ablation in the treatment of lung malignancies. In Vivo, 20(6A):765–7.

    PubMed  Google Scholar 

  • Gadaleta C, Catino A, Ranieri G, Armenise F, Colucci G, Lorusso V, Cramarossa A, Fiorentini G, Mattioli V. (2004). Radiofrequency thermal ablation of 69 lung neoplasms. J. Chemother., 16(5):86–9.

    PubMed  Google Scholar 

  • Gadaleta C, Coviello M, Catino A, Venneri MT, Stea B, Quaranta M, Mattioli V, Ranieri G. (2004). Serum vascular endothelial growth factor concentrations in hepatocellular cancer patients undergoing percutaneously radiofrequency thermal ablation. J. Chemother., 16(5):7–10.

    PubMed  CAS  Google Scholar 

  • Galbraith SM, Chaplin DJ, Lee F, Stratford MR, Locke RJ, Vojnovic B, Tozer GM. (2001). Effects of combretastatin A4 phosphate on endothelial cell morphology in vitro and relationship to tumour vascular targeting activity in vivo. Anticancer Res., 21:93–102,

    PubMed  CAS  Google Scholar 

  • Gasparini G. (1999).The rationale and future potential of angiogenesis inhibitors in neoplasia. Drugs, 58(1):17–38.

    Article  PubMed  CAS  Google Scholar 

  • Gasparini G, Brooks PC, Biganzoli E, Vermeulen PB, Bonoldi E, Dirix LY, Ranieri G, Miceli R, Cheresh DA. (1998). Vascular integrin alpha(v)beta3: a new prognostic indicator in breast cancer. Clin. Cancer Res., 4(11):2625–34.

    PubMed  CAS  Google Scholar 

  • Griffioen AW, Molema G. (2000). Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev., 52(2):237–68.

    PubMed  CAS  Google Scholar 

  • Griggs J, Metcalfe JC, Hesketh R. (2001). Targeting tumour vasculature: the development of combretastatin A4. Lancet Oncol., 2:82–7.

    Article  PubMed  CAS  Google Scholar 

  • Hokland SL, Horsman MR. (2007). The new vascular disrupting agent combretastatin-A1-disodium-phosphate (OXi4503) enhances tumour response to mild hyperthermia and thermoradiosensitization. Int. J. Hyperthermia, 23(7):599–606.

    Article  PubMed  CAS  Google Scholar 

  • Holmgren L, O’Reilly MS, Folkman J. (1995). Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat. Med., 1(2):149–53.

    Article  PubMed  CAS  Google Scholar 

  • Horsman MR. (2008). Angiogenesis and vascular targeting: relevance for hyperthermia. Int. J. Hyperthermia, 24(1):57–65.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda S, Akagi K, Shiraishi T, Tanaka Y. (1998). Enhancement of the effect of an angiogenesis inhibitor on murine tumors by hyperthermia. Oncol. Rep., 5(1):181–4.

    PubMed  CAS  Google Scholar 

  • Kampinga HH. (2006). Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field. Int. J. Hyperthermia, 22(3):191–6.

    Article  PubMed  CAS  Google Scholar 

  • Kanamori S, Nishimura Y, Okuno Y, Horii N, Saga T, Hiraoka M. (1999). Induction of vascular endothelial growth factor (VEGF) by hyperthermia and/or an angiogenesis inhibitor. Int. J. Hyperthermia, 15(4):267–78.

    Article  PubMed  CAS  Google Scholar 

  • Kanthou C, Tozer GM. (2002). The tumor vascular targeting agent combretastatin A-4-phosphate induces reorganization of the actin cytoskeleton and early membrane blebbing in human endothelial cells. Blood, 99:2060–9.

    Article  PubMed  CAS  Google Scholar 

  • Kumar-Singh S, Weyler J, Martin MJ, Vermeulen PB, Van Marck E. (1999). Angiogenic cytokines in mesothelioma: a study of VEGF, FGF-1 and -2, and TGF beta expression. J. Pathol., 189(1):72–8.

