Generation of Microbaroms by Deep-Ocean Hurricanes

  • Claus H. Hetzer
  • Kenneth E. Gilbert
  • Roger Waxler
  • Carrick L. Talmadge


Infrasound signals generated by hurricanes, appearing in the microbarom frequency band, often arrive along a bearing that does not point toward the eye of the hurricane where the winds are strongest. In general, the microbarom source region appears to trail the center of the storm. This article proposes that microbarom generation occurs in an “interaction region” wherein the concentric hurricane wavefield meets and opposes the ambient ocean swell field. This hypothesis is supported by infrasound data from Typhoon Usagi (2007) and results from the WaveWatch 3 ocean wave model.


Standing Wave Significant Wave Height Ocean Wave Track Forecast Intensity Forecast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. .
    Baird HF, Banwell CJ (1940) Recording of air-pressure oscillations associated with microseisms at Christchurch. N Z J Sci Tech 21B:314–329Google Scholar
  2. Banerji SK (1930) Microseisms associated with disturbed weather in the Indian seas. Phil Trans Roy Soc London Ser A 229:287–328CrossRefGoogle Scholar
  3. Benioff H, Gutenberg B (1939) Waves and currents recorded by electromagnetic barographs. Bull Am Meteorol Soc 20:421–426Google Scholar
  4. Bowman JR, Baker GE, Bahavar M (2005) Ambient infrasound noise. Geophys. Res Lett 32:L09803, doi:10.1029/2005GL022486CrossRefGoogle Scholar
  5. Brekhovskikh LM, Goncharov VV, Kurtepov VM, Naugolnykh KA (1973) The radiation of infrasound into the atmosphere by surface waves in the ocean. Izv, Atmos Ocean Phys 9:899–907Google Scholar
  6. Cessaro RK (1994) Sources of primary and secondary microseisms. Bull Seismol Soc Am 84:142–148Google Scholar
  7. De Bremaecker J-C (1965) Microseisms from Hurricane “Hilda.” Science 148:1725–1727CrossRefGoogle Scholar
  8. DeMaria M, Gross JM (2003) Evolution of prediction models. In: Simpson R (ed) Hurricane! Coping with disaster. American Geophysical Union, Washington, DC pp 103–126Google Scholar
  9. Donn WL (1951) Frontal microseisms generated in the western North Atlantic Ocean. J Meteorol 8:406–415Google Scholar
  10. Donn WL (1952) Cyclonic microseisms generated in the western North Atlantic Ocean J Meteorol 9:61–71Google Scholar
  11. Donn WL (1954) The relationship between microseism period and storm position. Science 3080:55–57CrossRefGoogle Scholar
  12. Donn WL, Naini B (1973) Sea wave origin of microbaroms and microseisms. J Geophys Res 78:4482–4488.CrossRefGoogle Scholar
  13. Donn WL, Posmentier ES (1967) Infrasonic waves from the marine storm of April 7, 1966. J Geophys Res 72:2053–2061CrossRefGoogle Scholar
  14. Emanuel K (2003) A century of scientific progress: an evaluation. In: Simpson R (ed) Hurricane! coping with disaster. American Geophysical Union, Washington, DC, pp 177–204Google Scholar
  15. Garcés MA, Hetzer CH, Merrifield M, Willis M, and Aucan J (2003) Observations of surf infrasound in Hawai‘i. Geophys Res Lett 30, doi:10.1029/2003GL018614Google Scholar
  16. Garcés M, Willis M, Hetzer C, Le Pichon A, Drob D (2004) On using ocean swells for continuous infrasonic measurements of winds and temperature in the lower, middle, and upper atmosphere. Geophys Res Lett 31, doi:10.1029/2004GL020696Google Scholar
  17. Garcés M, Willis M, Le Pichon A (2010) Infrasonic observations of open ocean swells in the Pacic: deciphering the song of the sea. This volume, pp. 231–244Google Scholar
