Effective Wall Thickness of Single-Walled Carbon Nanotubes for Multi-Scale Analysis: The Problem and a Possible Solution

  • L. C. Zhang
  • C. Y. Wang
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 13)

Abstract

Continuum mechanics models have been used to characterize the mechanical behaviour of carbon nanotubes, but their validity down to the nanometer scale has not been fully verified. A typical example is the effective wall thickness of single-walled carbon nanotubes (SWCNTs), which has not been well defined after years of effort. This paper proposes a sufficient condition for determining the effective wall thickness h and Young's modulus E of an SWCNT using in-plane stiffness, K in-plane, torsion stiffness, D torsion, bending stiffness, D bending, and off-plane torsion stiffness, K torsion, as the independent elastic constants of a continuum model. The paper concludes that when the Vodenitcharova-Zhang's necessary condition and D bending/K in-plane = D torsion/K torsion are satisfied, the intersect of D bending and K in-plane curves in the E–h plane will determine a unique h, and in turn, leads to a defined E. For SWCNT (10, 10), h≈ 0.1 nmandE≈3.5TPa.

Keywords

Graphite Hydrocarbon Lution Kelly Defend 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Odegard, GM, Gates, TS, Nicholson, LM and Wise, KE (2002) Equivalent-Continuum. Modeling with Application to Carbon Nanotubes. NASa/TM-2002-211454.Google Scholar
  2. 2.
    Wong, EW, Sheehan, PE and Lieber, CM (1997) Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975.CrossRefGoogle Scholar
  3. 3.
    Govindjee, S and Sackman, JL (1999) On the use of continuum mechanics to estimate the properties of nanotubes. Solid State Commun. 110:227–230.CrossRefADSGoogle Scholar
  4. 4.
    Yu, M. F., Files, B. S, Arepalli, S and Ruoff, RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84:5552–5555.PubMedCrossRefADSGoogle Scholar
  5. 5.
    Yu, MF, Lourie O, Dyer MJ, Moloni, K, Kelly TF and Ruoff, RS (2000) Strength & breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640.PubMedCrossRefADSGoogle Scholar
  6. 6.
    Hernández, E, Goze, C, Bernier, P and Rubio, A (1998) Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett. 80:4502–4505.CrossRefADSGoogle Scholar
  7. 7.
    Hernández, E, Goze, C, Bernier, P and Rubio, A (1999) Elastic properties of single-wall nan-otubes. Appl. Phys. A 68:287–292.CrossRefADSGoogle Scholar
  8. 8.
    Lu, JP (1997) The elastic properties of single and multilayered carbon nanotubes. J. Phys. Chem. Solids 58:1649–1652.CrossRefADSGoogle Scholar
  9. 9.
    Lu, JP (1997) Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79:1297–1300.CrossRefADSGoogle Scholar
  10. 10.
    Krishnan, A, Dujardin, E, Ebbesen, TW, Yianilos, PN and Treacy, MMJ (1998) Young's modulus of single-walled nanotubes. Phys. Rev. B 58:14013–14019.CrossRefADSGoogle Scholar
  11. 11.
    Thomsen, C, Reich, S, Jantoljak, H, Loa, I, Syassen, K, Burghard, M, Duesberg, GS and Roth, S (1999) Raman spectroscopy on single- and multi-walled nanotubes under high pressure. Appl. Phys. A 69:309–312.CrossRefADSGoogle Scholar
  12. 12.
    Vodenitcharova, T and Zhang, LC (2003) Effective wall thickness of a single-walled carbon nanotube. Phys. Rev. B 68:165401-1–4.CrossRefGoogle Scholar
  13. 13.
    Vainshtein, BK, Fridkin, VM and Indenbom, VL (1995) VFI Atomic Radii, Structure of Crystals, 3rd edn., Springer-Verlag, Berlin.Google Scholar
