Skip to main content

Meteor Generated Infrasound: Theory and Observation

  • Chapter
  • First Online:
Infrasound Monitoring for Atmospheric Studies

Abstract

There are many impulsive sources that produce infrasound in the atmosphere that can be detected by ground-based microbarometers, but few match the range of potential source energies and altitudes of meteor-generated infrasound. Ranging from the scale of centimeters to 100s of meters in dimension, hypervelocity meteoroids impacting the earth’s atmosphere can range widely in energy from 10−5 to >104 kt (Kilotons) of TNT, producing infrasound that may be observed either locally or globally. In this review, the history and development of meteor-generated infrasound research is explored with focus on how observations of meteor infrasound are progressing our understanding of the interaction of meteoroids with the upper atmosphere and the physics of meteors in general. The theoretical development of cylindrical line source blast wave theory for meteors propagating in an inhomogeneous, stratified atmosphere is reviewed and shown how this approximation to a meteor’s hypersonic ballistic shock relates to both regional and global observations of meteor infrasound, with examples that both fit and challenge our current understanding. Today, modern sensor suites and technology, both ground- and space-based, are providing a plethora of new constraints and secondary data that are helping unravel the source regions, generating methods and physics of meteor infrasound, while detections of infrasound from meteors/fireballs/bolides are being observed at an unprecedented rate by both the CTBT/International Monitoring System (IMS) global network and regional research groups. Some of the newest findings are reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American National Standards Institute (1983) Airblast characteristics for single point explosions in air, ANSI Standard S2.20-1983. Acoustical Society of America, New York

    Google Scholar 

  • Arrowsmith SJ, Drob DP, Hedlin MAH, Edwards WN (2007) A joint seismic and acoustic study of the Washington State bolide: observations and modeling. J Geophys Res 112, doi: 10.1029/2006JD008001

    Google Scholar 

  • Arrowsmith SJ, ReVelle DO, Edwards W, Brown P (2008) Global detection of infrasonic signals from three large bolides. Earth Moon Planets 102:357–363

    Article  Google Scholar 

  • Ayers WG, McCrosky RE, Shao CY (1970) Photographic observations of 10 artificial meteors. Smith Astrophys Obs 317:1–40

    Google Scholar 

  • Bass HE, Hetzer CH, Raspet R (2007) On the speed of sound in the atmosphere as a function of altitude and frequency. J Geophys Res 112, doi: 10.1029/2006JD007806

    Google Scholar 

  • Bedard AJ, Greene GE (1981) Case study using arrays of infrasonic microphones to detect and locate meteors and meteorites. J Acoust Soc Am 69:1277–1279

    Article  Google Scholar 

  • Ben-Menahem A (1975) Source parameters of the Siberian explosion of June 30, 1908, from analysis and synthesis of seismic signals at four stations. Phys Earth Planet Int 11:1–35

    Article  Google Scholar 

  • Beyer RT (1997) Nonlinear acoustics. American Acoustical Society of America, Woodbury, NY

    Google Scholar 

  • Blanc E, Millies-Lacroix JC, Issartel JP, Perez S (1997) Detection of nuclear explosions in the atmosphere. Chocs 17:23–34

    Google Scholar 

  • Bland PA, Artemieva NA (2003) Efficient disruption of small asteroids by Earth’s atmosphere. Nature 424:288–291

    Article  Google Scholar 

  • Blanc E, Le Pichon A, Ceranna L, Farges T, Marty J, Herry P (2010) Global scale monitoring of acoustic and gravity waves for the study of the atmospheric dynamics. This volume, pp. 641–658

    Google Scholar 

  • Borovička J (1990) The comparison of two methods of determining meteor trajectories from photographs. Bull Astron Insc Czech 41:391–396

    Google Scholar 

  • Borovička J, Spurný P, Kalenda P, Tagliaferri E (2003) The Morávka meteorite Fall: 1: Description of the events and determination of the fireball trajectory and orbit from video records. Meteorit Planet Sci 38:975–987

    Article  Google Scholar 

  • Brown PG, Hildebrand AR, Green DWE, Page D, Jacobs C, ReVelle D, Tagliaferri E, Wacker J, Wetmiller B (1996) The fall of the St-Robert meteorite. Meteorit Planet Sci 31:502–517

    Google Scholar 

  • Brown PG, Whitaker RW, ReVelle DO (2002a) Multi-station infrasonic observations of two large bolides: signal interpretation and implications for monitoring of atmospheric explosions. Geophys Res Lett 29, doi: 10.1029/2001GL013778.

