Skip to main content

Infrasonic Observations of Open Ocean Swells in the Pacific: Deciphering the Song of the Sea

  • Chapter
  • First Online:
Infrasound Monitoring for Atmospheric Studies

Abstract

Ocean waves produced during severe marine weather may generate infrasonic signals in the 0.1–0.5 Hz frequency band. Theory suggests that the source mechanism for these infrasound signals, known as microbaroms, is the nonlinear interaction of ocean surface waves. Multiple swells coexisting at any given point are able to radiate infrasonic waves if the ocean-wave spectrum contains swell components that are almost opposite in direction and of a nearly identical frequency. Global ocean-wave spectra provided by the National Oceanic and Atmospheric Administration’s (NOAA’s) Wavewatch 3 (WW3) model can be used to estimate the acoustic source pressure spectra induced by nonlinear ocean-wave interactions. Comparison of microbarom observations with surface weather, ocean-wave charts, and WW3-produced acoustic sources suggests that microbarom source regions occur in locations that contain opposing wave trains, instead of exclusively from regions of marine storminess.

The arrival azimuths of coherent microbarom signals observed by the global infrasound array network are associated with high ocean-wave activity, the dominant wind directions in the troposphere, stratosphere, and mesosphere, and the thermal structure of the atmosphere. Some of the seasonal trends in the microbarom observations can be explained by the winds in the stratosphere and lower mesosphere, whereas some of the daily variability can be explained by the winds in the troposphere and lower stratosphere. However, coherent energy from powerful swells may overcome the wind-carried microbarom signals and arrive to the station through thermospheric ducting. Our observations suggest that the wind-speed fluctuations in the troposphere, stratosphere, and mesosphere may be underestimated in the atmospheric models, and elevated leaky infrasonic waveguides may often promote long-range propagation.

We review contemporary observations and interpretations of microbarom signals recorded by the global infrasound network and discuss the potential of using these signals for acoustic remote sensing of hurricanes and severe sea states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arendt S, Fritts D (2000) Acoustic radiation by ocean surface waves. J Fluid Mech 415:1–21

    Article  Google Scholar 

  • Bedard A, Georges TM (2000) Atmospheric infrasound. Phys Today 53:32–37

    Article  Google Scholar 

  • Bhattacharyya J, Hetzer C, Garcés M, Oancea V (2003) Description and analysis of infrasound signals recorded from the North Pacific event of 22 February 2003, presented at the Infrasound Technology Workshop, La Jolla, California, October 27-–30.

    Google Scholar 

  • Benioff H, Gutenberg B (1939) Waves and currents recorded by electromagnetic barographs. Bull Am Met Soc 20:421

    Google Scholar 

  • Bowman JR, Baker GE, Bahavar M (2005) Ambient infrasound noise. Geophys Res Lett 32:L09803

    Article  Google Scholar 

  • Brachet N, Brown D, Le Bras R, Mialle P, Coyne J (2010) Monitoring the earth’s atmosphere with the global IMS infrasound network. This volume, pp. 73–114

    Google Scholar 

  • Brekhovskikh IM, Goncharov VV, Kurtepov VM, Naugolnykh KA (1973) The radiation of infrasound into the atmosphere by surface waves in the ocean. Atmos Oceanic Phys 9:899–907

    Google Scholar 

  • Cansi Y (1995) An automatic seismic event processing for detection and location: the P.M.C.C. method. Geophys Res Lett 22:1021–1024

    Article  Google Scholar 

  • Cansi Y, Klinger Y (1997) An automated data processing method for mini-arrays. Newslett Eur-Mediterranean Seismol Center 11:2–4

    Google Scholar 

  • Daniels FB (1952) Acoustical energy generated by the ocean waves. J Acoust Soc Am 24:83

    Article  Google Scholar 

  • Daniels FB (1962) Generation of infrasound by ocean waves. J Acoust Soc Am 34:352–353

    Article  Google Scholar 

  • Dessa JX, Virieux J, Lambotte S (2005) Infrasound modeling in a spherical heterogeneous atmosphere. Geophys Res Lett 32:L12808.1–L12808.5, doi:10.1029/2005GL022867

