Abstract
Laccase is found to be involved in pathogenicity of Cryphonectria parasitica and Cryptococcus neoformans. In this report we demonstrate that laccase is not necessary for pathogenicity in Magnaporthe grisea, which might be due to functional redundancy in some or all of the laccase genes. The major laccase activity in M. grisea is not encoded by either of the MGG_00551.5 and MGG_02876.5 genes, because targeted deletion of each gene shows only a slight decrease in laccase activity compared to wild-type strains. The MGG_00551.5 and MGG_02876.5 mutants share the same growth rate, conidiation and pathogenicity as wild-type strains. Taken together, our findings provide evidence that these genes are not essential for the differentiation and development of M. grisea.
Keywords
- Gene knockout
- Laccase gene
- Magnaporthe grisea
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Bhambra, G. K., Wang, Z. Y., Soanes, D. M., Wakley, G. E., & Talbot, N. J. (2006). Peroxisomal carnitine acetyl transferase is required for elaboration of penetration hyphae during plant infection by Magnaporthe grisea. Mol Microbiol, 61, 46–60.
Choi, G. H., Larson, T. G., & Nuss, D. L. (1992). Molecular analysis of the laccase gene from the chestnut blight fungus and selective suppression of its expression in an isogenic hypovirulent strain. Mol Plant Microbe Interact, 5, 119–128.
de Jong, J. C., McCormack, B. J., Smirnoff, N., & Talbot, N. J. (1997). Glycerol generates turgor in rice blast. Nature, 389, 244–245.
Dean, R. A., Talbot, N. J., Ebbole, D. J., Farman, M. L., Mitchell, T. K., Orbach, M. J., et al. (2005). The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 434, 980–986.
Dixon, K. P., Xu, J. R., Smirnoff, N., and Talbot, N. J. (1999). Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell, 11, 2045–2058.
Howard, R. J., & Valent, B. (1996). Breaking and entering –host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol, 50, 491–512.
Howard, R. J., Ferrari, M. A., Roach, D. H., & Money, N. P. (1991). Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci USA, 88, 11281–11284.
Liu, L., Wakamatsu, K., Ito, S., & Williamson, P. R. (1999). Catecholamine oxidative products, but not melanin, are produced by Cryptococcus neoformans during neuropathogenesis in mice. Infect Immunity, 67, 108–112.
Money, N. P., & Howard, R. J. (1996). Confirmation of a link between fungal pigmentation, turgor pressure, and pathogenicity using a new method of turgor measurement. Fungal Genet Biol, 20, 217–227.
Nosanchuk, J. D., Rosas, A. L., Lee, S. C., & Casadevall, A. (2000). Melanisation of Cryptococcus neoformans in human brain tissue. Lancet, 355, 2049–2050.
Odenbach, D., Breth, B., Thines, E., Weber, R. W. S., Anke, H., & Foster, A. J. (2007). The transcription factor Con7p is a central regulation of infection-related morphogenesis in the rice blast fungus Magnaporthe grisea. Mol Microbiol, 64, 293–307.
Ou, S.H. (1985). Rice Disease. Surrey, UK: Commonwealth Mycological Institute.
Park, G., Xue, C. Y., Zhao, X. H., Kim, Y., Marc, O., & Xu, J. R. (2006). Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea. Plant Cell, 18, 2822–2835.
Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
Sesma, A, & Osbourn, A. E. (2004). The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature, 431, 582–586.
Talbot, N. J. (2003). On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Phytopathol, 57, 177–202.
Talbot, N. J., Ebbole, D. J., & Hamer, J. E. (1993). Identification and characterisation of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell, 5, 1575–1590.
Valent, B., & Chumley, F. G. (1991). Molecular genetic analysis of the rice blast fungus Magnaporthe grisea. Annu Rev Phytopathol, 29, 443–467.
Zhao, X. H., Xue, C. Y., Kim, Y., & Xu, J. R. (2004). A ligation-PCR approach for generating gene replacement constructs in Magnaporthe grisea. Fungal Genet Newsl 17–18.
Xu, J. R., & Hamer, J. E. (1996). MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Gene Dev, 10, 3696–2706.
Zhu, X., Gibbons, J., Zhang, S., Williamson, P. R. (2003). Copper-mediated reversal of defective laccase in a Δvph1 avirulent mutant of Cryptococcus neoformans. Mol Microbiol, 47,1007–1014.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer Science+Business Media B.V.
About this paper
Cite this paper
Chen, X. et al. (2009). Functional Analysis of Two Laccase Genes in Magnaporthe grisea . In: Wang, GL., Valent, B. (eds) Advances in Genetics, Genomics and Control of Rice Blast Disease. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9500-9_6
Download citation
DOI: https://doi.org/10.1007/978-1-4020-9500-9_6
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-9499-6
Online ISBN: 978-1-4020-9500-9
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)