Positron Emission Tomography and Colorectal Cancer

  • Ur Metser
Part of the Methods of Cancer Diagnosis, Therapy, and Prognosis book series (HAYAT, volume 4)

Colorectal cancer (CRC) is the third most common cancer in the United States with > 135,000 cases reported every year and a life-time risk of 5–6%. It is the second leading cause for cancer-related death in the western world. Although 80% of CRC cases are sporadic, in 20% of patients a hereditary predisposition exists. Several genetic mutations have been implicated in an increased risk for developing CRC. In familial polyposis coli, there is a mutation of the adenomatous polyposis coli (APC) gene on chromosome 5. Mutations in the genes responsible for repair of mismatched DNA base pairs (mismatch repair genes) are the major cause of cancers in hereditary nonpolyposis colorectal cancer (HNPCC or Lynch syndrome), the most common hereditary form of CRC, accounting for up to 5% of CRC cases (Giardiello et al., 2001). Patients with inflammatory bowel disease are also at an increased risk for the development of CRC, up to 2–8 times greater than the risk for the general population. This risk is related to the duration and anatomic extent of inflammatory disease, and coexistence of primary sclerosing cholangitis (Vagefi and Longo, 2005). Population studies have associated advanced age, certain diets (low fiber, high fat, and red meat intake), smoking, alcohol consumption, and obesity with the development of CRC; however, a cause and effect link has not been proven for these factors.

There is compelling epidemiological, clinicopathological and genetic evidence for an adenoma-carcinoma sequence in the development of most CRC's. The adenoma-carcinoma sequence refers to the development of CRC from adenomatous polyps. The likelihood of malignancy developing in an adenoma is directly related to its size, volume of villous tissue, and the severity of epithelial dysplasia. Multiple underlying molecular and genetic changes along the adenoma-carcinoma sequence have been identified. For example, an imbalance in genomic DNA methylation may lead to oncogene activation (hypomethyla-tion) and silencing of tumor suppression genes (hypermethylation) (Hardy et al., 2000). The average estimated “dwell time” for an adenoma to transform into cancer is 10–15 years. However, not all adenomas progress to carcinomas, some may even spontaneously regress. Furthermore, many researchers believe that de novo carcino-genesis is a plausible alternate pathway to CRC development (Watanabe and Muto, 2000).


Colorectal Cancer Positron Emission Tomography Liver Metastasis Positron Emission Tomography Imaging Hepatic Metastasis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adson, M.A. 1987. Resection of liver metastases— when is it worthwhile? World J. Surg. 11: 511–520.PubMedCrossRefGoogle Scholar
  2. Akhurst, T., Kates, T.J., Mazumdar, M., Yeung, H., Riedel, E.R., Burt, B.M., Blumgart, L., Jarnagin, W., Larson, S.M., and Fondg, Y. 2005. Recent chemotherapy reduces the sensitivity of [18F] fluorodeoxyglucose positron emission tomography in the detection of colorectal metastases. J. Clin. Oncol. 23: 8713–8716.PubMedCrossRefGoogle Scholar
  3. Amthauer, H., Denecke, T., Rau, B., Hildebrandt, B., Hunerbein, M., Ruf, J., Schneider, U., Gutberlet, M., Schlag, P.M., Felix, R., and Wust, P. 2004. Response prediction by FDG-PET after neoadju-vant radiochemotherapy and combined regional hyperthermia of rectal cancer: correlation with endorectal ultrasound and histopathology. Eur. J. Nucl. Med. Mol. Imaging 31: 811–819.PubMedCrossRefGoogle Scholar