    Google Scholar 

  • Drob DP, Meier RR, Picone JM, Garcés MM (2010) Inversion of infrasound signals for passive atmospheric remote sensing. This volume, pp. 695–726

    Google Scholar 

  • Donn WL, Posmentier ES (1967) Infrasonic waves from the marine storm of April 7, 1966. J Geophys Res 72:2053–2061

    Article  Google Scholar 

  • Donn WL, Naini B (1973) Sea wave origin of microbaroms and microseisms. J Geophys Res 78:4482–4488

    Article  Google Scholar 

  • Donn WL, Rind D (1971) Natural infrasound as an atmospheric probe. Geophys J R Astr Soc 26:111–133

    Google Scholar 

  • Donn WL, Rind D (1973) Microbaroms and the temperature and wind of the upper atmosphere. J Atmos Sci 29:156–172

    Article  Google Scholar 

  • Drob D, Picone JM, Garcés MA (2003) The global morphology of infrasound propagation. J Geophys Res 108:ACL13.1–ACL13.12, doi:10.1029/2002JD003307.

    Google Scholar 

  • Garcés M, Hetzer C, Drob D, Woodward R, Bass H, McCormack D, Evers L, Hedlin M, Le Pichon A, Liszka L, Wilson C, Whitaker R (2002) Progress in the development of a ground truth database of infrasonic events. Infrasound Technology Workshop, De Bilt, Netherlands, October 28–31

    Google Scholar 

  • Garcés M, Willis M, Hetzer C, Le Pichon A, Drob D (2004) On using ocean swells for continuous infrasonic measurements of winds and temperature in the lower, middle, and upper atmosphere. Geophys Res Lett 31:L19304.1–L19304.4, doi:10.1029/2004GRL020696

    Google Scholar 

  • Godin OA, Naugolnykh KA (2005) Guided propagation of naturally occurring infrasound in the troposphere and stratosphere. Geophys Res Lett 32:L23824. doi:10.1029/2005GL024585

    Article  Google Scholar 

  • Hasselmann K (1963) A statistical analysis of the generation of microbaroms. Rev Geophys 1:177–210

    Article  Google Scholar 

  • Hedin AE, Fleming EL, Manson AH, Schmidlin FJ, Avery SK, Clark RR, Franke SJ, Fraser GJ, Tsuda T, Vial F, Vincent RA (1996) Empirical wind model for the upper, middle and lower atmosphere. J Atmos Terr Phys 58:1421–1447

    Article  Google Scholar 

  • Hedlin M, Garcés M, Bass H, Hayward C, Herrin G, Olson J, Wilson C (2002) Listening to the secret sounds of earth’s atmosphere. EOS 83:564–565

    Google Scholar 

  • Hetzer CH, Gilbert KE, Waxler R, Talmadge CL (2010) Generation of microbaroms by deep-ocean hurricanes. This volume, pp. 245–258

    Google Scholar 

  • Kibblewhite A, Wu CY (1996) Wave interactions as a seismo-acoustic source. Lecture Notes in Earth Sciences. Springer, Berlin

    Book  Google Scholar 

  • Le Pichon A, Ceranna L, Garcés M, Drob D, Millet C (2006) On using infrasound from interacting ocean swells for global continuous measurements of winds and temperature in the stratosphere. J Geophys Res 111:D11106. doi:10.1029/2005JD006690

    Article  Google Scholar 

  • Le Pichon A, Vergoz J, Cansi Y, Ceranna L, Drob D (2010) Contribution of infrasound monitoring for atmospheric remote sensing. This volume, pp. 623–640

    Google Scholar 

  • Le Pichon A, Maurer V, Raymond D, Hyvernaud O (2004) Infrasound from ocean waves observed in Tahiti. Geophys. Res. Lett. 31:L19103.1–L19103.4. doi:10.1029/2004GL020676

    Google Scholar 

  • Longuet-Higgins MS (1950) A theory of the origin of microseisms. Phil Trans R Soc Lond 243:1–35

    Article  Google Scholar 

  • Olson JV, Szuberla C (2005) Distribution of wave packet sizes in microbarom wave trains observed in Alaska. J Acoust Soc Am 117:1032–1037

