Inversion of Infrasound Signals for Passive Atmospheric Remote Sensing

  • Douglas P. Drob
  • R. R. Meier
  • J. Michael Picone
  • Milton M. Garcés


During the past few years, significant progress has been made in our understanding of atmospheric propagation of infrasound signals from both natural and man-made impulsive events. In this chapter, we review this progress within the framework of the early history of infrasound remote sensing, including basic geophysical remote sensing theory and linear acoustic wave propagation. Also, we review the capabilities and limitations of current global atmospheric specification models used in propagation studies.

We believe that the state-of-the-art in infrasound propagation research has advanced sufficiently, so that the opportunity is now at hand to turn the problem around and use detections of infrasound to improve our knowledge of upper atmospheric winds and temperatures, which are the main affecting quantities. Accordingly, we employ an approach called discrete inverse theory, a concept developed by the seismographic and oceanographic communities, to retrieve winds and temperatures by inverting infrasound observations. We demonstrate the methodology through application to an extensive time series of synthetic data that were generated using an atmospheric model as the “truth.”

The results of several illustrative numerical experiments carried out with an existing infrasound network show that with selected assumptions, infrasound signals from a single impulsive event can be inverted to provide quantitative information on the state of the middle- and upper atmosphere. We conclude that this approach to infrasound signal inversion is an important step forward in atmospheric remote sensing and we propose several ideas for future directions.


Passive acoustic remote sending 



The authors would like to thank the NASA GSFC for making the GEOS-4 analysis fields for use in the G2S model for this scientific research. They would also like to thank two anonymous reviewers for insightful comments on the initial drafts of this article. This work was supported by the Office of Naval Research. This chapter is dedicated to the memory of Dr. Hank Bass.


  1. Adams JC, Swarztrauber PN (1999) Spherepack 3.0, 1999: a Model Development Facility. Month Weather Rev 127:1872–1878Google Scholar
  2. Aki K, Christoffersson A, Husebye ES (1977) Determination of 3-dimensional seismic structure of lithosphere. J Geophys Res 82:277–296Google Scholar
  3. Akmaev RA, Fuller-Rowell TJ, Wu F, Forbes JM, Zhang X, Anghel AF, Iredell MD, Moorthi S, Juang HM (2008) Tidal variability in the lower thermosphere: comparison of whole atmosphere model (WAM) simulations with observations from TIMED. Geophys Res Lett 35, doi:10.1029/2007GL032584Google Scholar
  4. Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics. Academic Press, OrlandoGoogle Scholar
  5. Antier K, Le Pichon A, Vergniolle S, Zielinski C, Lardy M (2007) Multiyear validation of the NRL-G2S wind fields using infrasound from Yasur. J Geophys Res-Atmos 112, doi:10.1029/2007JD008462Google Scholar
  6. Arrowsmith SJ, Drob DP, Hedlin MAH, Edwards W (2007) A joint seismic and acoustic study of the Washington State bolide: observations and modeling. J Geophys Res-Atmos 112, doi:10.1029/2006JD008001Google Scholar
  7. Arrowsmith SJ, Whitaker R, Taylor SR, Burlacu R, Stump BW, Hedlin MAH, Randall G, Hayward C, Revelle DO (2008) Regional monitoring of infrasound events using multiple arrays: application to Utah and Washington State. Geophys J Int 175:291–300CrossRefGoogle Scholar
  8. Bass H, Bhattacharyya J, Garcés M, Hedlin M, Olson J, Woodward R (2006) Infrasound. Acoust Today 2(1):9–19CrossRefGoogle Scholar