  4. Berger, K.L., Nicholson, S.A., Dehdashti, F., and Siegel, B.A. 2000. FDG PET evaluation of muci-nous neoplasms: correlation of FDG uptake with histopathologic features. AJR Am. J. Roentgenol. 174: 1005–1008.PubMedGoogle Scholar
  5. Bipat, S., van Leeuwen, M.S., Comans, E.F., Pijl, M.E., Bossuyt, P.M., Zwinderman, A.H., and Stoker, J. 2005. Colorectal liver metastases: CT, MR imaging, and PET for diagnosis—meta-analysis. Radiology 237: 123–131.PubMedCrossRefGoogle Scholar
  6. Chen, C.C., Lee, R.C., Lin, J.K., Wang, L.W., and Yang, S.H. 2005. How accurate is magnetic resonance imaging in restaging rectal cancer in patients receiving preoperative combined chemoradiotherapy? Dis. Colon Rectum 48: 722–728.PubMedCrossRefGoogle Scholar
  7. Choi, M.Y., Lee, K.M., Chung, J.K., Lee, D.S., Jeong, J.M., Park, J.G., Kim, J.H., and Lee, M.C. 2005. Correlation between serum CEA level and metabolic volume as determined by FDG PET in postoperative patients with recurrent colorectal cancer. Ann. Nucl. Med. 19: 123–129.PubMedCrossRefGoogle Scholar
  8. Cohade, C., Osman, M., Leal, J., and Wahl, R.L. 2003. Direct comparison of (18)F-FDG PET and PET/CT in patients with colorectal carcinoma. J. Nucl. Med. 44: 1797–1803.PubMedGoogle Scholar
  9. Cohen, A.M., Minsky, B.D., and Schilsky, R.L. 1993. Colon cancer. In: DeVita VT Jr, Hellman S, Rosenberg SA (eds). Cancer. Principles and practice of oncology, 4th edition. Philadelphia, PA: Lippincott: 929–977.Google Scholar
  10. Dimitrakopoulou-Strauss, A., Strauss, L.G., Burger, C., Ruhl, A., Irngartinger, G., Stremmel, W., and Rudi, J. 2004. Prognostic aspects of 18F-FDG PET kinetics in patients with metastatic colorec-tal carcinoma receiving FOLFOX chemotherapy. J. Nucl. Med. 45: 1480–1487.PubMedGoogle Scholar
  11. Dose Schwarz, J., Bader, M., Jenicke, L., Hemminger, G., Janicke, F., and Avril, N. 2005. Early prediction of response to chemotherapy in metastatic breast cancer using sequential 18F-FDG PET. J. Nucl. Med. 46: 1144–1150.PubMedGoogle Scholar
  12. Drenth, J.P., Nagengast, F.M., and Oyen, W.J. 2001. Evaluation of (pre-) malignant colonic abnormalities: endoscopic validation of FDG-PET findings. Eur. J. Nucl. Med. 28: 1766–1769.PubMedCrossRefGoogle Scholar
  13. Even-Sapir, E., Parag, Y., Lerman, H., Gutman, M., Levine, C., Rabau, M., Figer, A., and Metser, U. 2004. Detection of recurrence in patients with rectal cancer: PET/CT after abdominoperineal or anterior resection. Radiology 232: 815–822.PubMedCrossRefGoogle Scholar
  14. Findlay, M., Young, H., Cunningham, D., Iveson, A., Cronin, B., Hickish, T., Pratt, B., Husband, J., Flower, M., and Ott, T. 1996. Noninvasive monitoring of tumor metabolism using fluorode-oxyglucose and positron emission tomography in colorectal cancer liver metastases: correlation with tumor response to fluorouracil. J. Clin. Oncol. 14: 691–696.Google Scholar
  15. Flamen, P., Hoekstra, O.S., Homans, F., Van Cutsem, E., Maes, A., Stroobants, S., Peeters, M., Penninckx, F., Filez, L., Bleichrodt, R.P., and Mortelmans, L. 2001. Unexplained rising carcinoembryonic antigen (CEA) in the postoperative surveillance of colorectal cancer: the utility of positron emission tomography (PET). Eur. J. Cancer 37: 862–869.PubMedCrossRefGoogle Scholar
  16. Fong, Y., Kemeny, N., Paty, P., Blumgart, L.H., and Cohen, A.M. 1996. Treatment of colorectal cancer: Hepatic metastasis. Semin. Surg. Oncol. 12: 219–252.PubMedCrossRefGoogle Scholar
