Skip to main content

The Entangled Roots of Objective Knowledge

  • Chapter
Constituting Objectivity

Part of the book series: The Western Ontario Series In Philosophy of Science ((WONS,volume 74))

Abstract

If no model based on locally interacting objects fits quantum phenomena, how can knowledge grounded in the quantum theory be objective? According to a common view, the conditions which ensure the reproducibility of experiments and the predictability of results are fulfilled in the quantum world owing to the “appearance” of macroscopic objects through decoherence. Based on the analysis of some recent experiments on quantum entanglement, I will point out the circularity of this argument. More generally, I will suggest that the objective features of scientific knowledge do not need to reflect the structure of an “external world”, and that they can be understood as the outgrowth of a systematic endeavour to organize experience in a way which makes prediction possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bacciagaluppi, G. “The role of decoherence in quantum mechanics”. In: E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, 2005. Available online: http://plato.stanford.edu/ archives/sum2005/entries/qm-decoherence/.

    Google Scholar 

  • Barrett, J. The Quantum Mechanics of Minds and Worlds. Oxford, Oxford University Press,1999.

    Google Scholar 

  • Bell, J. S. “On Einstein–Podolsky–Rosen paradox”. Physics, 1, 1964, 195–200. (Reprinted in: Wheeler, J. A. & Zurek, W. H. (eds.), Quantum Theory and Measurement. Princeton, NJ, Princeton University Press, 1983, pp. 403–408.

    Google Scholar 

  • Bell, J. S. “Against ‘measurement’ ”. Physics World, 8, 1990, 33–40.

    Google Scholar 

  • Bertet, P., Osnaghi, S., Rauschenbeutel, A., Nogues, G., Auffeves, A., Brune, M., Raimond, J. M. & Haroche, S. “A complementarity experiment with an interferometer at the quantum-classical border”. Nature, 411, 2001, 166–170.

    Article  Google Scholar 

  • Bitbol, M. Mécanique quantique, une introduction philosophique. Paris, Champs Flammarion, 1996.

    Google Scholar 

  • Bitbol, M. L'aveuglante proximité du réel, anti-réalisme & quasi-réalisme en physique. Paris, Flammarion, 1998a.

    Google Scholar 

  • Bitbol, M. “Some steps towards a transcendental deduction of quantum mechanics”. Philosophia naturalis, 35, 1998b, 253–280.

    Google Scholar 

  • Bitbol, M. Physique et philosophie de l'esprit. Paris, Flammarion, 2000a.

    Google Scholar 

  • Bitbol, M. “Arguments transcendantaux en physique moderne”. La querelle des arguments transcendantaux, Cahiers de philosophie de lÆUniversité de Caen, 35, 2000b, 81–101.

    Google Scholar 

  • Bohm, D. Causality and Chance in Modern Physics. Londres, Routledge & Kegan Paul, 1957.

    Google Scholar 

  • Bohr, N. “On the notions of causality and complementarity”. Dialectica, 2, 1948, 312–319.

    Article  Google Scholar 

  • Bouwmeester, D., Ekert, A. K. & Zeilinger, A. (eds.). The Physics of Quantum Information. Berlin, Springer, 2001.

    Google Scholar 

  • Einstein, A. “Remarques préliminaires sur les concepts fondamentaux”. In: André, G. (ed.), Louis de Broglie: Physicien et Penseur. Paris, Albin Michel, 1953, pp. 4–15.

    Google Scholar 

  • Einstein, A., Podolsky, B. & Rosen, N. “Can quantum mechanical description of physical reality be considered complete?”. Physical Review, 47, 1935, 777–780.

    Article  Google Scholar 

  • Everett III, H. “Relative state formulation of quantum mechanics”. Reviews of Modern Physics, 29, 1957, 454–462. (Reprinted in: Wheeler, J. A. & Zurek, W. H. (eds.), Quantum Theory and Measurement. Princeton, NJ, Princeton University Press, 1983, pp. 315–323.)

    Article  Google Scholar 

  • Ghirardi, G. C., Rimini, A. & Weber, T. “Unified dynamics for microscopic and macroscopic systems”. Physical Review, D34, 1986, 470–491.

    Google Scholar 

  • Hughes, R. I. G. Quantum Mechanics, Its Structure and Interpretation. Cambridge, MA, Harvard University Press, 1989.

    Google Scholar 

  • Kent, A. “Against many-world interpretation”. International Journal of Modern Physics, A5, 1990, 1745–1762.

    Article  Google Scholar 

  • Leggett, A. J. “Reflections on the quantum measurement paradox”. In: Hiley, B. J. & Peat, F. D. (eds.), Quantum Implications: Essays in Honour of David Bohm. London, Routledge & Kegan Paul, 1987.

    Google Scholar 

  • Mittelstaedt, P. “The constitution of objects in Kant's philosophy and in modern physics”. In: Parrini, P. (ed.), Kant and Contemporary Epistemology. Dordrecht, Kluwer, 1994, pp. 115–129.

