Advertisement

Modeling the Stress Transfer between Carbon Nanotubes and a Polymer Matrix during Cyclic Deformation

  • C. C. Kao
  • R. J. Young
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 13)

Abstract

Raman spectroscopy was used in this study to investigate the cyclic deformation behavior of the single-walled carbon nanotubes (SWNTs)/epoxy composites. The stress transfer between the nanotube and epoxy resin has been followed through the stress-induced variation of the G' Raman band position of the nan-otubes. A hysteresis loop was found between the loading and unloading cycles and its size decreased with the increase of the deformation cycles. The energy dissipated in the composite and at the interface between the nanotube and matrix has been modeled from the loop area. The amount of interface damaged for each loading cycle was further predicted from the estimated dissipation energy.

Keywords

Residual Stress Band Position Stress Transfer Cyclic Deformation Loop Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu, M.F., Files, B.S., Arepalli, S., Ruoff, R.S.: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552–5555 (2000).PubMedCrossRefADSGoogle Scholar
  2. 2.
    Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N., Treacy, M.M.J.: Young's modulus of single-walled nanotubes. Phys. Rev. B 58, 14013–14019 (1998).CrossRefADSGoogle Scholar
  3. 3.
    Cooper, C.A., Cohen, S.R., Barber, A.H., Wagner, H.D.: Detachment of nanotubes from a polymer matrix. Appl. Phys. Lett. 81, 3873–3875 (2002).CrossRefADSGoogle Scholar
  4. 4.
    Barber, A.H., Cohen, S.R., Kenig, S., Wagner, H.D.: Interfacial fracture energy measurement of multi-walled carbon nanotubes pulled from a polymer matrix. Comp. Sci. Tech. 64, 2283– 2289 (2004).CrossRefGoogle Scholar
  5. 5.
    Suhr, J., Koratkar, N.A., Keblinski, P., Ajayan, P.: Viscoelasticity in carbon nanotube composites. Nat. Mater. 4, 134–137 (2005).PubMedCrossRefADSGoogle Scholar
  6. 6.
    Koratkar, N.A., Suhr, J., Joshi, A., Kane, R.S., Schalder, L.S., Ajayan, P.M., Bartolucci, S.: Characterizing energy dissipation in single-walled carbon nanotube polycarbonate composites. Appl. Phys. Lett. 87, 063102-1-3 (2005).CrossRefADSGoogle Scholar
  7. 7.
    Schalder, L.S., Giannaris, C., Ajayan, P.M.: Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 73, 3842–3844 (1998).CrossRefADSGoogle Scholar
  8. 8.
    Ajayan, P.M., Schalder, L.S., Giannaris, C., Rubio, A.: Single-walled carbon nanotube-polymer composites: Strength and weakness. Adv. Mater. 12, 750–753 (2000).CrossRefGoogle Scholar
  9. 9.
    Cooper, C.A., Young, R.J., Halsall, M.: Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Comp. A 32, 401–411. (2001)CrossRefGoogle Scholar
  10. 10.
    Kao, C.C., Young, R.J.: A Raman spectroscopic investigation of heating effects and the deformation behaviour of epoxy/SWNT composites. Comp. Sci. Tech. 64, 2291–2295 (2004).CrossRefGoogle Scholar
  11. 11.
    Lourie, O., Cox, D. M., Wagner, H. D.: Buckling and collapse of embedded carbon nanotubes. Phys. Rev. Lett. 81, 1638–1641 (1998).CrossRefADSGoogle Scholar
  12. 12.
    Wagner, H.D., Lourie, O., Feldman, Y., Tenne, R.: Stress-induced fragmentation of multi-wall carbon nanotubes in a polymer matrix. Appl. Phys. Lett. 72, 188–190 (1998).CrossRefADSGoogle Scholar
  13. 13.
    Qian, D., Dicky, E.C., Andrews, R., Rantell, T.: Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76, 2868–2870 (2000).CrossRefADSGoogle Scholar
  14. 14.
    Ye, H., Lam, H., Titchenal, N., Gogotsi, Y., Ko, F.: Reinforcement and rupture behavior of carbon nanotubes-polymer nanofibers. Appl. Phys. Lett. 85, 1775–1777 (2004).CrossRefADSGoogle Scholar
  15. 15.
    Malik, S., Rösner, H., Hennrich, F., Böttcher, A., Kappes, M., Beck, M.T., Authorn, M.: Failure mechanism of free standing single-walled carbon nanotube thin films under tensile load. Phys. Chem. Chem. Phys. 6, 3540–3544 (2004).CrossRefGoogle Scholar
  16. 16.
    Lu, J.P.: Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79, 1297–1300 (1997).CrossRefADSGoogle Scholar
  17. 17.
    Wagner, H.D.: Nanotube-polymer adhesion: A mechanism approach. Chem. Phys. Lett. 361, 57–61 (2002).CrossRefADSGoogle Scholar
  18. 18.
    Frankland, S.J.V., Harik, V.M.: Analysis of carbon nanotube pull-out from a polymer matrix. Surf. Sci. 525, L103–L108 (2003).CrossRefGoogle Scholar
  19. 19.
    Dieter, G.E.: Mechanical Metallurgy. SI Metric Edn., McGraw-Hill Book Company (1998).Google Scholar
  20. 20.
    Manufacture Datasheet. Huntsman, UK.Google Scholar
  21. 21.
    Zhou, X., Shin, E., Wang, K.W., Bakis, C.E.: Interfacial damping characteristics of carbon nanotube-based composites. Comp. Sci. Tech. 64, 2425–2437 (2004).CrossRefGoogle Scholar
  22. 22.
    Young, R.J., Lovell, P.A.: Introduction to Polymers, 2nd edn. Stanley Thornes (2000).Google Scholar
  23. 23.
    Kumar, R., Cronin, S.B.: Raman scattering of carbon nanotube bundles under axial strain and strain-induced debundling. Phys. Rev. B 75, 115421-1–4 (2007).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2009

Authors and Affiliations

  • C. C. Kao
    • 1
  • R. J. Young
    • 1
  1. 1.Materials Science Centre, School of MaterialsUniversity of ManchesterManchesterUK

Personalised recommendations