  17. Francis, D.L., Visvikis, D., Costa, D.C., Arulampalam, T.H., Townsend, C., Luthra, S.K., Taylor, I., and Ell, P.J. 2003. Potential impact of [18F]3'- deoxy-3'-fluorothymidine versus [18F] fluoro-2-deoxy-D-glucose in positron emission tomography for colorectal cancer. Eur. J. Nucl. Med. Mol. Imaging 30: 988–994.PubMedCrossRefGoogle Scholar
  18. Furukawa, H., Ikuma, H., Seki, A., Aramaki, T., Yuen, S., Yokoe, K., and Yamaguchi S. 2006. PET scanning is not superior to whole-body multi-detector helical computed tomography in the preoperative staging of colorectal cancer. Gut 55: 1007–1011.PubMedCrossRefGoogle Scholar
  19. Giardiello, F.M., Brensinger, J.D., and Petersen, G.M. 2001. AGA technical review on hereditary nonpolyposis colorectal cancer. Gastroenterology 121: 198–213.PubMedCrossRefGoogle Scholar
  20. Gupta, N., Harmindar, G., Graeber, G., Bishop, H., Hurst, J., and Stephens, T. 1998. Dynamic positron emission tomography with F-18 fluorode-oxyglucose imaging in differentiation of benign from malignant lung/mediastinal lesions. Chest 114: 1105–1111.PubMedCrossRefGoogle Scholar
  21. Halligan, S., Altman, D.G., Taylor, S.A., Mallett, S., Deeks, J.J., Bartram, C.I., and Atkin, W. 2005. CT colonography in the detection of colorectal polyps and cancer: systematic review, meta-anal-ysis, and proposed minimum data set for study level reporting. Radiology 237: 893–904.PubMedCrossRefGoogle Scholar
  22. Hardy, R.G., Meltzer, S.J., and Jankowski, J.A. 2000. ABC of colorectal cancer. Molecular basis for risk factors. Br. Med. J. 7: 886–889.CrossRefGoogle Scholar
  23. Hofmann, M., Maecke, H., Borner, R., Weckesser, E., Schoffski, P., Oei, L., Schumacher, J., Henze, M., Heppeler, A., Meyer, J., and Knapp, H. 2001. Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data. Eur. J. Nucl. Med. 28: 1751–1757.PubMedCrossRefGoogle Scholar
  24. International Multicenter Pooled Analysis of B2 Colon Cancer Trials (IMPACT B2) Investigator. 1999. Efficacy of adjuvant fluorouracil and foli-nic acid in B2 colon cancer. J. Clin. Oncol. 17: 1356–1363.Google Scholar
  25. Iyer, M., Sato, M., Johnson, M., Gambhir, S.S., and Wu, L. 2005. Applications of molecular imaging in cancer gene therapy. Curr. Gene Ther. 5: 607–618.PubMedCrossRefGoogle Scholar
  26. Khatri, V.P., Petrelli, N.J., and Belghiti, J. 2005. Extending the frontiers of surgical therapy for hepatic colorectal metastases: is there a limit? J. Clin. Oncol. 23: 8490–8499.PubMedCrossRefGoogle Scholar
  27. Kopper, M.J., Boerman, O.C., Oyen, W.J., and Bleichrodt, R.P. 2006. Peritoneal carcinomatosis of colorectal origin: incidence and current treatment strategies. Ann. Surg. 243: 212–222.CrossRefGoogle Scholar
  28. Langenhoff, B.S., Oyen, W.J., Jager, G.J., Strijk, S.P., Wobbes, T., Corstens, F.H., and Ruers, T.J. 2002. Efficacy of fluorine-18-deoxyglucose positron emission tomography in detecting tumor recurrence after local ablative therapy for liver metastases: a prospective study. J. Clin. Oncol. 20: 4453–4458.PubMedCrossRefGoogle Scholar
  29. Lejeune, C., Bismuth, M.J., Conroy, T., Zanni, C., Bey, P., Bedenne, L., Faivre, J., Arveux, P., and Guillemin, F. 2005. Use of a decision analysis model to assess the cost-effectiveness of 18F-FDG PET in the management of metachronous liver metastases of colorectal cancer. J. Nucl. Med. 46: 2020–2028.PubMedGoogle Scholar
  30. Metser, U., Golan, O., Levine, C.D., and Even-Sapir, E. 2005. Tumor lesion detection: when is integrated positron emission tomography/ computed tomography more accurate than side-by-side interpretation of positron emission tomography and computed tomography? J. Comput. Assist. Tomogr. 29: 554–559.PubMedCrossRefGoogle Scholar