  9. Bass HE, Hetzer CH, Raspet R (2007) On the speed of sound in the atmosphere as a function of altitude and frequency. J Geophys Res-Atmos 112, doi:10.1029/2006JD007806Google Scholar
  10. Bessonova EN, Fishman VM, Ryaboyi VZ, Sitnikovn GA (1974) Tau method for inversion of travel times.1. Deep seismic sounding data. Geophys J R Astr Soc 36:377–398Google Scholar
  11. Best N, Havens R, Lagow H (1947) Pressure and temperature of the atmosphere to 120 KM. Phys Rev 71:915–916CrossRefGoogle Scholar
  12. Bloom SC, Takacs LL, DaSilva AM, Ledvina D (1996) Data assimilation using incremental analysis updates. Month Weather Rev 124:1256–1271CrossRefGoogle Scholar
  13. Boggs PT, Byrd RH, Schnabel RB (1987) A stable and efficient algorithm for nonlinear orthogonal distance regression. SIAM J Sci Stat Comput 8:1052–1078CrossRefGoogle Scholar
  14. Boggs PT, Donaldson JR, Byrd RH, Schnabel RB (1989) Odrpack – software for weighted orthogonal distance regression. ACM Trans Math Software 15:348–364CrossRefGoogle Scholar
  15. Bowen PJ, Davies MJ, Stebbings RF, Groves GV, Boyd RLF, Dorling EB (1964) Upper atmosphere wind + temperature structure by skylark rocket-grenade experiments at Woomera Australia 1957-59. Proc Roy Soc Lond Math Phys Sci 280:170–184Google Scholar
  16. Brown D, Garcés M (2009) Ray tracing in an inhomogeneous atmosphere with winds. In: Havelock D, Kuwano S, Vorländer M (eds) Handbook on signal processing in acoustics. Springer, ISBN: 978-0-387-77698-9Google Scholar
  17. Brown DJ, Katz CN, Le Bras R, Flanagan MP, Wang J, Gault AK (2002) Infrasonic signal detection and source location at the Prototype International Data Centre. Pure Appl Geophys 159:1081–1125CrossRefGoogle Scholar
  18. Christie DR, Veloso JAV, Campus P, Bell M, Hoffmann T, Langlois A, Martysevich P, Demirovic E, Carvalho J (2001) Detection of atmospheric nuclear explosions: the infrasound component of the International Monitoring System. Kerntechnik 66:96–101Google Scholar
  19. Christie DR, Campus P (2010) The IMS infrasound network: design and establishment of infrasound stations. This volume, pp. 27–72Google Scholar
  20. Chunchuzov IP (2004) Influence of internal gravity waves on sound propagation in the lower atmosphere. Meteorol Atmos Phys 85:61–76CrossRefGoogle Scholar
  21. Chunchuzov I, Kulichkov S, Otrezov A, Perepelkin V (2005) Acoustic pulse propagation through a fluctuating stably stratified atmospheric boundary layer. J Acoust Soc Am 117:1868–1879CrossRefGoogle Scholar
  22. Courtier P, Andersson E, Heckley W, Pailleux J, Vasiljevic D, Hamrud M, Hollingsworth A, Rabier E, Fisher M (1998) The ECMWF implementation of three-dimensional variational assimilation (3D-Var) I: formulation. Quart J R Meteorol Soc 124:1783–1807Google Scholar
  23. Cox EF (1947) Microbarometric pressures from large high explosive blasts. J Acoust Soc Am 19:832–846CrossRefGoogle Scholar
  24. Cox EF (1948) Upper atmosphere temperatures from remote sound measurements. Am J Phys 16:465–474CrossRefGoogle Scholar
  25. Cox EF (1949) Abnormal audibility zones in long distance propagation through the atmosphere. J Acoust Soc Am 21:6–16CrossRefGoogle Scholar
  26. Cox EF, Atanasoff JV, Snavely BL, Beecher DW, Brown J (1949) Upper-atmosphere temperatures from Helgoland big bang. J Meteorol 6:300–311Google Scholar
  27. Daley R (1991) Atmospheric data analysis. Cambridge University Press, Cambridge, New YorkGoogle Scholar
  28. de Groot-Hedlin CD, Hedlin MAH, Drob DP (2010) Atmospheric variability and infrasound monitoring. This volume, pp. 469–504Google Scholar
  29. Der ZA, Shumway RH, Herrin ET (2002) Monitoring the comprehensive Nuclear-Test-Ban Treaty – Introduction. Pure Appl Geophys 159:907–908CrossRefGoogle Scholar