    Article  Google Scholar 

  • Ponomaryov EA, Sorokin AG, Tabulevich VN (1998) Microseisms and infrasound: a kind of remote sensing. Phys Earth Planet Inter 108:339–346

    Article  Google Scholar 

  • Posmentier E (1967) A theory of microbaroms. Geophys J R Astron Soc 13:487–501

    Google Scholar 

  • Rind D, Donn WL (1975) Further use of natural infrasound as a continuous monitor of the upper atmosphere. J Atmos Sci 32:1694–1704

    Article  Google Scholar 

  • Rind D (1980) Microseisms at palisades 3. Microseisms and microbaroms. J Geophys Res 85:4854–4862

    Article  Google Scholar 

  • Rind D (1978) Investigation of the lower thermosphere results of ten years of continuous observations with natural infrasound. J Atmos Terr Phys 40:1199–1209

    Article  Google Scholar 

  • Saxer L (1945) Electrische Messung kleiner atmospharischer Druckshwankungen. Helv Phys Acta 18:527

    Google Scholar 

  • Saxer L (1954) Über Entstehung und Ausbreitung quasiperiodischer Luftdruckschwankungen. Arch Meteorol Geophys Bioklum A6:451–457

    Article  Google Scholar 

  • Sulejkin WW (1935) On the voice of the sea. Dokl Acad Sci USSR 3:259–262

    Google Scholar 

  • Stevens J, Divnov I, Adams D, Murphy J, Bourchik V (2002) Constraints on infrasound scaling and attenuation relations from Soviet explosion data. Pure Appl Geophys 159:1045–1062

    Article  Google Scholar 

  • Tabulevich V (1995) On recordings of global microseismic vibrations and observations of microseisms in shore zones of oceans. Phys Earth Planet Inter 91:299–305

    Article  Google Scholar 

  • Tolman HL (1999) User manual and system documentation of WAVEWATCH-III version 1.19. NOAA/NWS/NCEP/OMB Technical Note Nr. 166, 110 pp

    Google Scholar 

  • Tolman HL (2002) Validation of WAVEWATCH III version 1.15 for a global domain. NOAA/NWS/NCEP/OMB Technical Note Nr. 213, 33 pp

    Google Scholar 

  • Waxler R, Gilbert K (2006) The radiation of atmospheric microbaroms by ocean waves. J Acoust Soc Am 119:5

    Article  Google Scholar 

  • Webb SC (1992) The equilibrium oceanic microseism spectrum. J Acoust Soc Am 92:2141–2158

    Article  Google Scholar 

  • Webb SC, Cox CS (1986) Observations and modeling of seafloor microseisms. J Geophys Res 91:7343–7358

    Article  Google Scholar 

  • Willis M (2004) Observations and source modeling of microbaroms in the Pacific. MS thesis, Department of Meteorology, University of Hawaii at Manoa, 77 pp

    Google Scholar 

  • Willis M, Garcés M, Hetzer C, Businger S (2004a) Infrasonic observations of open ocean swells in the Pacific: deciphering the song of the sea. Geophys Res Lett 31:L19303.1–L19303.4. doi:10.1029/2004GL020684

    Google Scholar 

  • Willis M, Garcés M, Hetzer C, Businger S (2004) Source modeling of microbaroms in the Pacific preprints, 84th AMS annual meeting. Eighth symposium on integrated observing and assimilation systems for atmosphere, oceans, and land surface (IAOS-AOLS), Seattle, WA, Amer. Meteor. Soc., P2.5

    Google Scholar 

Download references

Acknowledgments

This work was funded in part by Defense Threat Reduction Agency contracts DTRA01-00-C-0106 and DTRA01-01-C-0077. We express our gratitude to H. Tolman for his guidance on the use of WW3. Many thanks to S. Businger, P. Wittmann, and J. Bhattacharyya for their contributions, and to S. Collins and Surfline, Inc., for their encouragement during this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Garcés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Garcés, M., Willis, M., Le Pichon, A. (2010). Infrasonic Observations of Open Ocean Swells in the Pacific: Deciphering the Song of the Sea. In: Le Pichon, A., Blanc, E., Hauchecorne, A. (eds) Infrasound Monitoring for Atmospheric Studies. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9508-5_7

Download citation

Publish with us

Policies and ethics