Skip to main content

Dynamics and Transport in the Middle Atmosphere Using Remote Sensing Techniques from Ground and Space

  • Chapter
  • First Online:
Infrasound Monitoring for Atmospheric Studies

Abstract

The middle atmosphere is generally defined as the region of the atmosphere located between the tropopause (8–17 km) and the mesopause (85–90 km). It includes the stratosphere, where the ozone layer takes place, and the mesosphere. The temperature and wind structure of this region is mainly driven by radiative processes (mainly on of solar radiation by ozone and infrared cooling by CO2) and dynamic processes (propagation and breaking of planetary and gravity waves, meridional circulation from equator to poles in the stratosphere, and from summer pole to winter pole in the mesosphere). A good knowledge of these processes is required to understand the transport of constituents playing a role in the photochemistry of stratospheric ozone and the heat budget of the middle atmosphere determining its thermal structure. In-situ measurements at these high altitudes are not easy to perform and several remote sensing techniques have been developed to observe these regions from the ground and from space, among them infrasound measurement is a promising one. This article presents the main characteristics of dynamics and transport in the middle atmosphere and gives a review of the remote sensing techniques used to observe this region in complement to infrasound detection: lidars, radars, infrared and microwave sounders, and GNSS radio-occultation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen SJ, Vincent RA (1995) Gravity wave activity in lower atmosphere: Seasonal and latitudinal variations. J Geophys Res 100:1327–1350

    Article  Google Scholar 

  • Baldwin MP, Gray LJ, Dunkerton TJ et al (2001) The Quasi-Biennial Oscillation. Rev Geophys 39:179–229

    Article  Google Scholar 

  • Baldwin MP, Hirooka T, O’Neill A et al (2003) Major stratospheric warming in the southern hemisphere in 2002: dynamical aspects of the ozonehole split. SPARC Newsletter:20, 24–26

    Google Scholar 

  • Bencherif H (1996) Observations de l’activité dynamique dans la moyenne atmosphère, par sondage LIDAR, au dessus du site de l’île de la Réunion, 20.8°S 55.5°E. Thèse de Doctorat de l’Université Paris 6, Paris

    Google Scholar 

  • Brasseur GP, Solomon S (2006) Aeronomy of the middle atmosphere: chemistry and physics of the stratosphere and mesosphere, 3rd edn. Springer, Dordrecht, Netherlands

    Google Scholar 

  • Blanc E, Le Pichon A, Ceranna L, Farges T, Marty J, Herry P (2010) Global scale monitoring of acoustic and gravity waves for the study of the atmospheric dynamics. This volume, pp. 641–658

    Google Scholar 

  • Chanin ML, Garnier A, Hauchecorne A, Porteneuve J (1989) A Doppler Lidar for measuring winds in the middle atmosphere. Geophys Res Let 16:1273–1276

    Article  Google Scholar 

  • Charney JG, Drazin PG (1961) Propagation of planetary scale disturbances from the lower into the upper atmosphere. J Geophys Res 66:83–109

    Article  Google Scholar 

  • Drob DP, Meier RR, Picone JM, Garcés MM (2010) Inversion of infrasound signals for passive atmospheric remote sensing. This volume, pp. 695–726

    Google Scholar 

  • Dunkerton TJ (1997) The role of gravity waves in the quasi-biennial oscillation. J Geoph Res 102:26053–2607

    Article  Google Scholar 

  • Dunkerton TJ, Baldwin MP (1991) Quasi-biennial Modulation of Planetary-Wave Fluxes in the Northern Hemisphere Winter. J Atmos Sci 48:1043–1061

    Article  Google Scholar 

  • Fiocco G, Grams G (1964) Observations of the aerosol layer at 20 km by optical radar. J Atmos Sci 21:323–324

    Article  Google Scholar 

  • Fleming EL, Chandra S, Schoeberl MR, Barnett JJ (1988) Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0-120 km. NASA Tech Memo 100697

    Google Scholar 

  • Forbes JM (1982) Atmospheric Tides, 1, Model Description and Results for the Solar Diurnal Component. J Geophys Res 87:5222–5240

    Article  Google Scholar 

  • Garcia RR, Dunkerton TJ, Lieberman RS, Vincent RA (1997) Climatology of the semiannual oscillation, of the tropical middle atmosphere, J. Geophys. Res 102:26019–26032

    Google Scholar 

  • Gelman ME, Miller AJ, Long CS et al (2000) The transition from SSU to AMSU data in CPC stratospheric analyses. SPARC Newslett 15:17–18

    Google Scholar 

  • Godin S, Mégie G, Pelon J (1989) Systematic lidar measurements of the stratospheric ozone vertical distribution. Geophys Res Lett 16:547–550