  30. Donn WL, Rind D (1971) Natural infrasound as an atmospheric probe. Geophys J R Astron Soc 26:111–133Google Scholar
  31. Donn WL, Rind D (1972) Microbaroms and temperature and wind of upper-atmosphere. J Atmos Sci 29:56–172CrossRefGoogle Scholar
  32. Drob D, Emmert JT, Crowley G, Picone JM, Shepherd GG, Skinner W, Hays P, Niciejewski RJ, Larsen M, She CY, Meriwether JW, Hernandez G, Jarvis MJ, Sipler DP, Tepley CA, O’Brien MS, Bowman JR, Wu Q, Murayama Y, Kawamura S, Reid IM, Vincent RA (2008) An empirical model of the earth’s horizontal wind fields: HWM07. J Geophys Res-Space Phys 113, doi:10.1029/2008JA013668Google Scholar
  33. Drob DP, Garces M, Hedlin MAH, Brachet N (2009) The temporal morphology of infrasound propagation. Pure Appl Geophys in pressGoogle Scholar
  34. Drob DP, Picone JM, Garces M (2003) Global morphology of infrasound propagation. J Geophys Res-Atmos 108, doi:10.1029/2008JA013668Google Scholar
  35. Durre I, Vose RS, Wuertz DB (2008) Robust automated quality assurance of radiosonde temperatures. J Appl Meteorol Climate 47:2081–2095CrossRefGoogle Scholar
  36. Evers LG, Haak HW (2007) Infrasonic forerunners: exceptionally fast acoustic phases. Geophys Res Lett 34, doi:10.1029/2007GL029353Google Scholar
  37. Forbes JM, Zhang XL, Talaat ER, Ward W (2003) Nonmigrating diurnal tides in the thermosphere. J Geophys Res-Space Phys 108, doi:10.1029/2002JA009262Google Scholar
  38. Fritts DC, Alexander MJ (2003) Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys 41:64CrossRefGoogle Scholar
  39. Fritts DC, Isler JR (1994) Mean motions and tidal and 2-day structure and variability in the mesosphere and lower thermosphere over Hawaii. J Atmos Sci 51:2145–2164CrossRefGoogle Scholar
  40. Garcés MA, Hansen RA, Lindquist KG (1998) Traveltimes for infrasonic waves propagating in a stratified atmosphere. Geophys J Int 135:255–263CrossRefGoogle Scholar
  41. Garces M, Willis M, Hetzer C, Le Pichon A, Drob D (2004) On using ocean swells for continuous infrasonic measurements of winds and temperature in the lower, middle, and upper atmosphere. Geophys Res Lett 31,doi:10.1029/2004GL020696Google Scholar
  42. Gossard EE, Hooke WH (1975) Waves in the atmosphere: atmospheric infrasound and gravity waves: their generation and propagation, Elsevier, AmsterdamGoogle Scholar
  43. Groves GV (1956) Theory of the rocket-grenade method of determining upper-atmospheric properties by sound propagation. J Atmos Terr Phys 8:189–203CrossRefGoogle Scholar
  44. Gutenberg B (1946) Physical properties of the atmosphere up to 100 KM. J Meteorol 3:27–30Google Scholar
  45. Hauchecorne A, Chanin ML (1980) Density and temperature profiles obtained by Lidar between 35-km and 70-km. Geophys Res Lett 7:565–568CrossRefGoogle Scholar
  46. Hays PB, Abreu VJ, Dobbs ME, Gell DA, Grassl HJ, Skinner WR (1993) The high-resolution Doppler imager on the upper-atmosphere research satellite. J Geophys Res-Atmos 98:10713–10723CrossRefGoogle Scholar
  47. Hedin AE (1987) MSIS-86 thermospheric model. J Geophys Res-Space Phys 92:4649–4662CrossRefGoogle Scholar
  48. Hedin AE, Fleming EL, Manson AH, Schmidlin FJ, Avery SK, Clark RR, Franke SJ, Fraser GJ, Tsuda T, Vial F, Vincent RA (1996) Empirical wind model for the upper, middle and lower atmosphere. J Atmos Terr Phys 58:1421–1447CrossRefGoogle Scholar
  49. Herrin ET, Bass HE, Andre B, Woodward RL, Drob DP, Hedlin MA, Garcés MA, Golden PW, Norris DE, de Groot-Hedlin C, Walker KT, Szuberla CAL, Whitaker RW, Shields FD (2008) High-altitude infrasound calibration experiments. Acoust Today 4:12CrossRefGoogle Scholar