  • Brown P, Spalding RE, ReVelle DO, Tagliaferri E, Worden SP (2002b) The flux of small near-Earth objects colliding with the Earth. Nature 420:314–316

    Google Scholar 

  • Brown PG, ReVelle DO, Tagliaferri E, Hildebrand AR (2002c) An entry model for the Tagish Lake fireball using seismic, satellite and infrasound records. Meteorit Planet Sci 37:661–675

    Article  Google Scholar 

  • Brown PG, Kalenda P, ReVelle DO, Borovicka J (2003) The Morávka meteorite fall: 2. Interpretation of infrasonic and seismic data. Meteorit Planet Sci 38:989–1003

    Article  Google Scholar 

  • Brown PG, Pack D, Edwards WN, ReVelle DO, Yoo BB, Spalding RE, Tagliaferri E (2004) The orbit, atmospheric dynamics and initial mass of the Park Forest meteorite. Meteorit Planet Sci 39:1781–1796

    Article  Google Scholar 

  • Brown PG, Edwards WN, ReVelle DO, Spurný P (2007) Acoustic analysis of shock production by very high-altitude meteors – I: infrasonic observations, dynamics and luminosity. J Atmos Solar-Terr Phys 69:600–620

    Article  Google Scholar 

  • Cates JE, Sturtevant B (2002) Seismic detection of sonic booms. J Acoust Soc Am 111:614–628

    Article  Google Scholar 

  • Ceplecha Z (1987) Geometric, dynamic, orbital and photometric data on meteoroids from photographic fireball networks. Bull Astron Ins Czech 38:222–234

    Google Scholar 

  • Ceplecha Z (1996) Luminous efficiency based on photographic observations of the Lost City fireball and implications for the influx of interplanetary bodies onto Earth. Astron Astrophys 311:329–332

    Google Scholar 

  • Ceplecha Z, McCrosky RE (1976) Fireball end heights: a diagnostic for the structure of meteoric material. J Geophys Res 81:6257–6275

    Article  Google Scholar 

  • Ceplecha Z, ReVelle DO (2005) Fragmentation model of meteoroid motion, mass loss, and radiation in the atmosphere. Meteorit Planet Sci 40:35–54

    Article  Google Scholar 

  • Ceplecha Z, Borovička J, Elford WG, ReVelle DO, Hawkes RL, Porubcan V, Simek M (1998) Meteor phenomena and bodies. Space Science Rev 84:327–471

    Article  Google Scholar 

  • Ceplecha Z, Borovička J, Spurný P (2000) Dynamical behaviour of meteoroids in the atmosphere derived from very precise photographic records. Astron Astrophys 357:1115–1122

    Google Scholar 

  • Christie DR, Vivas Veloso JA, Campus P, Bell M, Hoffman T, Langlois A, Martysevich P, Demirovic E, Carvalho J (2001) Detection of atmospheric nuclear explosions: the infrasound component of the International Monitoring System. Kerntechnik 66:96–101

    Google Scholar 

  • Christie DR, Campus P (2010) The IMS infrasound network: design and establishment of infrasound stations. This volume, pp. 27–72

    Google Scholar 

  • Chyba CF, Thomas PJ, Zahnle KJ (1993) The 1908 Tunguska explosion: atmospheric disruption of a stony asteroid. Nature 361:40–44

    Article  Google Scholar 

  • Clauter DA, Blandford RR (1998) Capability modeling of the proposed International Monitoring System 60-station infrasonic network, LAUR-98-56, Los Alamos National Labs Report, Los Alamos, New Mexico

    Google Scholar 

  • Davidson M, Whitaker RW (1992) Miser’s Gold, LA-12074-MS, Los Alamos National Laboratory Report, pp 1–28

    Google Scholar 

  • de Pater I, Lissauer JJ (2001) Planetary sciences. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • de Groot-Hedlin CD, Hedlin MAH, Drob DP (2010) Atmospheric variability and infrasound monitoring. This volume, pp. 469–504

    Google Scholar 

  • Drob DP, Picone JM, Garcés MA (2003) Global morphology of infrasound propagation. J Geophys Res 108, doi: 10.1029/2002JD003307

