Advertisement

The Entangled Roots of Objective Knowledge

  • Stefano Osnaghi
Part of the The Western Ontario Series In Philosophy of Science book series (WONS, volume 74)

Abstract

If no model based on locally interacting objects fits quantum phenomena, how can knowledge grounded in the quantum theory be objective? According to a common view, the conditions which ensure the reproducibility of experiments and the predictability of results are fulfilled in the quantum world owing to the “appearance” of macroscopic objects through decoherence. Based on the analysis of some recent experiments on quantum entanglement, I will point out the circularity of this argument. More generally, I will suggest that the objective features of scientific knowledge do not need to reflect the structure of an “external world”, and that they can be understood as the outgrowth of a systematic endeavour to organize experience in a way which makes prediction possible.

Keywords

Quantum Theory State Vector Coherent State Entangle State Quantum Entanglement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bacciagaluppi, G. “The role of decoherence in quantum mechanics”. In: E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, 2005. Available online: http://plato.stanford.edu/ archives/sum2005/entries/qm-decoherence/.Google Scholar
  2. Barrett, J. The Quantum Mechanics of Minds and Worlds. Oxford, Oxford University Press,1999.Google Scholar
  3. Bell, J. S. “On Einstein–Podolsky–Rosen paradox”. Physics, 1, 1964, 195–200. (Reprinted in: Wheeler, J. A. & Zurek, W. H. (eds.), Quantum Theory and Measurement. Princeton, NJ, Princeton University Press, 1983, pp. 403–408.Google Scholar
  4. Bell, J. S. “Against ‘measurement’ ”. Physics World, 8, 1990, 33–40.Google Scholar
  5. Bertet, P., Osnaghi, S., Rauschenbeutel, A., Nogues, G., Auffeves, A., Brune, M., Raimond, J. M. & Haroche, S. “A complementarity experiment with an interferometer at the quantum-classical border”. Nature, 411, 2001, 166–170.CrossRefGoogle Scholar
  6. Bitbol, M. Mécanique quantique, une introduction philosophique. Paris, Champs Flammarion, 1996.Google Scholar
  7. Bitbol, M. L'aveuglante proximité du réel, anti-réalisme & quasi-réalisme en physique. Paris, Flammarion, 1998a.Google Scholar
  8. Bitbol, M. “Some steps towards a transcendental deduction of quantum mechanics”. Philosophia naturalis, 35, 1998b, 253–280.Google Scholar
  9. Bitbol, M. Physique et philosophie de l'esprit. Paris, Flammarion, 2000a.Google Scholar
  10. Bitbol, M. “Arguments transcendantaux en physique moderne”. La querelle des arguments transcendantaux, Cahiers de philosophie de lÆUniversité de Caen, 35, 2000b, 81–101.Google Scholar
  11. Bohm, D. Causality and Chance in Modern Physics. Londres, Routledge & Kegan Paul, 1957.Google Scholar
  12. Bohr, N. “On the notions of causality and complementarity”. Dialectica, 2, 1948, 312–319.CrossRefGoogle Scholar
  13. Bouwmeester, D., Ekert, A. K. & Zeilinger, A. (eds.). The Physics of Quantum Information. Berlin, Springer, 2001.Google Scholar
  14. Einstein, A. “Remarques préliminaires sur les concepts fondamentaux”. In: André, G. (ed.), Louis de Broglie: Physicien et Penseur. Paris, Albin Michel, 1953, pp. 4–15.Google Scholar
  15. Einstein, A., Podolsky, B. & Rosen, N. “Can quantum mechanical description of physical reality be considered complete?”. Physical Review, 47, 1935, 777–780.CrossRefGoogle Scholar
  16. Everett III, H. “Relative state formulation of quantum mechanics”. Reviews of Modern Physics, 29, 1957, 454–462. (Reprinted in: Wheeler, J. A. & Zurek, W. H. (eds.), Quantum Theory and Measurement. Princeton, NJ, Princeton University Press, 1983, pp. 315–323.)CrossRefGoogle Scholar
  17. Ghirardi, G. C., Rimini, A. & Weber, T. “Unified dynamics for microscopic and macroscopic systems”. Physical Review, D34, 1986, 470–491.Google Scholar
  18. Hughes, R. I. G. Quantum Mechanics, Its Structure and Interpretation. Cambridge, MA, Harvard University Press, 1989.Google Scholar
  19. Kent, A. “Against many-world interpretation”. International Journal of Modern Physics, A5, 1990, 1745–1762.CrossRefGoogle Scholar
  20. Leggett, A. J. “Reflections on the quantum measurement paradox”. In: Hiley, B. J. & Peat, F. D. (eds.), Quantum Implications: Essays in Honour of David Bohm. London, Routledge & Kegan Paul, 1987.Google Scholar
