Multiscale Molecular Modelling of Dispersion of Nanoparticles in Polymer Systems of Industrial Interest

  • Maurizio Fermeglia
  • Sabrina Pricl
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 13)


Atomistic-based simulations such as molecular mechanics (MM), molecular dynamics (MD), and Monte Carlo-based methods (MC) have come into wide use for material design. Using these atomistic simulation tools, we can analyze molecular structure on the scale of 0.1–10 nm. However, difficulty arises concerning limitations of the time and length scale involved in the simulation, particularly when nanoparticles are involved in the system. Although a possible molecular structure can be simulated by the atom-based simulations, it is less realistic to predict the mesoscopic structure with nanoparticles defined on the scale of 100–1000 nm. For the morphology on these scales, mesoscopic simulations are available as alternatives to atomistic simulations allowing to bridge the gap between atomistic and macroscopic simulations for an effective material design. In this contribution, a hierarchical procedure for bridging the gap between atomistic and macroscopic (FEM) modeling passing through mesoscopic simulations will be presented and applications of systems with nanoparticles will be discussed.


Molecular Dynamic Diblock Copolymer Atomistic Simulation Dissipative Particle Dynamic Multiscale Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.C. Charpentier, Chem. Engrg. Sci. 57, 4667–4690 (2002).CrossRefGoogle Scholar
  2. 2.
    S.C. Glotzer, W.P. Paul, Annu. Rev. Mater. Res. 32, 401–436 (2002).CrossRefGoogle Scholar
  3. 3.
    M.P. Allen and D.J. Tildesley, Molecular Simulations of Liquids, Oxford University Press, Oxford (1987).Google Scholar
  4. 4.
    J.G.E.M. Fraaije, B.A.C. van Vlimmeren, N.M. Maurits, M. Postma, O.A. Evers, C. Hoffman, P. Altevogt, G. Goldbeck-Wood, J. Chem. Phys. 106, 4260–4269 (1997).CrossRefADSGoogle Scholar
  5. 5.
    R.D. Groot, P.B. Warren, J. Chem. Phys. 107, 4423–4435 (1997).CrossRefADSGoogle Scholar
  6. 6.
    A.A. Gusev, Macromolecules 34, 3081–3093 (2001).CrossRefGoogle Scholar
  7. 7.
    G. Scocchi, P. Posocco, M. Fermeglia, S. Pricl, J. Phys. Chem. B 111, 2143–2151 (2007).PubMedCrossRefGoogle Scholar
  8. 8.
    M. Fermeglia, S. Pricl, Progr. Organic Coatings 58, 187–199 (2007).CrossRefGoogle Scholar
  9. 9.
    J.G.E.M. Fraaije, personal communication (2007).Google Scholar
  10. 10.
    M. Maly, P. Posocco, S. Pricl, M. Fermeglia, Ind. Engrg. Chem. Res. 47, 5023–5038 (2008).CrossRefGoogle Scholar
  11. 11.
    R. Toth, A. Coslanich, M. Ferrone, M. Fermeglia, S. Pricl, S. Miertus, E. Chiellini, Polymer, 45, 8075–8083 (2004).CrossRefGoogle Scholar
  12. 12.
    A. Maiti, J. T. Wescott, G. Goldbeck-Wood, Int. J. Nanotechnology 2, 3 (2005).Google Scholar

Copyright information

© Springer Science+Business Media, B.V. 2009

Authors and Affiliations

  • Maurizio Fermeglia
    • 1
  • Sabrina Pricl
    • 1
  1. 1.Department of Chemical, Environmental and Raw Materials EngineeringUniversity of TriesteTriesteItaly

Personalised recommendations