  14. 14.
    Zhang, P, Huang, Y, Gebelle, PH, Klein, PA and Hwang, KC (2002) The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. Int. J. Solids Struct. 39:3893–3906.MATHCrossRefGoogle Scholar
  15. 15.
    Zhang, P, Jiang, H, Huang, Y, Geubelle, PH and Hwang, KC (2004) An atomistic-based continuum theory for carbon nanotubes: Analysis of fracture nucleation. J. Mech. Phys. Solids 52:977–998.MATHCrossRefADSGoogle Scholar
  16. 16.
    Tersoff, J (1988) New empirical approach foe structure and energy of covalent bond. Phys. Rev. B 37:6991–7000.CrossRefADSGoogle Scholar
  17. 17.
    Brenner, DW (1990) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42:9458–9471.CrossRefADSGoogle Scholar
  18. 18.
    Mylvaganam, K and Zhang, LC (2004) Important issues in a molecular dynamics simulation forcharacterising the mechanical properties of carbon nanotubes. Carbon 42:2025–2032.CrossRefGoogle Scholar
  19. 19.
    Huang, Y, Wu, J and Hwang, KC (2006) Thickness of graphene and single-wall carbon nan-otubes. Phys. Rev. B 74:245413-1–9.Google Scholar
  20. 20.
    Flugge, W (1973) Stress in Shells, 2nd edn., Springer-Verlag, Berlin.Google Scholar
  21. 21.
    Saito, R, Takeya, T, Kimura, T, Dresselhaus, G and Dresselhaus, MS (1998) Raman intensity of single-wall carbon nanotubes. Phys. Rev. B 57:4145–4153.CrossRefADSGoogle Scholar
  22. 22.
    Popov, VN, VanDoren, VE and Balkanski, M (2000) Elastic properties of single-walled carbon nanotubes. Phys. Rev. B 61:3078–3084.CrossRefADSGoogle Scholar
  23. 23.
    Cao, JX, Yan, XH, Xiao, Y, Tang, Y and Ding, JW (2003) Exact study of lattice dynamics of single-walled carbon nanotubes. Phys. Rev. B 67:045413-1–13.Google Scholar
  24. 24.
    Li, ZM, Popov, VN and Tang, ZK (2004) A symmetry-adapted force-constant lattice-dynamical model for single-walled carbon nanotubes. Solid State Commun. 130:657–661.CrossRefADSGoogle Scholar
  25. 25.
    Gartstein, YN (2004) Vibrations of single-wall carbon nanotubes: Lattice models and low-frequency dispersion. Phys. Lett. A 327:83–89.MATHCrossRefADSGoogle Scholar
  26. 26.
    Suzuura, H and Ando, T (2002) Phonons and electron-phonon scattering in carbon nanotubes. Phys. Rev. B 65:235412-1–15.CrossRefGoogle Scholar
  27. 27.
    Yakobson, BI, Brabec, CJ and Bernholc, J (1996) Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett. 76:2511–2514.PubMedCrossRefADSGoogle Scholar
  28. 28.
    Sanchez-Portal, D, Artacho, E and Soler, JM (1999) Ab initio structural, elastic, and vibra-tional properties of carbon nanotubes. Phys. Rev. B 59:12678–12688.CrossRefADSGoogle Scholar
  29. 29.
    Zhou, X, Zhou, J & Ou-Yang, ZC (2000) Strain energy & Young's modulus of single-wall carbon nanotubes calculated from electronic energy-band theory. Phys. Rev. B 62:13692–13696.CrossRefADSGoogle Scholar
  30. 30.
    Kudin, KN, Scuseria, GE and Yakobson, BI (2001) C2F, BN, and C nanoshell elasticity from ab initio computations, Phys. Rev. B 64:235406-1–1.CrossRefGoogle Scholar
  31. 31.
    Wang, LF, Zheng, QS, Liu, JZ and Jiang, Q (2005) Size dependence of the thin-shell model for carbon nanotubes. Phys. Rev. Lett. 95:105501-1–4.Google Scholar
  32. 32.
    Yao, N and Lordi, V (1998) Nanomechanics of carbon tubes: Instabilities beyond linear response. J. Appl. Phys. 84:1939–1943.CrossRefADSGoogle Scholar
  33. 33.