  50. Hogan TF, Rosmond TE (1991) The description of the navy operational global atmospheric prediction systems spectral forecast model. Month Weather Rev 119:1786–1815CrossRefGoogle Scholar
  51. Holton JR (2004) An introduction to dynamic meteorology. Elsevier Academic Press, Burlington, MAGoogle Scholar
  52. Husen S, Kissling E (2001) Local earthquake tomography between rays and waves: fat ray tomography. Phys Earth Planet Int 125:171–191CrossRefGoogle Scholar
  53. Isler JR, Fritts DC (1995) Mean winds and tidal and planetary wave motions over Hawaii during airborne lidar and observations of Hawaiian Airglow Aloha-93. Geophys Res Lett 22:2821–2824CrossRefGoogle Scholar
  54. Joiner J, Da Silva AM (1998) Efficient methods to assimilate remotely sensed data based on information content. Quart J R Meteorol Soc 124:1669–1694CrossRefGoogle Scholar
  55. Kalnay E, Kanamitsu M, Baker WE (1990) Global numerical weather prediction at the National-Meteorological-Center. Bull Am Meteorol Soc 71:1410–1428CrossRefGoogle Scholar
  56. Kaplan LD (1959) Inference of atmospheric structure from remote radiation measurements. J Opt Soc Am 49:1004–1007CrossRefGoogle Scholar
  57. Killeen TL, Roble RG, Spencer NW (1987) A computer model of global thermospheric winds and temperatures. Adv Space Res 7:207–215CrossRefGoogle Scholar
  58. Klaes KD, Cohen M, Buhler Y, Schlussel P, Munro R, Luntama JP, von Engelin A, Clerigh EO, Bonekamp H, Ackermann J, Schmetz J (2007) An introduction to the EUMETSAT Polar System. Bull Am Meteorol Soc 88:1085–1096CrossRefGoogle Scholar
  59. Kulichkov SN, Chunchuzov IP, Bush GA, Perepelkin VG (2008) Physical modeling of long-range infrasonic propagation in the atmosphere. Izv Atmos Ocean Phys 44:175–186CrossRefGoogle Scholar
  60. Larsen MF (2002) Winds and shears in the mesosphere and lower thermosphere: results from four decades of chemical release wind measurements. J Geophys Res-Space Phys 107, doi:10.1029/2001JA000218Google Scholar
  61. Le Pichon A, Blanc E, Drob D (2005a) Probing high-altitude winds using infrasound. J Geophy Res-Atmos 110, doi: 10.1029/2005JD006020Google Scholar
  62. Le Pichon A, Blanc E, Drob D, Lambotte S, Dessa JX, Lardy M, Bani P, Vergniolle S (2005b) Infrasound monitoring of volcanoes to probe high-altitude winds. J Geophys Res-Atmos 110, doi: 10.1029/ 2004JD005587Google Scholar
  63. Le Pichon A, Ceranna L, Garces M, Drob D, Millet C (2006) On using infrasound from interacting ocean swells for global continuous measurements of winds and temperature in the stratosphere. J Geophys Res-Atmos 111, doi:10.1029/2005JD006690Google Scholar
  64. Le Pichon A, Vergoz J, Herry P, Ceranna L (2008) Analyzing the detection capability of infrasound arrays in Central Europe. J Geophys Res-Atmos 113, doi:10.1029/2007JD009509Google Scholar
  65. Le Pichon A, Vergoz J, Cansi Y, Ceranna L, Drob D (2010) Contribution of infrasound monitoring for atmospheric remote sensing. This volume, pp. 623–640Google Scholar
  66. Lighthill MJ (1978) Waves in fluids. Cambridge University Press, CambridgeGoogle Scholar
  67. Lingevitch JF, Collins MD, Dacol DK, Drob DP, Rogers JCW, Siegmann WL (2002) A wide angle and high Mach number parabolic equation. J Acoust Soc Am 111:729–734CrossRefGoogle Scholar
  68. Manney GL, Kruger K, Pawson S, Minschwaner K, Schwartz MJ, Daffer WH, Livesey NJ, Mlynczak MG, Remsberg EE, Russell JM, Waters JW (2008) The evolution of the stratopause during the 2006 major warming: satellite data and assimilated meteorological analyses. J Geophys Res-Atmos 113, doi:10.1029/2007JD009097Google Scholar
  69. Marquardt DW (1963) An algorithm for least squares estimation of nonlinear parameters. J Soc Indus Appl Math 11:431–441CrossRefGoogle Scholar