  31. Moehler, M., Dimitrakopoulou-Strauss, A., Gutzler, F., Raeth, U., Strauss, L.G., and Stremmel, W. 1998. 18F-labeled fluorouracil positron emission tomography and the prognoses of color-ectal carcinoma patients with metastases to the liver treated with 5-fluorouracil. Cancer 83: 245–253.PubMedCrossRefGoogle Scholar
  32. Mohiuddin, M., Winter, K., Mitchell, E., Hanna, N., Yuen, A., Nichols, C., Shane, R., Hayostek, C., and Willett, C. 2006. Randomized phase II study of neoadjuvant combined-modality chemoradiation for distal rectal cancer: radiation therapy oncology group trial 0012. J. Clin. Oncol. 24: 650–655.PubMedCrossRefGoogle Scholar
  33. Park, S.H., Ha, H.K., Kim, M.J., Kim, K.W., Kim, A.Y., Yang, D.H., Lee, M.G., Kim, P.N., Shin, Y.M., Yang, S.K., Myung, S.J., and Min, Y.I. 2005. False-negative results at multi-detector row CT colonography: multivariate analysis of causes for missed lesions. Radiology 235: 495–502.PubMedCrossRefGoogle Scholar
  34. Rossi, S., Di Stasi, M., Buscarini, E., Quaretti, P., Garbagnati, F., Squassante, L., Paties, C.T., Silverman, D.E., and Buscarini, L. 1996. Percutaneous RF interstitial thermal ablation in the treatment of hepatic cancer. AJR Am. J. Roentgenol. 167: 759–768.PubMedGoogle Scholar
  35. Sahani, D.V., Kalva, S.P., Fischman, A.J., Kadavigere, R., Blake, M., Hahn, P.F., and Saini, S. 2005. Detection of liver metastases from adenocarci-noma of the colon and pancreas: comparison of mangafodipir trisodium-enhanced liver MRI and whole-body FDG PET. AJR Am. J. Roentgenol. 185: 239–246.PubMedGoogle Scholar
  36. Sakamoto, S., Iwama, T., Tsukada, K., Utsunomiya, J., Kawasaki, T., and Okamoto, R. 1984. Increased activity of thymidine kinase isozyme in human colon tumor. Carcinogenesis 6: 971–919.Google Scholar
  37. Scheele, J., Stangl, R., and Altendorf-Hofmann, A. 1990. Hepatic metastases from colorectal carcinoma: impact of surgical resection on the natural history. Br. J. Surg. 77: 1241–1246.PubMedCrossRefGoogle Scholar
  38. Shida, H., Ban, K., Matsumoto, M., Masuda, K., Imanari, T., Machida, T., and Yamamoto, T. 1992. Prognostic significance of location of lymph node metastases in colorectal cancer. Dis. Colon Rectum 35: 1046–1050.CrossRefGoogle Scholar
  39. Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M.H., Patlak, C.S, Pettigrew, K.D., Sakurada, O., and Shinohara, M. 1977. The [14C]deoxyglu-cose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28: 897–916.PubMedCrossRefGoogle Scholar
  40. Solbiati, L., Livraghi, T., Goldberg, S.N., Ierace, T., Meloni, F., Dellanoce, M., Cova, L., Halpern, E.F., and Gazelle, G.S. 2001. Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients. Radiology 221: 159–166.PubMedCrossRefGoogle Scholar
  41. Sundaresan, G., Yazaki, P.J., Shively, J.E., Finn, R.D., Larson, S.M., Raubitschek, A.A., Williams, L.E., Chatziioannou, A.F., Gambhir, S.S. and Wu, A.M. 2003. 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J. Nucl. Med. 44: 1962–1969.PubMedGoogle Scholar
  42. Tanaka, K., Adam, R., Shimada, H., Azoulay, D., Levi, F. and Bismuth, H. 2003. Role of neoadju-vant chemotherapy in the treatment of multiple colorectal metastases to the liver. Br. J. Surg. 90: 963–969.PubMedCrossRefGoogle Scholar
  43. Vagefi, P.A. and Longo, W.E. 2005. Colorectal cancer in patients with inflammatory bowel disease. Clin. Colorect. Cancer 4: 313–319.CrossRefGoogle Scholar