    Google Scholar 

  • Murdoch, D. Niels Bohr's Philosophy of Physics. Cambridge, Cambridge University Press, 1987.

    Google Scholar 

  • Nogues, G., Rauschenbeutel, A., Osnaghi, S., Brune, M., Raimond, J. M. & Haroche, S. “Seeing a single photon without destroying it”. Nature, 400, 1999, 239–242.

    Article  Google Scholar 

  • Osnaghi, S., Bertet, P., Auffeves, A., Maioli, P., Brune, M., Raimond, J. M. & Haroche, S. “Coherent control of an atom collision in a cavity”. Physical Review Letters, 87, 2001, 037902–037905.

    Article  Google Scholar 

  • Park, J. L. “The self-contradictory foundations of formalistic quantum measurement theories”. International Journal of Theoretical Physics, 8(3), 1973, 211–218.

    Article  Google Scholar 

  • Pickering, A. Constructing Quarks. A Sociological History of Particle Physics. Chicago, IL, Chicago University Press, 1984.

    Google Scholar 

  • Raimond, J. M., Brune, M. & Haroche, S. “Manipulating quantum entanglement with atoms and photons in a cavity”. Review of Modern Physics, 73, 2001, 565–582.

    Article  Google Scholar 

  • Rosenfeld, L. “Foundations of quantum theory and complementarity”. Nature, 190, 1961, 384–388.

    Article  Google Scholar 

  • Rovelli, C. “Relational quantum mechanics”. International Journal of Theoretical Physics, 35, 1996, 1637–1678.

    Article  Google Scholar 

  • Saunders, S. “Decoherence, relative states and evolutionary adaptation”. Foundations of Physics, 23, 1993, 1553–1585.

    Article  Google Scholar 

  • Schrödinger, E. “Discussion of probability relations between separated systems”. Proceedings of the Cambridge Philosophical Society, 31, 1935a, 555–563.

    Article  Google Scholar 

  • Schrödinger, E. “Die gegenwärtige Situation in der Quantenmechanik”. Die Naturwissenschaften, 23, 1935b, 807–812, 823–828, 844–849. (Translated into English in: Wheeler, J. A. & Zurek, W. H. (eds.), Quantum Theory and Measurement. Princeton, NJ, Princeton University Press, 1983, pp. 152–167.)

    Article  Google Scholar 

  • Shimony, A. “Bell's Theorem”. In: Zalta, E. N. (ed.), The Stanford Encyclopedia of Philosophy, 2005. Available on-line: http://plato.stanford.edu/archives/sum2005/entries/bell-theorem.

    Google Scholar 

  • Vaidman, L. “The many-worlds interpretation of quantum mechanics”. In: Zalta, E. N. (ed.), The Stanford Encyclopedia of Philosophy, 2002. Available online: http://plato.stanford.edu/ archives/sum2002/entries/qm-manyworlds.

    Google Scholar 

  • van Fraassen, B. C. The Scientific Image. Oxford, Oxford University Press, 1980.

    Book  Google Scholar 

  • van Fraassen, B. C. Quantum Mechanics, an Empiricist View. Oxford, Oxford University Press, 1991.

    Google Scholar 

  • von Neumann, J. Mathematical Foundations of Quantum Mechanics (1932). Trans. by R. T. Beyer. Princeton, NJ, Princeton University Press, 1955.

    Google Scholar 

  • von Weizsäcker, C. F. The Unity of Nature. Trans. by F. J. Zucker. New York, Farrar-Straus-Giroux, 1980.

    Google Scholar 

  • Wheeler, J. A. “Assessment of Everett's ‘Relative State’ formulation of quantum theory”. Reviews of Modern Physics, 29, 1957, 463–465. (Reprinted in: Wheeler, J. A. & Zurek, W. H. (eds.), Quantum Theory and Measurement. Princeton, NJ, Princeton University Press, 1983, pp. 324–326.)

    Article  Google Scholar 

  • Wigner, E. “Remarks on the mind-body question”. In: Good, I. J. (ed.), The Scientist Speculates. London, Heinemann, 1961, pp. 284–302. (Reprinted in: Wheeler, J. A. & Zurek, W. H. (eds.), Quantum Theory and Measurement. Princeton, NJ, Princeton University Press, 1983, pp. 168–181.)

    Google Scholar 

  • Zurek, W. H. “Decoherence and the transition from quantum to classical”. Physics Today, 44, 1991, 36–44.

    Article  Google Scholar 

  • Zurek, W. H. “Decoherence, einselection and the quantum origins of the classical”. Review of Modern Physics, 75, 2004, 715–775.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Osnaghi, S. (2009). The Entangled Roots of Objective Knowledge. In: Bitbol, M., Kerszberg, P., Petitot, J. (eds) Constituting Objectivity. The Western Ontario Series In Philosophy of Science, vol 74. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9510-8_22

Download citation

Publish with us

Policies and ethics