    Article  PubMed  CAS  Google Scholar 

  • Malcontenti-Wilson C, Muralidharan V, Skinner S, Christophi C, Sherris D, O’Brien PE. (2001). Combretastatin A4 prodrug study of effect on the growth and the microvasculature of colorectal liver metastases in a murine model. Clin. Cancer Res., 7:1052–60.

    PubMed  CAS  Google Scholar 

  • Masunaga S, Ono K, Nishimura Y, Kanamori S, Saga T, Suzuki M, Kinashi Y, Takagaki M, Kasai S, Nagasawa H, Uto Y, Hori H. (2000). Combined effects of tirapazamine and mild hyperthermia on anti-angiogenic agent (TNP-470) treated tumors-reference to the effect on intratumor quiescent cells. Int. J. Radiat. Oncol. Biol. Phys., 1;47(3):799–807.

    Article  Google Scholar 

  • Melder RJ, Koenig GC, Witwer BP, Safabakhsh N, Munn LL, Jain RK. (1996). During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nat. Med., 2(9):992–7.

    Article  PubMed  CAS  Google Scholar 

  • Murata R, Overgaard J, Horsman MR. (2001). Potentiation of the anti-tumour effect of hyperthermia by combining with the vascular targeting agent 5, 6-dimethylxanthenone-4-acetic acid. Int. J. Hyperthermia, 17:508–19.

    Article  PubMed  CAS  Google Scholar 

  • Ng R, Chen EX. (2006). Sorafenib (BAY 43-9006): review of clinical development. Curr. Clin. Pharmacol., 1(3):223–8.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura Y, Murata R, Hiraoka M. (1996). Combined effects of an angiogenesis inhibitor (TNP-470) and hyperthermia. Br. J. Cancer, 73(3):270–4.

    PubMed  CAS  Google Scholar 

  • Ohguri T, Imada H, Yahara K, Kakeda S, Tomimatsu A, Kato F, Nomoto S, Terashima H, Korogi Y. (2004). Effect of 8-MHz radiofrequency-capacitive regional hyperthermia with strong superficial cooling for unresectable or recurrent colorectal cancer. Int. J. Hyperthermia, 20(5):465–75.

    Article  PubMed  CAS  Google Scholar 

  • Ohno T, Kawano K, Sasaki A, Aramaki M, Tahara K, Etoh T, Kitano S. (2002). Antitumor and antivascular effects of AC-7700, a combretastatin A-4 derivative, against rat liver cancer. Int. J. Clin. Oncol., 7:171–6.

    Article  PubMed  CAS  Google Scholar 

  • Okada F, Rak JW, Croix BS, Lieubeau B, Kaya M, Roncari L, Shirasawa S, Sasazuki T, Kerbel RS. (1998). Impact of oncogenes in tumor angiogenesis: mutant K-ras up-regulation of vascular endothelial growth factor/vascular permeability factor is necessary, but not sufficient for tumorigenicity of human colorectal carcinoma cells. Proc. Natl. Acad. Sci. USA., 31;95(7): 3609–14.

    Article  Google Scholar 

  • Otani M, Natsume T, Watanabe JI, Kobayashi M, Murakoshi M, Mikami T, Nakayama T. (2000). TZT-1027, an antimicrotubule agent, attacks tumor vasculature and induces tumor cell death. Jpn. J. Cancer Res., 91:837–44.

    PubMed  CAS  Google Scholar 

  • Patruno R, Arpaia N, Gadaleta CD, Passantino L, Zizzo N, Misino A, Lucarelli NM, Catino A, Valerio P, Ribatti D, Ranieri G. (2008). VEGF concentration from plasma activated platelets rich correlates with microvascular density and grading in canine mast cell tumour spontaneous model. J. Cell Mol. Med., 2008 Apr 18.

    Google Scholar 

  • Patruno R, Zizzo N, Zito AF, Catalano V, Valerio P, Pellecchia V, D’errico E, Mazzone F, Ribatti D, Ranieri G. (2006) Leuk. Lymph., 47(6):1138–43.

    Google Scholar 

  • Perez CA, Emami B. (1989) Clinical trials with local (external and interstitial) irradiation and hyperthermia. Current and future perspectives. Radiol. Clin. North. Am. 27(3):525–42.