  70. Menke W (1989) Geophysical data analysis: discrete inverse theory. Academic Press, San DiegoGoogle Scholar
  71. Migliorini S, Piccolo C, Rodgers CD (2008) Use of the information content in satellite measurements for an efficient interface to data assimilation. Month Weather Rev 136:2633–2650CrossRefGoogle Scholar
  72. Millet C, Robinet JC, Roblin C (2007) On using computational aeroacoustics for long-range propagation of infrasounds in realistic atmospheres. Geophys Res Lett 34, doi:10.1029/2007GL029449Google Scholar
  73. Munk W (1986) Acoustic monitoring of ocean gyres. J Fluid Mech 173:43–53CrossRefGoogle Scholar
  74. Munk W, Wunsch C (1979) Ocean acoustic tomography – scheme for large-scale monitoring. Deep-Sea Res 26:123-161Google Scholar
  75. Munk WH, Worcester P, Wunsch C (1995) Ocean acoustic tomography. Cambridge University Press, CambridgeGoogle Scholar
  76. Murayama Y, Igarashi K, Rice DD, Watkins BJ, Collins RL, Mizutani K, Saito Y, Kainuma S (2000) Medium frequency radars in Japan and Alaska for upper atmosphere observations. IEICE Trans Commun E83b:1996–2003Google Scholar
  77. Oberheide J, Wu Q, Killeen TL, Hagan ME, Roble RG (2006) Diurnal nonmigrating tides from TIMED Doppler interferometer wind data: monthly climatologies and seasonal variations. J Geophys Res-Space Phys 111, doi:10.1029/2005JA011491Google Scholar
  78. Ostashev VE, Chunchuzov IP, Wilson DK (2005) Sound propagation through and scattering by internal gravity waves in a stably stratified atmosphere. J Acoust Soc Am 118:3420–3429CrossRefGoogle Scholar
  79. Picone JM, Hedin AE, Drob DP, Aikin AC (2002) NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res-Space Phys 107, doi: 10.1029/2002JA009430Google Scholar
  80. Pierce AD (1967) Guided infrasonic modes in a temperature- and wind-stratified atmosphere. J Acoust Soc Am 41:597–611CrossRefGoogle Scholar
  81. Poli P, Joiner J, Kursinski ER (2002) 1DVAR analysis of temperature and humidity using GPS radio occultation refractivity data. J Geophys Res-Atmos 107, doi:10.1029/2001JD000935Google Scholar
  82. Rabier F (2005) Overview of global data assimilation developments in numerical weather-prediction centres. Q J R Meteorol Soc 131:3215–3233CrossRefGoogle Scholar
  83. Rienecker MM, Suarez MJ, Todling R, Bacmeister J, Takacs L, Liu H-C, Gu W, Sienkiewicz M, Koster RD, Gelaro R, Stajner I, Nielsen JE (2008) The GEOS-5 data assimilation system – documentation of versions 5.0.1, 5.1.0, and 5.2.0, NASA/TM-2008-104606 27:93Google Scholar
  84. Rind D (1978) Investigation of lower thermosphere results of ten years of continuous observations with natural infrasound. J Atmos Terr Phys 40:1199–1209CrossRefGoogle Scholar
  85. Rind D, Donn WL (1975) Further use of natural infrasound as a continuous monitor of upper-atmosphere. J Atmos Sci 32:1694–1704CrossRefGoogle Scholar
  86. Rind D, Donn WL, Dede E (1973) Upper air wind speeds calculated from observations of natural infrasound. J Atmos Sci 30:1726–1729CrossRefGoogle Scholar
  87. Rodgers CD (2000) Inverse methods for atmospheric sounding: theory and practice. World Scientific, SingaporeGoogle Scholar
  88. Romanowicz B (2008) Using seismic waves to image Earth’s internal structure. Nature 451:266–268CrossRefGoogle Scholar
  89. Schwartz MJ, Lambert A, Manney GL, Read WG, Livesey NJ, Froidevaux L, Ao CO, Bernath PF, Boone CD, Cofield RE, Daffer WH, Drouin BJ, Fetzer EJ, Fuller RA, Jarnot RF, Jiang JH, Jiang YB, Knosp BW, Kruger K, Li JLF, Mlynczak MG, Pawson S, Russell JM, Santee ML, Snyder WV, Stek PC, Thurstans RP, Tompkins AM, Wagner PA, Walker KA, Waters JW, Wu DL (2008) Validation of the aura microwave limb sounder temperature and geopotential height measurements. J Geophys Res-Atmos 113, doi:10.1029/2007JD008783Google Scholar