    Article  Google Scholar 

  • Hauchecorne A, Chanin ML, Wilson R (1987) Mesospheric temperature inversion and gravity wave breaking. Geophys Res Lett 14:933–936

    Article  Google Scholar 

  • Hauchecorne A, Chanin ML (1980) Density and temperature profiles obtained by lidar between 30 and 70 km. Geophys Res Lett 7:564–568

    Article  Google Scholar 

  • Hauchecorne A, Chanin ML (1983) Mid-latitude observations of planetary waves in the middle atmosphere during the winter of 1981–1982. J Geophys Res 88:3843–3849

    Article  Google Scholar 

  • Hertzog A, Souprayen, Hauchecorne A (2001) Measurements of gravity waves activity in the lower stratosphere by DoppCler lidar. J Geophys Res 106:7879–7890

    Article  Google Scholar 

  • Hirota I, Hirooka T (1983) Normal mode Rossby waves observed in the upper stratosphere. Part I: First symmetric modes of zonal wavenumbers 1 and 2. J Atmos Sci 41:1253–1267

    Article  Google Scholar 

  • Hirooka T (2000) Normal mode Rossby waves as revealed by UARS/ISAMS observations. J Atmos Sci 57:1277–1285

    Article  Google Scholar 

  • Hocking, W.K. (1997) Strengths and limitations of MST radar measurements of middle-atmosphere winds. Ann. Geophysicae 15:1111–1122

    Google Scholar 

  • Holton JR (1979) An introduction to Dynamic Meteorology, 2nd edn. Academic Press, London

    Google Scholar 

  • Holton JR (1982) The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J Atmos Sci 40:2497–2507

    Article  Google Scholar 

  • Holton JR, Haynes PH, McIntyre ME et al (1995) Stratosphere-troposphere exchange. Rev Geophys 33:405–439

    Article  Google Scholar 

  • Holton JR, Lindzen RS (1972) An updated theory for the quasi-biennial cycle of the tropical stratosphere. J Atmos Sci 29:1076–1080

    Article  Google Scholar 

  • Keckhut P, Chanin ML, Hauchecorne A (1990) Stratospheric temperature measurements using Raman lidar. Appl Optics 29:5182–5186

    Article  Google Scholar 

  • Keckhut P, Hauchecorne A, Chanin ML (1993) A critical review of the data base acquired for the long term surveillance of the middle atmosphere by Rayleigh lidar. J Atm Ocean Tech 10:850–867

    Article  Google Scholar 

  • Keckhut P, Gelman ME, Wild JD et al (1996) Semi-diurnal and diurnal temperature tides (30–55 km): climatology and Effect on UARS-lidar data comparisons. J Geophys Res 101:10299–10310

    Article  Google Scholar 

  • Kishore P, Namboothiri SP S, Igarashi K et al (2002) MF radar observations of mean winds and tides over Poker Flat, Alaska (65.1_ N, 147.5_ W). Annales Geophysicae 20:679–690

    Article  Google Scholar 

  • Kursinski ER, Hajj GA, Schofield JT et al (1997) Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J Geophys Res 102:23429–23465

    Article  Google Scholar 

  • Labitzke K (1977) Inter-annual variability of the winter stratosphere in the northern hemisphere. Mon Weather Rev 105:762–770

    Article  Google Scholar 

  • Leblanc T, Hauchecorne A (1997) Recent Observations of Mesospheric Temperature Inversions. J Geophys Res 102:19471–19482

    Article  Google Scholar 

  • Le Pichon A, Vergoz J, Cansi Y, Ceranna L, Drob D (2010) Contribution of infrasound monitoring for atmospheric remote sensing. This volume, pp. 623–640

    Google Scholar 

  • Lindzen RS (1966) On the theory of the diurnal tide. Mon Wea Rev 94:295–301

    Article  Google Scholar 

  • Lindzen RS (1981) Turbulence and Stress Owing to Gravity Wave and Tidal Breakdown. J Geophys Res 86:9707–9714

    Article  Google Scholar 

  • McCormick MP, Swissler TJ, Chu WP, Fuller WH Jr (1978) Post-vocanic stratospheric aerosol decay as measured by lidar. J Atmos Sci 35:1296–1303

    Article  Google Scholar 

  • McIntyre ME (1992) Atmospheric Dynamics: Some Fundamentals with Observational Implications. Proceedings of Int School Phys Enrico Fermi CXV Course, JC Gille and G Visconti Eds, North-Holland, In

    Google Scholar 

  • Madden RA, Labitzke K (1981) A free Rossby wave in the troposphere and stratosphered during January 1979. J Geophys Res 86:1247–1254

    Article  Google Scholar 

  • Matsuno T (1971) A dynamical model of the stratospheric sudden warming. J. Atmos Sci 28:1479–1494

    Article  Google Scholar 

  • Meriwether W, Gardner CS (2000) A Review of the Mesosphere Inversion Layer Phenomena. J Geophys Res 105:12405–12416

    Article  Google Scholar 

  • Mote PW, Rosenlof KH, McIntyre ME et al (1996) An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor. J Geophys Res 101:3989–4006

    Article  Google Scholar 

  • Nash J, Brownscombe JL (1983) Validation of the Stratospheric Sounding Unit. Adv Space Res 2:59–6

    Article  Google Scholar 

  • Naujokat B (1986) An update of the observed quasi-biennial oscillation of the stratospheric winds over the tropics. J Atmos Sci 43:1873–1877

    Article  Google Scholar 

  • Nedeljkovic N, Hauchecorne A, Chanin ML (1993) Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km. IEEE Transactions on Geoscience and Remote Sensing 31:91–101

    Article  Google Scholar 

  • Pendlebury D, Shepherd TG, Pritchard M, McLandress C (2008) Normal mode Rossby waves and their effects on chemical composition in the late summer stratosphere. Atmos Chem Phys 8:1925–1935

    Article  Google Scholar 

  • Randel WJ, Gille JC, Lahoz AE (1993) Stratospheric transport from tropics to middle latitudes by planetary wave mixing. Nature 365:533–535

    Article  Google Scholar 

  • Ray, E. A., M. J. Alexander, and J. R. Holton (1998), An analysis of the structure and forcing of the equatorial semiannual oscillation in zonal wind, J. Geophys. Res., 103(D2), 1759–1774.

    Google Scholar 

  • Reed RJ (1966) Zonal wind behavior in the equatorial stratosphere and lower mesosphere. J Geophys Res 71:4223–4233

    Google Scholar 

  • Rocken C, Kuo YH, Schreiner W et al (2000) COSMIC System Description. Terres Atmos Oceanic Sci 11:21–52

    Google Scholar 

  • Salby ML (1984) Survey of Planetary-Scale Traveling Waves: The State of Theory and Observations. Rev Geophys 22:209–236

    Article  Google Scholar 

  • Salby M, Sassi F, Callaghan P et al (2002) Mesospheric inversions and their relationship to planetary wave structure. J Geophys Res 107. doi: 10.1029/2001JD000756

    Google Scholar 

  • Schmidlin FJ (1976) Temperature Inversions near 75 km. Geophys Rev Lett 3:173–176

    Article  Google Scholar 

  • Schoeberl MR (1978) Stratospheric warmings: Observations and theory. Rev Geophys Space Phys 16:521–538

    Article  Google Scholar 

  • Shepherd TG (2000) The middle atmosphere. J Atmos Terr Sol Phys 62:1587–1601

    Article  Google Scholar 

  • Souprayen C, Garnier A, Hertzog A, Hauchecorne A (1999) Doppler wind lidar for stratospheric measurements. Part 1: Instrumental setup-validation-first climatological results. Appl Optics 38:2410–2431

    Article  Google Scholar 

  • Stoffelen A, Pailleux J, Källén E et al (2005) The atmospheric dynamics mission for global wind field measurement. Bull Amer Meteor Soc 86:73–87

    Article  Google Scholar 

  • Swenson GR, Gardner CS (1998) Analytical models for the responses of the mesospheric OH* and Na layers to atmospheric gravity waves. J Geophys Res 103: 6271–6294

    Google Scholar 

  • Tsuda T, Kato S, Yokoi T et al (1990) Gravity waves in the mesosphere observed with the middle and upper atmospheric radar. Radio Sci 26:1005–1018

    Article  Google Scholar 

  • Venkat Ratnam MA, Narendra Babu A, Jagannadha Rao VVM et al (2008) MST radar and ­radiosonde observations of inertia-gravity wave climatology over tropical stations: Source mechanisms. J Geophys Res 113 D07109 doi:10.1029/2007JD008986

    Google Scholar 

  • Wickert J, Schmidt T, Beyerle G et al (2004) The radio occultation experiment aboard CHAMP: operational data analysis and validation of atmospheric profiles. J Meteor Soc Jpn 82:381–395

    Article  Google Scholar 

  • Wilson R, Chanin ML, Hauchecorne A (1991) Gravity waves in the middle atmosphere by Rayleigh Lidar, Part. 2: Climatology. J Geophys Re 96:5169–5183

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hauchecorne, A., Keckhut, P., Chanin, ML. (2010). Dynamics and Transport in the Middle Atmosphere Using Remote Sensing Techniques from Ground and Space. In: Le Pichon, A., Blanc, E., Hauchecorne, A. (eds) Infrasound Monitoring for Atmospheric Studies. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9508-5_22

Download citation

Publish with us

Policies and ethics