    PubMed  CAS  Google Scholar 

  • Philpott M, Baguley BC, Ching LM. (1995). Induction of tumour necrosis factor- by single and repeated doses of the antitumour agent 5, 6-dimethylxanthenone-4-acetic acid. Cancer Chemother. Pharmacol., 36:143–8.

    Article  PubMed  CAS  Google Scholar 

  • Polyzos A. (2008). Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma and various other solid tumors. J. Steroid Biochem. Mol. Biol., 108(3–5):261–6.

    Article  PubMed  CAS  Google Scholar 

  • Rak J, Filmus J, Finkenzeller G, Grugel S, Marmé D, Kerbel RS. (1995). Oncogenes as inducers of tumor angiogenesis. Cancer Metastasis Rev., 14(4):263–77.

    Article  PubMed  CAS  Google Scholar 

  • Rak J, Yu JL, Klement G, Kerbel RS. (2000) Oncogenes and angiogenesis: signaling three-dimensional tumor growth. J. Investig. Dermatol. Symp. Proc., 5(1):24–33.

    Article  PubMed  CAS  Google Scholar 

  • Ramnath N, Creaven PJ. (2004). Matrix metalloproteinase inhibitors. Curr. Oncol. Rep., 6(2):96–102.

    Article  PubMed  Google Scholar 

  • Ranieri G, Coviello M, Chiriatti A, Stea B, Montemurro S, Quaranta M, Dittami R, Paradiso A. (2004). Vascular endothelial growth factor assessment in different blood fractions of gastrointestinal cancer patients and healthy controls. Oncol. Rep., 11(2):435–9.

    PubMed  CAS  Google Scholar 

  • Ranieri G, Coviello M, Patruno R, Valerio P, Martino D, Milella P, Catalano V, Scotto F, De Ceglie A, Quaranta M, Ribatti D, Pellecchia A. (2004). Vascular endothelial growth factor concentrations in the plasma-activated platelets rich (P-APR) of healthy controls and colorectal cancer patients. Oncol. Rep., 12(4):817–20.

    PubMed  CAS  Google Scholar 

  • Ranieri G, Gasparini G. (2001). Surrogate Markers of Angiogenesis and metastasis. In Brooks S, eds. Metastasis Research Protocols. Humana Press, UK, Oxford, pp. 99–114.

    Chapter  Google Scholar 

  • Ranieri G, Gasparini G, Angiogenesis and angiogenesis inhibitors. (2001) A new potential anticancer therapeutic strategy. Curr. Drug Targets Immune Endocrine Metabolic Disordies, 1:179–87.

    Article  Google Scholar 

  • Ranieri G, Labriola A, Achille G, Florio G, Zito AF, Grammatica L, Paradiso A. (2002). Microvessel density, mast cell density and thymidine phosphorylase expression in oral squamous carcinoma. Int. J. Oncol., 21(6):1317–23.

    PubMed  CAS  Google Scholar 

  • Ranieri G, Patruno R, Lionetti A, Di Summa A, Mattioli E, Bufo P, Pellecchia A, Ribatti D, Zizzo N. (2005). Endothelial area and microvascular density in a canine non-Hodgkin’s lymphoma: an interspecies model of tumor angiogenesis. Leuk. Lymph., 46(11):1639–1643.

    Article  Google Scholar 

  • Ranieri G, Patruno R, Ruggieri E, Montemurro S, Valerio P, Ribatti D. (2006). Vascular endothelial growth factor (VEGF) as a target of bevacizumab in cancer: from the biology to the clinic. Curr. Med. Chem. 13(16):1845–57.

    Article  PubMed  CAS  Google Scholar 

  • Ranieri G, Ria R, Roccaro AM, Vacca A, Ribatti D. (2005). Development of vascular targeting strategies for the treatment of chronic inflammatory diseases. Curr Drug Targets Inflamm Allergy, 4:13–22

    Article  PubMed  CAS  Google Scholar 

  • Reinhold HS, Endrich B. (1986). Tumour microcirculation as a target for hyperthermia. Int. J. Hyperthermia, 2(2):111–37.

    Article  PubMed  Google Scholar 

  • Responses of tumour cell lines implanted onto the chorioallantoic membrane of chick embryo to anticancer agents in combination with hyperthermia. Urol. Res., 20(3):237–9.