  90. She CY (2004) Initial full-diurnal-cycle mesopause region lidar observations: diurnal-means and tidal perturbations of temperature and winds over Fort Collins, CO (41 degrees N 105 degrees W). J Atmos Solar-Terr Phys 66:663–674CrossRefGoogle Scholar
  91. Shepherd GG, Thuillier G, Gault WA, Solheim BH, Hersom C, Alunni JM, Brun JF, Brune S, Charlot P, Cogger LL, Desaulniers DL, Evans WFJ, Gattinger RL, Girod F, Harvie D, Hum RH, Kendall DJW, Llewellyn EJ, Lowe RP, Ohrt J, Pasternak F, Peillet O, Powell I, Rochon Y, Ward WE, Wiens RH, Wimperis J (1993) Windii, the wind imaging interferometer on the upper-atmosphere research satellite. J Geophys Res-Atmos 98:10725–10750CrossRefGoogle Scholar
  92. Simmons A, Hortal M, Kelly G, McNally A, Untch A, Uppala S (2005) ECMWF analyses and forecasts of stratospheric winter polar vortex breakup: September 2002 in the Southern Hemisphere and related events. J Atmos Sci 62:668–689CrossRefGoogle Scholar
  93. Swinbank R, Lahoz WA, O’Neill A, Douglas CS, Heaps A, Podd D (1998) Middle atmosphere variability in the UK Meteorological Office Unified Model. Q J R Meteorol Soc 124:1485–1525CrossRefGoogle Scholar
  94. Szuberla CAL, Olson JV (2004) Uncertainties associated with parameter estimation in atmospheric infrasound arrays. J Acoust Soc Am 115:253–258CrossRefGoogle Scholar
  95. Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics, Philadelphia, PAGoogle Scholar
  96. Tikhonov AN (1963) Solution of incorrectly formulated problems and regularization method. Doklady Akademii Nauk SSSR 151:501–504Google Scholar
  97. Twomey S (1963) On numerical solution of Fredholm integral equations of first kind by inversion of linear system produced by quadrature. J ACM 10:97–101Google Scholar
  98. Vincent RA (1984) Mf/Hf radar measurements of the dynamics of the mesopause region – a review. J Atmos Terr Phys 46:961–974CrossRefGoogle Scholar
  99. Vincent RA, Lesicar D (1991) Dynamics of the equatorial mesosphere – 1st results with a new generation partial reflection radar. Geophys Res Lett 18:825–828CrossRefGoogle Scholar
  100. Walker KT, Zumberge MA, Hedlin MAH, Shearer PM (2008) Methods for determining infrasound phase velocity direction with an array of line sensors. J Acoust Soc Am 124:2090–2099CrossRefGoogle Scholar
  101. Wang DY, von Clarmann T, Fischer H, Funke B, Gil-Lopez S, Glatthor N, Grabowski U, Hopfner M, Kaufmann M, Kellmann S, Kiefer M, Koukouli ME, Linden A, Lopez-Puertas M, Tsidu GM, Milz M, Steck T, Stiller GP, Simmons AJ, Dethof A, Swinbank R, Marquardt C, Jiang JH, Romans LJ, Wickert J, Schmidt T, Russell J, Remsberg E (2005) Validation of stratospheric temperatures measured by michelson interferometer for passive atmospheric sounding (MIPAS) on envisat. J Geophys Res-Atmos 110, doi:10.1029/2004JD005342Google Scholar
  102. Whipple FJW (1926) Audibility of explosions and the constitution of the upper atmosphere. Nature 118:309–313Google Scholar
  103. Wu WS, Purser RJ, Parrish DF (2002) Three-dimensional variational analysis with spatially inhomogeneous covariances. Month Weather Rev 130:2905–2916CrossRefGoogle Scholar
  104. Wunsch C (1996) The ocean circulation inverse problem. Cambridge University Press, CambridgeGoogle Scholar
  105. Zwolak JW, Boggs PT, Watson LT (2007) Algorithm 869: ODRPACK95, 2007: a weighted orthogonal distance regression code with bound constraints. ACM Trans Math Software 33, doi:10.1145/1268776.1268782Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Douglas P. Drob
    • 1
  • R. R. Meier
  • J. Michael Picone
  • Milton M. Garcés
  1. 1.Space Sciences DivisionU.S. Naval Research LaboratoryWashingtonUSA

Personalised recommendations