    Google Scholar 

  • Drob DP, Meier RR, Picone JM, Garcés MM (2010) Inversion of infrasound signals for passive atmospheric remote sensing. This volume, pp. 695–726

    Google Scholar 

  • DuMond JWM, Cohen RE, Panofsky WKH, Deeds E (1946) A determination of the wave forms and laws of propagation and dissipation of ballistic shock waves. J Acoust Soc Am 18:97–118

    Article  Google Scholar 

  • Edwards WN, Brown PG, ReVelle DO (2006) Estimates of meteoroid kinetic energies from observations of infrasonic airwaves. J Atmos Solar-Terr Phys 68:1136–1160

    Article  Google Scholar 

  • Edwards WN, Brown PG, Weryk RJ, ReVelle DO (2007) Infrasonic observations of meteoroids: preliminary results from a coordinated optical-radar-infrasound campaign. Earth Moon Planet, 102, doi: 10.1007/s11038-007-9154-6

    Google Scholar 

  • Edwards WN (2010) Meteor generated infrasound: theory and observation. This volume, pp. 355–408

    Google Scholar 

  • Evans LB, Sutherland LC (1970) Absorption of sound in air. Wylie Labs, Huntsville, Alabama

    Google Scholar 

  • Evers LG, Haak HW (2003) Tracing a meteoric trajectory with infrasound, Geophys Res Lett 30, doi: 10.1029/2003GL017947

    Google Scholar 

  • Evers LG, Haak HW (2010) The Characteristics of Infrasound, its propagation and some early history. This volume, pp. 3–26

    Google Scholar 

  • Few AA Jr (1968) Thunder, Ph.D. Dissertation, Rice University, Houston, TX

    Google Scholar 

  • Folinsbee RE, Douglas JAV, Maxwell JA (1967) Revelstoke, a new Type I carbonaceous chondrite. Geochim Cosmochim Acta 31:1625–1635

    Article  Google Scholar 

  • Garcés MA, Hansen RA, Lindquist KG (1998) Traveltimes for infrasonic waves propagating in a stratified atmosphere. Geophys J Int 135:255–263

    Article  Google Scholar 

  • Garcés M, Willis M, Le Pichon A (2010) Infrasonic observations of open ocean swells in the Pacific: deciphering the song of the sea. This volume, pp. 231–244

    Google Scholar 

  • Glasstone S, Dolan PJ (1977) The effects of nuclear weapons. United States Department of Defense and Department of Energy, Washington DC

    Google Scholar 

  • Goerke VH (1966) Infrasonic observations of a fireball. Sky and Telescope 32:313

    Google Scholar 

  • Groves GV (1955) Geometrical theory of sound propagation in the atmosphere. J Atmos Terr Phys 7:113–127

    Article  Google Scholar 

  • Halliday I, Blackwell AT, Griffin AA (1978) The Innisfree meteorite and the Canadian camera network. J R Astron Soc Canada 72:15–39

    Google Scholar 

  • Halliday I, Blackwell AT, Griffin AA (1989) The typical meteorite event, based on photographic records of 44 fireballs. Meteoritics 24:65–72

    Google Scholar 

  • Hauchecorne A, Keckhut P, Chanin M-L (2010) Dynamics and transport in the middle atmosphere using remote sensing techniques from ground and space. This volume, pp. 659–678

    Google Scholar 

  • Hedin AE (1991) Extension of the MSIS thermosphere model into the middle and lower atmosphere. J Geophys Res 96:1159–1172

    Article  Google Scholar 

  • Hedin AE, Fleming EL, Manson AH, Schmidlin FJ, Avery SK, Clark RR, Franke SJ, Fraser GJ, Tsuda T, Vial F, Vincent RA (1996) Empirical wind model for the upper, middle and lower atmosphere. J Atmos Terr Phys 58:1421–1447

    Article  Google Scholar 

  • Hetzer CH, Gilbert KE, Waxler R, Talmadge CL (2010) Generation of microbaroms by deep-ocean hurricanes. This volume, pp. 245–258

    Google Scholar 

  • Hocking WK (1997) Strengths and limitations of MST radar measurements of middle-atmosphere winds. Annal Geophys 15:1111–1122

    Article  Google Scholar 

  • Hunt JN, Palmer R, Penny W (1960) Atmospheric waves caused by large explosions. Philos Trans Roy Soc London 252:275–315

    Article  Google Scholar 

  • Jones DL, Goyer GG, Plooster MN (1968) Shock wave from a lightning discharge. J Geophys Res 73:3121–3127

    Article  Google Scholar 

  • Kaiser TR (1953) Radio echo studies of meteor ionization. Philos Mag Supp 2:495–544

    Google Scholar 

  • Kanamori (1994) Excitation of atmospheric oscillations by volcanic eruptions. J Geophys Res 99(B11):21947–21961

    Google Scholar 

  • Klekociuk AR, Brown PG, Pack DW, ReVelle DO, Edwards WN, Spalding RE, Tagliaferri E, Bernard YB, Zagari J (2005) Lidar, satellite and acoustic measurements of an asteroidal airburst in Earth’s atmosphere. Nature 436:1132–1135

    Article  Google Scholar 

  • Kraemer DR (1977) Infrasound from accurately measured meteor trails, Ph.D. Dissertation, University of Michigan, Ann Arbor, MI

    Google Scholar 

  • Kraemer DR, Bartman FL (1981) Infrasound from accurately measured meteor trails. In: Mathews T, Hicks RB (eds) Proceedings of the International Symposium of Acoustic Remote Sensing of the Atmosphere and Oceans, vol. 31–49. University of Calgary Press, Calgary, Canada

    Google Scholar 

  • Kulichkov SN (2004) Long-range propagation and scattering of low-frequency sound pulses in the middle atmosphere. Meteorol Atmos Phys 85:47–60

    Article  Google Scholar 

  • Kulichkov S (2010) On the prospects for acoustic sounding of the fine structure of the middle atmosphere. This volume, pp. 505–534

    Google Scholar 

  • Kulik (1927) On the history of the bolide of 1908 June, 30. J Russian Acad Sci 127A:393–398

    Google Scholar 

  • Le Pichon A, Guerin JM, Blanc E, Raymond D (2002) Trail in the atmosphere of the 29 December 2000 meteor as recorded in Tahiti: characteristics and trajectory reconstitution. J Geophys Res 107, doi: 10.1029/2001JD001283

  • Le Pichon A, Blanc E, Drob D (2005) Probing high altitude winds using infrasound. J Geophys Res 110, doi: 10.1029/2005JD006020

    Google Scholar 

  • Lin SC (1954) Cylindrical shock waves produced by instantaneous energy release. J Appl Phys 25:54–57

    Article  Google Scholar 

  • Llorca J, Trigo-Rodríguez JM, Ortiz JL, Docobo JA, García-Guinea J, Castro-Tirado AJ, Rubin AE, Eugster O, Edwards WN, Laubenstein M, Casanova I (2005) The Villalbeto de la Peña Meteorite Fall: I. fireball energy, meteorite recovery, strewn field and petrography. Meteorit Planet Sci 40:795–804

    Article  Google Scholar 

  • McCrosky RE, Boeschenstein H (1965) The Prairie Meteorite Network, Smithsonian Astrophysical Observatory Special Report #173, pp 1–26

    Google Scholar 

  • McCrosky RE, Soberman RK (1963) Results from an artificial iron meteoroid at 10 km/s. Smith Contrib Astrophys 7:199–208

    Google Scholar 

  • McCrosky RE, Shao CY, Posen A (1979) The Prairie Network bolide data. II – Trajectories and light curves. Meteoritika 38:106–156

    Google Scholar 

  • McIntosh BA, Watson MD, ReVelle DO (1976) Infrasound from a radar-observed meteor. Canad J Phys 54:655–662

    Google Scholar 

  • McKinley DWR (1961) Meteor science and engineering. McGraw-Hill, New York

    Google Scholar 

  • Millet C, Robinet JC, Roblin C (2007) On using computational areoacoustics for long-range propagation of infrasounds in realistic atmospheres. Geophys Res Lett 34, doi: 10.1029/2007GL029449

    Google Scholar 

  • Millman PM (1970) Meteor news. J R Astron Soc Canada 64:55–59

    Google Scholar 

  • Mikumo T, Watada S (2010) Acoustic-gravity waves from earthquake sources. This volume, pp. 259–276

    Google Scholar 

  • Morse PM, Ingard KU (1968) Theoretical acoustics. McGraw-Hill, New York

    Google Scholar 

  • Mutschlecner JP, Whitaker RW (2010) Some atmospheric effects on infrasound signal amplitudes. This volume, pp. 449–468