    Google Scholar 

  • Roca C, Primo L, Valdembri D, Cividalli A, Declerck P, Carmeliet P, Gabriele P, Bussolino F. (2003). Hyperthermia inhibits angiogenesis by a plasminogen activator inhibitor 1-dependent mechanism. Cancer Res., 63(7):1500–7.

    PubMed  CAS  Google Scholar 

  • Vascular Targeting: Clinical Experience. Horizons in Cancer Therapeutics. From Bench to Bedside: Vol. 3, No2.

    Google Scholar 

  • Thompson JF, Kam PC. (2008). Current status of isolated limb infusion with mild hyperthermia for melanoma. Int. J. Hyperthermia, 24(3):219–25.

    Article  PubMed  CAS  Google Scholar 

  • Thorpe PE, Chaplin DJ, Blakey DC. (2003). The first international conference on vascular targeting: meeting overview. Cancer Res., 63:1144–7.

    PubMed  CAS  Google Scholar 

  • Tozer GM, Prise VE, Wilson J, Locke RJ, Vojnovic B, Stratford MR, Dennis MF, Chaplin DJ. (1999). Combretastatin A-4 phosphate as a tumor vascular-targeting agent: early effects in tumors and normal tissues. Cancer Res., 59:1626–34.

    PubMed  CAS  Google Scholar 

  • Uchibayashi T, Egawa M, Nakajima K, Hisazumi H, Tanaka M, Endo Y, Sasaki T. (1992).

    Google Scholar 

  • Vailhe B, Feige JJ. (2003). Thrombospondins as anti-angiogenic therapeutic agents. Curr. Pharm. Des., 9(7):583–8.

    Article  PubMed  CAS  Google Scholar 

  • van der Zee J. (2002). Heating the patient: a promising approach? Ann. Oncol., 13(8):1173–84.

    Article  PubMed  Google Scholar 

  • Vermeulen PB, Gasparini G, Fox SB, Colpaert C, Marson LP, Gion M, Belien JA, de Waal RM, Van Marck E, Magnani E, Weidner N, Harris AL, Dirix LY. (2002). Heterogeneity of vascularisation in invasive breast carcinoma. Eur. J. Cancer, 38(12):1564–79.

    Article  PubMed  CAS  Google Scholar 

  • Weidner N, Semple JP, Welch WR, Folkman J. (1991). Tumor angiogenesis and metastasis – correlation in invasive breast carcinoma. N. Engl. J. Med., 324(1):1–8.

    PubMed  CAS  Google Scholar 

  • Woglom WH. (1923). A critique of tumour resistance. J Cancer Res., 7: 283–311.

    Google Scholar 

  • Wust P, Riess H, Hildebrandt B, Löffel J, Deja M, Ahlers O, Kerner T, von Ardenne A, Felix R. (2000). Feasibility and analysis of thermal parameters for the whole-body-hyperthermia system IRATHERM-2000. Int. J. Hyperthermia, 16(4):325–39.

    Article  PubMed  CAS  Google Scholar 

  • Wylie S, MacDonald IC, Varghese HJ, Schmidt EE, Morris VL, Groom AC, Chambers AF. (1999). The matrix metalloproteinase inhibitor batimastat inhibits angiogenesis in liver metastases of B16F1 melanoma cells. Clin. Exp. Metastasis, 17(2):111–7.

    Article  PubMed  CAS  Google Scholar 

  • Yano T, Tanase M, Watanabe A, Sawada H, Yamada Y, Shino Y, Nakano H, Ohnishi T. (1995).

    Google Scholar 

  • Zhang Y. (1998). Matrix metalloproteinase inhibitors. IDrugs. 1(7):750–1.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ranieri, G., Catino, A., Mattioli, V., Fazio, V., Caldarola, G.G., Gadaleta, C.D. (2009). Targeting Tumour Vascularization from Bench to Bedside: Suggestions for Combination with Hyperthermia. In: Baronzio, G., Fiorentini, G., Cogle, C.R. (eds) Cancer Microenvironment and Therapeutic Implications. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9576-4_11

Download citation

Publish with us

Policies and ethics