Skip to main content

Survivable Architecture with Dynamic Wavelength and Bandwidth Allocation Scheme in WDM-EPON

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 33))

Abstract

This study proposes a novel fault-tolerant architecture in WDM-EPON, Cost-based Fault-tolerant WDM-EPON (CFT-WDM-EPON), to provide overall protection. The CFT-WDM-EPON only equips a backup feeder fiber to recover the system failure. Additionally, a prediction-based fair wavelength and bandwidth allocation (PFWBA) scheme is also proposed to enhance the differentiated services for WDM-EPON based on the Dynamic Wavelength Allocation (DWA) and Prediction-based Fair Excessive Bandwidth Reallocation (PFEBR). The PFEBR involves an Early-DBA mechanism, which improves prediction accuracy by delaying report messages of unstable traffic ONUs, and assigns linear estimation credit to predict the arrival of traffic during waiting time. The DWA can operate in coordination with an unstable degree list to allocate the available time of wavelength precisely. Simulation results show that the proposed PFWBA scheme outperforms the WDM IPACT-ST with a single polling table and the Dynamic wavelength and bandwidth 3 (DWBA3) in terms of end-to-end delay and jitter performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. IEEE 802.3ah task force home page. Available: http://www.ieee802.org/3/efm.

  2. N.J. Frigo, P.P. Iannone, P.D. Magill, T.E. Darcie, M.M. Downs, B.N. Desai, U. Koren, T.L. Koch, C. Dragone, H.M. Presby, and G.E. Bodeep, Wavelength-division multiplexed passive optical network with cost-shared components, IEEE Photonics Technology Letters, 6(11), 1365–1367 (1994).

    Article  Google Scholar 

  3. S.J. Park, C.H. Lee, K.T. Jeong, H.J. Park, J.G. Ahn, and K.H. Song, Fiber-to-the-home services based on wavelength division multiplexing passive optical network, Journal of Lightwave Technology, 22(11), 2582–2591 (2004).

    Article  Google Scholar 

  4. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review [Invited], Journal of Optical Networking, 4(11), 737–758 (2005).

    Article  Google Scholar 

  5. M. McGarry, M. Maier, and M. Reisslein, WDM Ethernet passive optical networks, IEEE Communications Magazine, 44(2), 15–22 (2006).

    Article  Google Scholar 

  6. M. McGarry, M. Maier, and M. Reisslein, An evolutionary WDM upgrade for EPONs, Technical Report (Arizona State University), (2005).

    Google Scholar 

  7. A.R. Dhaini, C.M. Assi, M. Maier, and A. Shami, Dynamic Wavelength and Bandwidth Allocation in Hybrid TDM/WDM-EPON Networks, Journal of Lightwave Technology, 25(1), 277–286 (2007).

    Article  Google Scholar 

  8. I.S. Hwang, Z.D. Shyu, L.Y. Ke, and C.C. Chang, A Novel Early DBA Mechanism with Prediction-based Fair Excessive Bandwidth Reallocation Scheme in EPON, Computer Communications, 31(9), 1814–1823 (2008).

    Article  Google Scholar 

  9. F.T. An, K.S. Kim, D. Gutierrez, S. Yam, E. (S.T.) Hu, K. Shrikhande, and L.G. Kazovsky, SUCCESS: A next-generation hybrid WDM/TDM optical access network architecture, Journal of Lightwave Technology, 22(11), 2557–2569 (2004).

    Article  Google Scholar 

  10. K.S. Kim, D. Gutierrez, F.T. An, and L.G. Kazovsky, Batch scheduling algorithm for SUCCESS WDM-PON, GLOBECOM – IEEE Global Telecommunications Conference, 3, 1835–1839 (2004).

    Google Scholar 

  11. K.S. Kim, D. Gutierrez, F.T. An, and L.G. Kazovsky, Design and performance analysis of scheduling algorithms for WDM-PON under SUCCESS-HPON architecture, Journal of Lightwave Technology, 23(11), 3716–3731 (2005).

    Article  Google Scholar 

  12. K.H. Kwong, D. Harle, and I. Andonovic, Dynamic bandwidth allocation algorithm for differentiated services over WDM-EPONS, 9th IEEE Singapore International Conference on Communication Systems, 116–120 (2004).

    Google Scholar 

  13. J. Zheng, Efficient bandwidth allocation algorithm for Ethernet passive optical networks, IEE Proceedings Communications, 153(3), 464–468 (2006).

    Google Scholar 

  14. E.S. Son, K.H. Han, J.H. Lee, and Y.C. Chung, Survivable network architectures for wavelength-division-multiplexed passive optical networks, Photonic Network Communications, 12(1), 111–115 (2006).

    Google Scholar 

  15. X.F. Sun, Z.X. Wang, C.K. Chan, and L.K. Chen, A novel star-ring protection architecture scheme for WDM passive optical access networks, Conference on Optical Fiber Communication, Technical Digest Series, 3, Article number 1501381, 563–565 (2005).

    Google Scholar 

  16. H. Nakamura, H. Suzuki, J.I. Kani, and K. Iwatsuki, Reliable wide-area wavelength division multiplexing passive optical network accommodating gigabit ethernet and 10-Gb ethernet services, Journal of Lightwave Technology, 24(5), 2045–2051 (2006).

    Article  Google Scholar 

  17. W. Willinger, M.S. Taqqu, and A. Erramilli, A bibliographical guide to self-similar traffic and performance modeling for modern high-speed networks, Stochastic Networks: Theory and Applications, Oxford University Press, Oxford, 339–366 (1996).

    Google Scholar 

  18. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, An Architecture for Differentiated Services, IETF RFC 2475 (1998).

    Google Scholar 

  19. X. Bai and A. Shami, Modeling Self-Similar Traffic for Network Simulation, Technical report, NetRep-2005-01 (2005).

    Google Scholar 

  20. ITU-T Recommendation G.114, One-way transmission time, May 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Hwang, IS., Shyu, ZD., Chang, CC. (2009). Survivable Architecture with Dynamic Wavelength and Bandwidth Allocation Scheme in WDM-EPON. In: Wai, PK., Huang, X., Ao, SI. (eds) Trends in Communication Technologies and Engineering Science. Lecture Notes in Electrical Engineering, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9532-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9532-0_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9492-7

  • Online ISBN: 978-1-4020-9532-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics