Skip to main content

Functional Analysis of Two Laccase Genes in Magnaporthe grisea

  • Conference paper

Abstract

Laccase is found to be involved in pathogenicity of Cryphonectria parasitica and Cryptococcus neoformans. In this report we demonstrate that laccase is not necessary for pathogenicity in Magnaporthe grisea, which might be due to functional redundancy in some or all of the laccase genes. The major laccase activity in M. grisea is not encoded by either of the MGG_00551.5 and MGG_02876.5 genes, because targeted deletion of each gene shows only a slight decrease in laccase activity compared to wild-type strains. The MGG_00551.5 and MGG_02876.5 mutants share the same growth rate, conidiation and pathogenicity as wild-type strains. Taken together, our findings provide evidence that these genes are not essential for the differentiation and development of M. grisea.

Keywords

  • Gene knockout
  • Laccase gene
  • Magnaporthe grisea

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4020-9500-9_6
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-1-4020-9500-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bhambra, G. K., Wang, Z. Y., Soanes, D. M., Wakley, G. E., & Talbot, N. J. (2006). Peroxisomal carnitine acetyl transferase is required for elaboration of penetration hyphae during plant infection by Magnaporthe grisea. Mol Microbiol, 61, 46–60.

    CrossRef  PubMed  CAS  Google Scholar 

  • Choi, G. H., Larson, T. G., & Nuss, D. L. (1992). Molecular analysis of the laccase gene from the chestnut blight fungus and selective suppression of its expression in an isogenic hypovirulent strain. Mol Plant Microbe Interact, 5, 119–128.

    PubMed  CAS  Google Scholar 

  • de Jong, J. C., McCormack, B. J., Smirnoff, N., & Talbot, N. J. (1997). Glycerol generates turgor in rice blast. Nature, 389, 244–245.

    CrossRef  Google Scholar 

  • Dean, R. A., Talbot, N. J., Ebbole, D. J., Farman, M. L., