Skip to main content

Some Atmospheric Effects on Infrasound Signal Amplitudes

  • Chapter
  • First Online:
Infrasound Monitoring for Atmospheric Studies

Abstract

In this chapter two types of infrasound propagation modes or paths through the atmosphere are introduced and their interaction with the atmosphere is discussed. A method is presented for an inversion process to obtain atmospheric properties from infrasonic signals. Two of the most important modes for atmospheric wave propagation, stratospheric region returns (S signals) and thermospheric region returns (T signals), are discussed and contrasted. The emphasis is on signals from chemical, or high explosive (HE) explosions and atmospheric nuclear explosions from past tests and earthquakes. The role of atmospheric winds in controlling S signals and the relative independence of T signals are explained. An empirical method for the prediction of wind effects, or normalization of those effects, on S signal amplitudes is presented. Three methods are presented for the inversion of amplitude observations to obtain atmospheric wind parameterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American National Standards Institute (ANSI) (1983) Estimating airblast characteristics for single point explosions in air, with a guide to evaluation of atmospheric propagation and effects, ANSI S2.20-1983. American Institute of Physics

    Google Scholar 

  • Antier K, Le Pichon A, Vergniolle S, Zielinski C, Lardy M (2007) Multiyear validation of the NRL-G2S wind fields using infrasound from Yasur. J Geophys Res 112:D23110. doi:10.1029/2007JD008467

    Article  Google Scholar 

  • Blanc E, Perez S, Issartel J-P, Millieres-Lacroix J-C (1997) Revue Scientifique et Technique de la Direction des Applications Militaires 17 23

    Google Scholar 

  • Christie DR, Campus P (2010) The IMS infrasound network: design and establishment of infrasound stations. This volume, pp. 27-72

    Google Scholar 

  • Davidson M, Whitaker RW (1992), Miser’s Gold, Technical Report, LA-12074-MS, Los Alamos National Laboratory, Los Alamos, N.M

    Google Scholar 

  • Drob Douglas P, Picone JM, Garces M (2003) Global morphology of infrasound propagation. J. Geophys. Res 108:ACL13.1-ACL13.12. doi:10.1029/2002JD003307

    Google Scholar 

  • Drob DP, Meier RR, Picone JM, Garcés MM (2010) Inversion of infrasound signals for passive atmospheric remote sensing. This volume, pp. 695-726

    Google Scholar 

  • Edwards Wayne N, Brown Peter G, ReVelle Douglas O (2006) Estimates of meteoroid kinetic energies from observations of infasonic airwaves. J Atmos Solar-Terrestrial Phys 68:1136-1160

    Article  Google Scholar 

  • Evers LG, Haak HW (2010) The Characteristics of Infrasound, its propagation and some early history. This volume, pp. 3-26

    Google Scholar 

  • Garcés M, Willis M, Le Pichon A (2010) Infrasonic observations of open ocean swells in the Pacific: deciphering the song of the sea. This volume, pp. 231-244

    Google Scholar 

  • Greene GE, Howard J (1975) Natural infrasound: A one year global study, NOAA TR, ERL-317-WPL-37

    Google Scholar 

  • Kulichkov S (2010) On the prospects for acoustic sounding of the fine structure of the middle atmosphere. This volume, pp. 505-534

    Google Scholar 

  • Le Pichon A, Blanc E, Drob D (2005a) Probing high-altitude winds using infrasound. J Geophys Res 110:D20104. doi:10.1029/2005JD006020

    Article  Google Scholar 

  • Le Pichon A, Blanc E, Drob D, Lambotte S, Dessa JX, Lardy M, Bani P, Vergniolle S (2005b) Infrasound monitoring of volcanoes to probe high-altitude winds. J Geophys Res 110:D13106. doi:10.1029/2004JD005587

    Article  Google Scholar 

  • Le Pichon A, Ceranna L, Garces M, Drob D, Millet C (2006a) On using infrasound from interacting ocean swells for global continuous measurements of winds and temperature in the stratosphere. J Geophys Res 111:D11106. doi:10.1029/2005JD006690

    Article  Google Scholar 

  • Le Pichon A, Mialle P, Guilbert J, Vergoz J (2006b) Multistation infrasonic observations of the Chilean earthquake of June 13. Geophys J Int 167:838-844

    Article  Google Scholar 

  • McCullough D, Novlan DJ (1977) Atmospheric structure white sands missile range, New Mexico, Part 6, 25-65 kilometers, DR-942. Atmospheric Sciences Laboratory, WSMR

    Google Scholar 

  • McIntosh Bruce A (1982) Natural and unnatural infrasound, Herzberg Institute of Astrophysics, National Research Council Canada, SR-82-1

    Google Scholar 

  • McKisic JM (1997a) Infrasound and the infrasonic monitoring of atmospheric nuclear explosions: An annotated bibliography, Phillips Laboratory Technical Report, PL-96-2282

    Google Scholar 

  • McKisic JM (1997b) Infrasound and the infrasonic monitoring of atmospheric nuclear explosions: Supporting environmental data, Phillips Laboratory Technical Report, PL-97-2124

    Google Scholar 

  • Mutschlecner J Paul, Whitaker Rodney W (1990) The correction of infrasound signals for upper atmospheric winds, in the fourth international symposium on Long-Range Sound Propagation, NASA Conference Publication, 3101, (1990)

    Google Scholar 

  • Mutschlecner JP, Whitaker RW (2005) Infrasound from earthquakes. J Geophy Res 110:D01108. doi:10.1029/2004JD005067

    Article  Google Scholar 

  • Mutschlecner JP, Whitaker RW, Auer LH (1999) An empirical study of infrasonic propagation, Los Alamos National Laboratory Technical Report, LA-13620-MS. Los Alamos, NM

    Google Scholar 

  • Norris D, Gibson R, Bongiovanni K (2010) Numerical methods to model infrasonic propagation through realistic specifications of the atmosphere. This volume, pp. 535-568

    Google Scholar 

  • Reed JW (1969) Climatology of airblast propagations from Nevada Test Site nuclear airbursts Tech. Rep. SCRR-69-572, Sandia Laboratory, Albuquerque, NM

    Google Scholar 

  • Reed JW (1992) Analysis of the accidental explosion at PEPCON, Henderson, Nevada, on May 4,1988. Propellants, explosives, pyrotechnics 17:88-95

    Article  Google Scholar 

  • Webb WL (1966) The structure of the stratosphere and mesosphere. Elsevier, New York, pp 141-145

    Google Scholar 

  • Whitaker Rodney W, Mutschlecner J. Paul (2008) A comparison of infrasound signals refracted from stratospheric and thermospheric altitudes. J Geophys Res 113, doi:10.1029/2007JD008852

    Google Scholar 

  • Whitaker RW, Noel SD, Meadows WR (1994) Infrasonic observations and modeling of the Minor Uncle explosive event, Sixth International Symposium on Long-Range Sound Propagation, National Research Council, Canada, 480-497

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the U.S. Department of Energy. We wish to dedicate this chapter to the late Jack W. Reed, who was instrumental both in observing much of the data used here and archiving them for future research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney W. Whitaker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mutschlecner, J.P., Whitaker, R.W. (2010). Some Atmospheric Effects on Infrasound Signal Amplitudes. In: Le Pichon, A., Blanc, E., Hauchecorne, A. (eds) Infrasound Monitoring for Atmospheric Studies. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9508-5_14

Download citation

Publish with us

Policies and ethics