    Tu, ZC and Ou-Yang, ZC (2002) Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's moduli dependent on layer number. Phys. Rev. B 65:233407-1–4.Google Scholar
  34. 34.
    Jin, Y and Yuan, FG (2003) Simulation of elastic properties of single-walled carbon nanotubes. Compos. Sci. Technol. 63:1057–1515.CrossRefGoogle Scholar
  35. 35.
    Pantano, A, Parks, DM and Boyce, MC (2004) Mechanics of deformation of single- and multi-wall carbon nanotubes. J. Mech. Phys. Solids 52:789–821.MATHCrossRefADSGoogle Scholar
  36. 36.
    Sears, A and Batra, RC (2004) Macroscopic properties of carbon nanotubes from molecular-mechanics simulations. Phys. Rev. B 69:235406-1–10.CrossRefGoogle Scholar
  37. 37.
    Shen, L and Li, J (2005) Equilibrium structure and strain energy of single-walled carbon nanotubes. Phys. Rev. B 71:165427-1–8.Google Scholar
  38. 38.
    Tserpes, K and Papanikos, P (2005) Finite element modeling of single-walled carbon nan-otubes. Composite: Part B 36:468–477.CrossRefGoogle Scholar
  39. 39.
    Belytschko, T, Xiao, SP, Schatz, GC and Ruoff, RS (2002) Atomistic simulations of nanotube fracture. Phys. Rev. B 65:235430-1–8.CrossRefGoogle Scholar
  40. 40.
    Li, C and Chou, TW (2003) A structural mechanics approach for the analysis of carbon nan-otubes. Int. J. Solids Struct. 40:2487–2499.MATHCrossRefGoogle Scholar
  41. 41.
    Bao, WX, Zhu, CC and Cui, WZ (2004) Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics. Physica B 352:156–163.CrossRefGoogle Scholar
  42. 42.
    Tombler, TW, Zhou, CW, Alexseyev, L, Kong, J, Dai, HJ, Liu, L, Jayanthi, CS, Tang, MJ and Wu, SY (2000) Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405:769–772.PubMedCrossRefADSGoogle Scholar
  43. 43.
    Chen, X and Cao, G (2006) A structural mechanics study of single-walled carbon nanotubes generalized from atomistic simulation. Nanotechnology 17:1004–1015.CrossRefADSGoogle Scholar
  44. 44.
    Wang, Q (2004) Effective in-plane stiffness and bending rigidity of armchair and zigzag carbon nanotubes. Int. J. Solids Struct. 41:5451–5461.MATHCrossRefGoogle Scholar
  45. 45.
    Wang, CY and Zhang, LC (2008) A critical assessment of the elastic properties and effective wall thickness of single-walled carbon nanotubes. Nanotechnology 19:075705-1–5.Google Scholar
  46. 46.
    Bakowies, D and Thiel, W (1991) MNDO study of large carbon clusters. J. Amer. Chem. Soc. 113:3704–3714.CrossRefGoogle Scholar
  47. 47.
    Adams, GB, Sankey, OF, Page, JB, O'Keeffe, M and Drabold, DA (1992) Energetic of large fluerens, balls, tube and capsules. Science 256:1792–1795.PubMedCrossRefADSGoogle Scholar
  48. 48.
    Wang, CY and Zhang, LC (2008), An elastic shell model for characterizing single-walled carbon nanotubes. Nanotechnology 19:195704-1–6.Google Scholar
  49. 49.
    Ozaki, T, Iwasa, Y and Mitani, T (2000) Stiffness of single-walled carbon nanotubes under large strain. Phys. Rev. Lett. 84:1712–1715.PubMedCrossRefADSGoogle Scholar
  50. 50.
    Batra, RC and Gupta SS (2008) Wall thickness and radial breathing modes of single-walled carbon nanotubes, ASME (in press).Google Scholar

Copyright information

© Springer Science+Business Media, B.V. 2009

Authors and Affiliations

  • L. C. Zhang
    • 1
  • C. Y. Wang
    • 1
  1. 1.School of Aerospace, Mechanical and Mechatronic EngineeringThe University of SydneySydneyAustralia

Personalised recommendations