  18. Goda Y (2003) Revisiting Wilson’s formulas for simplified wind-wave prediction. J Waterw Port Coast. Ocean Eng 129:93–95, doi:10.1061/(ASCE)0733–950X(2003)129:2(93)CrossRefGoogle Scholar
  19. Gutenberg B, Benioff H (1941) Atmospheric-pressure waves near Pasadena. Trans Am Geophys Union 22:424–426Google Scholar
  20. Hasselmann K (1963) A statistical analysis of the generation of microseisms. Rev Geophys 1:177–210CrossRefGoogle Scholar
  21. Hasselmann K, Olbers D (1973) Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergänz Dtsch Hydrogr Z Reihe A 8:1–95Google Scholar
  22. Hetzer CH, Waxler R, Gilbert KE, Talmadge CL, Bass HE (2008) Infrasound from hurricanes: dependence on the ambient ocean surface wave field. Geophys Res Lett 35:L14609, doi:10.1029/2008GL034614CrossRefGoogle Scholar
  23. Holland GJ (1980) An analytic model of the wind and pressure profiles in hurricanes. Mon Weather Rev 108:1212–1218CrossRefGoogle Scholar
  24. Klotz O (1910) Microseisms. Science 816:252–254CrossRefGoogle Scholar
  25. Law KT, Hobgood JS (2007) A statistical model to forecast short-term Atlantic hurricane intensity. Weather Forecast 22:967–981, doi:10.1175/WAF1027.1CrossRefGoogle Scholar
  26. Le Pichon A, Vergoz J, Cansi Y, Ceranna L, Drob D (2010) Contribution of infrasound monitoring for atmospheric remote sensing. This volume, pp. 623–640Google Scholar
  27. Leslie LM, Abbey RF, Holland GJ (1998) Tropical cyclone track predictability. Meteorol Atmos Phys 65:223–231CrossRefGoogle Scholar
  28. Longuet-Higgins MS (1950) A theory on the origin of microseisms. Philos Trans Royal Soc Lond Ser A 243:1–35CrossRefGoogle Scholar
  29. Pierce AD (1989) Acoustics. Acoustical Society of America, Melville, NYGoogle Scholar
  30. Pierson WJ, Moskowitz L (1964) A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J Geophys Res 69:5181–5190CrossRefGoogle Scholar
  31. Ponomaryov EA, Sorokin AG, Tabulevich VN (1998) Microseisms and infrasound: A kind of remote sensing. Phys Earth Planet Inter 108:339–346CrossRefGoogle Scholar
  32. Rind DH (1980) Microseisms at Palisades 3. Microseisms and microbaroms. J Geophys Res 85:4854–4862CrossRefGoogle Scholar
  33. Tabulevich VN (1992) Microseismic and infrasound waves. Research reports in physics Springer, BerlinGoogle Scholar
  34. Tolman HL, Balasubramaniyan B, Burroughs LD, Chalikov DV, Chao YY, Chen HS, Gerald VM (2002) Development and implementation of wind-generated ocean surface wave models at NCEP. Weather Forecast 17:311–333CrossRefGoogle Scholar
  35. Waxler R, Gilbert KE (2006) The radiation of atmospheric microbaroms by ocean waves. J Acoust Soc Am 119:2651–2664CrossRefGoogle Scholar
  36. Willis M, Garces MA, Hetzer CH, Businger S (2004) Infrasonic observations of open ocean swells in the Pacific: deciphering the song of the sea. Geophys Res Lett 31:L19303, doi:10.1029/2004GL020684CrossRefGoogle Scholar
  37. Willoughby HE (2003) A century of progress in tracking and warning. In: Simpson R (ed) Hurricane! coping with disaster. American Geophysical Union, Washington, DC, pp 205–216Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Claus H. Hetzer
    • 1
  • Kenneth E. Gilbert
    • 1
  • Roger Waxler
    • 1
  • Carrick L. Talmadge
    • 1
  1. 1.National Center for Physical Acoustics , The University of MississippiMississippiUSA

Personalised recommendations