    Google Scholar 

  • Oberst J, Molau S, Heinlein D, Gritzner C, Schindler M, Spurny P, Ceplecha Z, Rendtel J, Betlem H (1998) The “European Fireball Network”: current status and future prospects. Meteorit Planet Sci 33:49–56

    Article  Google Scholar 

  • Officer CB (1958) Introduction to the theory of sound transmission – application to the ocean. McGraw-Hill, New York

    Google Scholar 

  • Öpik EJ (1933) Atomic collisions and radiation of meteors. Acta Comment Univ Tartuensis 26:1–39

    Google Scholar 

  • Öpik EJ (1937) Basis of the physical theory of meteors. Acta Comment Univ Tartuensis 33:1–66

    Google Scholar 

  • Öpik EJ (1970) The sonic boom of the boveedy meteorite. Irish Astron J 9:308–310

    Google Scholar 

  • Ottemöller L, Evers LG (2008) Seismo-acoustic analysis of the Brucefield old depot explosion in the UK, 2005 December 11. Geophys J Int 172:1123–1134

    Article  Google Scholar 

  • Pierce AD (1989) Acoustics: an introduction to its physical principles and applications. Acoustical Society of America, Melville, New York

    Google Scholar 

  • Pierce AD, Thomas C (1969) Atmospheric correction factor for sonic-boom pressure amplitudes. J Acoust Soc Am 46:1366–1380

    Article  Google Scholar 

  • Plooster MN (1968) Shock waves from line sources, NCAR Report TN, pp 1–93

    Google Scholar 

  • Plooster MN (1970) Shock waves from lines sources. Numerical solutions and experimental measurements. Phys Fluid 13:2665–2675

    Article  Google Scholar 

  • Plooster MN (1971) Numerical simulation of spark discharges in air. Phys Fluid 14:2111–2123

    Article  Google Scholar 

  • Procunier RW, Sharp GW (1971) Optimum frequency for detection of acoustic sources in the upper atmosphere. J Acoust Soc Am 49:622–626

    Article  Google Scholar 

  • Qamar A (1995) Space shuttle and meteoroid – tracking supersonic objects in the atmosphere with seismographs. Seismol Res Lett 66:6–12

    Google Scholar 

  • Reed JW (1977) Attenuation of explosion waves. J Acoust Soc Am 61:39–47

    Article  Google Scholar 

  • ReVelle DO (1974) Acoustics of meteors – effects of the atmospheric temperature and wind structure on the sounds produced by meteors, Ph.D. Dissertation, University of Michigan, Ann Arbor, MI

    Google Scholar 

  • ReVelle DO (1976) On meteor generated infrasound. J Geophys Res 81:1217–1229

    Article  Google Scholar 

  • ReVelle DO (1997) Historical detection of atmospheric impacts by large bolides using acoustic-gravity waves. In: Remo JL (ed) Annals of the New York academy of sciences, near-earth objects – the United Nations international conference, New York Academy of Sciences, vol. 822, pp 284–302

    Google Scholar 

  • ReVelle DO (2001) Global infrasonic monitoring of large bolides, in Proceedings of the Meteoroids 2001 Conference, 6 – 10 August 2001, Kiruna, Sweden, ESA SP-495, pp. 483– 489, ESA Publ. Div., Noordwijk, Netherlands, ISBN:92-9092-805-0

    Google Scholar 

  • ReVelle DO, Edwards WN (2007) Stardust – an artificial, low-velocity “meteor” fall and recovery: 15 January, 2006. Meteorit Planet Sci 42:271–299

    Article  Google Scholar 

  • ReVelle DO, Whitaker RW (1999) Infrasonic detection of a Leonid bolide: 1998 November 17. Meteorit Planet Sci 34:995–1005

    Article  Google Scholar 

  • ReVelle DO, Brown PG, Spurný P (2004) Entry dynamics and acoustics/infrasonic/seismic analysis for the Neuschwanstein meteorite fall. Meteorit Planet Sci 39:1605–1626

    Article  Google Scholar 

  • ReVelle DO, Edwards W, Sandoval TD (2005) Genesis – an artificial, low velocity “meteor” fall and recovery: September 8, 2004. Meteorit Planet Sci 40:895–916

    Article  Google Scholar 

  • Sakurai A (1965) Blast wave theory. In: Holt M (ed) Basic developments in fluid dynamics, vol. 1. Academic Press, New York, pp 309–375