  44. Valk, P.E., Abella-Columna, E., Haseman, M.K., Pounds, T.R., Tesar, R.D., Myers, R.W., Greiss, H.B. and Hofer, G.A. 1999. Whole-body PET imaging with [18F]fluorodeoxyglucose in management of recurrent colorectal cancer. Arch. Surg. 134: 503–511.PubMedCrossRefGoogle Scholar
  45. van Kouwen, M.C., Nagengast, F.M., Jansen, J.B., Oyen, W.J. and Drenth, J.P. 2005. 2-(18F)-fluoro-2-deoxy-D-glucose positron emission tomography detects clinical relevant adenomas of the colon: a prospective study. J. Clin. Oncol. 23: 3713–3717.PubMedCrossRefGoogle Scholar
  46. Veit P., Antoch, G., Stergar, H., Bockisch, A., Forsting, M. and Kuehl, H. 2006a. Detection of residual tumor after radiofrequency ablation of liver metastasis with dual-modality PET/CT: initial results. Eur. Radiol. 16: 80–87.CrossRefGoogle Scholar
  47. Veit, P., Kuhle, C., Beyer, T., Kuehl, H., Herborn, C.U., Borsch, G., Stergar, H., Barkhausen, J., Bockisch, A. and Antoch, G. 2006b. Whole body positron emission tomography/computed tomography (PET/CT) tumour staging with integrated PET/CT colonography: technical feasibility and first experiences in patients with colorectal cancer. Gut 55: 68–73.CrossRefGoogle Scholar
  48. Votrubova, J., Belohlayek, O., Jaruskova, M., Oliverius, M., Lohynska, R., Trskova, K., Sedlackove, E., Lipska, L. and Stahalova, V. 2006. The role of FDG-PET/CT in the detection of recurrent colorectal cancer. Eur. J. Nucl. Med. Mol. Imaging [epub ahead of print].Google Scholar
  49. Wang, Y., Jatkoe, T., Zhang, Y., Mutch, M.G., Talantov, D., Jiang, J., McLeod, H.L. and Atkins, D. 2004. Gene expression profiles and molecular markers to predict recurrence of Dukes B colon cancer. J. Clin. Oncol. 22: 1564–1571.PubMedCrossRefGoogle Scholar
  50. Watanabe, T. and Muto, T. 2000. Colorectal car-cinogenesis based on molecular biology of early colorectal cancer, with special reference to nonpolypoid (superficial) lesions. World J. Surg. 24: 1091–1097.PubMedCrossRefGoogle Scholar
  51. Winawer, S.J., Fletcher, R.H., Miller, L., Godlee, F., Stolar, M.H., Mulrow, C.D., Woolf, S.H., Glick, S.N., Ganiats, T.G., Bond, J.H., Rosen, L., Zapka, J.G., Olsen, S.J., Giardiello, F.M., Sisk, J.E., Van Antwerp, R., Brown-Davis, C., Marciniak, D.A. and Mayer, R.J. 1997. Colorectal cancer screening: clinical guidelines and rationale. Gastroenterology 112: 594–642.PubMedCrossRefGoogle Scholar
  52. Wolmark, N., Rockette, H., Mamounas, E., Jones, J., Wieand, S., Wickerham, D.L., Bear, H.D., Atking, J.N., Dimitrov, N.V., Glass, A.G., Fisher, E.R. and Fisher, B. 1999. Clinical trial to assess the relative efficacy of fluorouracil and leucovorin, fluorouracil and levamisole, and fluorouracil, leucovorin, and levamisole in patients with Dukes' B and C carcinoma of the colon: Results from National Surgical Adjuvant Breast and Bowel Project C-04. J. Clin. Oncol. 17: 3553–3559.PubMedGoogle Scholar
  53. Wong, C.Y., Salem, R., Qing, F., Wong, K.T., Barker, D., Gates, V., Lewandowski, R., Hill, E.A., Dworkin, H.J., and Nagle, C. 2004. Metabolic response after intraarterial 90Y-glass microsphere treatment for colorectal liver metas-tases: comparison of quantitative and visual analyses by 18F-FDG PET. J. Nucl. Med. 45: 1892–1897.PubMedGoogle Scholar
  54. Yamamoto, F., Nakada, K., Zhao, S., Saoh, M., Asaka, M., and Tamaki, N. 2004. Gastrointestinal uptake of FDG after N-butylscopolamine or omeprazole treatment in the rat. Ann. Nucl. Med. 18: 637–640.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  • Ur Metser
    • 1
  1. 1.Department of Medical Imaging, Princess Margaret HospitalUniversity of TorontoTorontoCanada

Personalised recommendations