  21. Mittelstaedt, P. “The constitution of objects in Kant's philosophy and in modern physics”. In: Parrini, P. (ed.), Kant and Contemporary Epistemology. Dordrecht, Kluwer, 1994, pp. 115–129.Google Scholar
  22. Murdoch, D. Niels Bohr's Philosophy of Physics. Cambridge, Cambridge University Press, 1987.Google Scholar
  23. Nogues, G., Rauschenbeutel, A., Osnaghi, S., Brune, M., Raimond, J. M. & Haroche, S. “Seeing a single photon without destroying it”. Nature, 400, 1999, 239–242.CrossRefGoogle Scholar
  24. Osnaghi, S., Bertet, P., Auffeves, A., Maioli, P., Brune, M., Raimond, J. M. & Haroche, S. “Coherent control of an atom collision in a cavity”. Physical Review Letters, 87, 2001, 037902–037905.CrossRefGoogle Scholar
  25. Park, J. L. “The self-contradictory foundations of formalistic quantum measurement theories”. International Journal of Theoretical Physics, 8(3), 1973, 211–218.CrossRefGoogle Scholar
  26. Pickering, A. Constructing Quarks. A Sociological History of Particle Physics. Chicago, IL, Chicago University Press, 1984.Google Scholar
  27. Raimond, J. M., Brune, M. & Haroche, S. “Manipulating quantum entanglement with atoms and photons in a cavity”. Review of Modern Physics, 73, 2001, 565–582.CrossRefGoogle Scholar
  28. Rosenfeld, L. “Foundations of quantum theory and complementarity”. Nature, 190, 1961, 384–388.CrossRefGoogle Scholar
  29. Rovelli, C. “Relational quantum mechanics”. International Journal of Theoretical Physics, 35, 1996, 1637–1678.CrossRefGoogle Scholar
  30. Saunders, S. “Decoherence, relative states and evolutionary adaptation”. Foundations of Physics, 23, 1993, 1553–1585.CrossRefGoogle Scholar
  31. Schrödinger, E. “Discussion of probability relations between separated systems”. Proceedings of the Cambridge Philosophical Society, 31, 1935a, 555–563.CrossRefGoogle Scholar
  32. Schrödinger, E. “Die gegenwärtige Situation in der Quantenmechanik”. Die Naturwissenschaften, 23, 1935b, 807–812, 823–828, 844–849. (Translated into English in: Wheeler, J. A. & Zurek, W. H. (eds.), Quantum Theory and Measurement. Princeton, NJ, Princeton University Press, 1983, pp. 152–167.)CrossRefGoogle Scholar
  33. Shimony, A. “Bell's Theorem”. In: Zalta, E. N. (ed.), The Stanford Encyclopedia of Philosophy, 2005. Available on-line: http://plato.stanford.edu/archives/sum2005/entries/bell-theorem.Google Scholar
  34. Vaidman, L. “The many-worlds interpretation of quantum mechanics”. In: Zalta, E. N. (ed.), The Stanford Encyclopedia of Philosophy, 2002. Available online: http://plato.stanford.edu/ archives/sum2002/entries/qm-manyworlds.Google Scholar
  35. van Fraassen, B. C. The Scientific Image. Oxford, Oxford University Press, 1980.CrossRefGoogle Scholar
  36. van Fraassen, B. C. Quantum Mechanics, an Empiricist View. Oxford, Oxford University Press, 1991.Google Scholar
  37. von Neumann, J. Mathematical Foundations of Quantum Mechanics (1932). Trans. by R. T. Beyer. Princeton, NJ, Princeton University Press, 1955.Google Scholar
  38. von Weizsäcker, C. F. The Unity of Nature. Trans. by F. J. Zucker. New York, Farrar-Straus-Giroux, 1980.Google Scholar
  39. Wheeler, J. A. “Assessment of Everett's ‘Relative State’ formulation of quantum theory”. Reviews of Modern Physics, 29, 1957, 463–465. (Reprinted in: Wheeler, J. A. & Zurek, W. H. (eds.), Quantum Theory and Measurement. Princeton, NJ, Princeton University Press, 1983, pp. 324–326.)CrossRefGoogle Scholar
  40. Wigner, E. “Remarks on the mind-body question”. In: Good, I. J. (ed.), The Scientist Speculates. London, Heinemann, 1961, pp. 284–302. (Reprinted in: Wheeler, J. A. & Zurek, W. H. (eds.), Quantum Theory and Measurement. Princeton, NJ, Princeton University Press, 1983, pp. 168–181.)Google Scholar
  41. Zurek, W. H. “Decoherence and the transition from quantum to classical”. Physics Today, 44, 1991, 36–44.CrossRefGoogle Scholar
  42. Zurek, W. H. “Decoherence, einselection and the quantum origins of the classical”. Review of Modern Physics, 75, 2004, 715–775.Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  • Stefano Osnaghi
    • 1
  1. 1.Universidade Federal da Bahia, UFBa – Instituto de Física, Campus Universitario de OndinaSalvadorBrazil

Personalised recommendations