    Google Scholar 

  • Strachey R (1888) On the air waves and sounds caused by the eruption of Krakatoa in August, 1883. In: Simkin T, Fiske RS (eds) Krakatau 1883. Simthsonian Institution Press, pp 368–374

    Google Scholar 

  • Sutherland LC, Bass HE (2004) Atmospheric absorption in the atmosphere up to 160 km. J Acoust Soc Am 115:1012–1032

    Article  Google Scholar 

  • Swinbank R, O’Neill AA (1994) Stratosphere-troposphere data assimilation system. Month Weather Rev 122:686–702

    Article  Google Scholar 

  • Tagliaferri E, Spalding R, Jacobs C, Worden SP, Erlich A (1994) Hazards due to comets and impacts. University of Arizona Press, Tucson, Arizona, p 199

    Google Scholar 

  • Thompson RJ (1971) Ray theory for an inhomogeneous moving medium. J Acoust Soc Am 51:1675–1682

    Article  Google Scholar 

  • Towne DH (1967) Wave phenomena. Addison-Wesley, Reading, MA

    Google Scholar 

  • Trigo-Rodríguez JM, Castro-Tirado AJ, Llorca J, Fabregat J, Martínez VJ, Reglero V, Jelínek M, Kubánek P, Mateo T, De Ugarte Postigo A (2004) The development of the Spanish Fireball Network using a new all-sky CCD system Earth Moon Planets, 95, doi: 10.1007/s11038-005-4341-9

    Google Scholar 

  • Tsikulin MA (1969) Shock waves during the movement of large meteorites in the atmosphere. Nauka Izadatel’stvo, Moscow (English Translation: AD 715-537, National Technical Information Service, Springfield, Virginia, 1970)

    Google Scholar 

  • United States Committee on Extension to the Standard Atmosphere 1976. U.S. Standard Atmosphere 1976, U.S. Government Printing Office, Washington.

    Google Scholar 

  • Watson M, McIntosh B, ReVelle D (1976) A meteor infrasound recording system. In: IEEE international conference on ICASSP’76 acoustics, speech, and signal processing, pp 786–789

    Google Scholar 

  • Weryk RJ, Brown PG, Domokos A, Edwards WN, Krzeminski Z, Nudds SH, Welch DL (2007) The Southern Ontario All-sky Meteor Camera Network. Earth Moon Planets, doi: 10.1007/s11038-007-9183-1

    Google Scholar 

  • Whipple FJW (1930) The Great Siberian meteor and the waves, seismic and aerial, which it produced. Quart J R Meteorol Soc 56:287–304

    Google Scholar 

  • Whipple FJW (1934) On phenomena related to the great Siberian meteor. Quart J R Meteorol Soc 60:505–513

    Article  Google Scholar 

  • Whipple FL (1938) Photographic meteor studies I. Proc Am Philos Soc 79:499–548

    Google Scholar 

  • Whitaker RW (1995) Infrasonic monitoring. In: Proceedings of the 17th Seismic research symposium on monitoring a Comprehensive Test Ban Treaty, pp 997–1000

    Google Scholar 

  • Wylie CC (1932) Sounds from meteors. Popul Astron 40:289–294

    Google Scholar 

  • Zuckerwar AJ, Ash RL (2006) Variational approach to the volume viscosity of fluids. Phys Fluid 18(047101):1–10

    Google Scholar 

Download references

Acknowledgements

The author extends his appreciation to David McCormack and the personnel at Natural Resources Canada (NRCan) for their assistance in obtaining and collecting data. Thanks also to Peter Brown and Douglas ReVelle for both their assistance and encouragement in pursuing meteor infrasound over the course of the past 5 years. To the meteor physics research groups at the University of Western Ontario, Canada, the Ondrejov Observatory, Czech Republic, and the Spanish Meteor Network for their past and continued cooperation at identifying and characterizing meteor infrasound. Thanks also to the British Atmospheric Data Center (BADC) for access to weather and upper atmospheric data and the Ontario Graduate Scholarship (OGS) program for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne N. Edwards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Edwards, W.N. (2010). Meteor Generated Infrasound: Theory and Observation. In: Le Pichon, A., Blanc, E., Hauchecorne, A. (eds) Infrasound Monitoring for Atmospheric Studies. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9508-5_12

Download citation

Publish with us

Policies and ethics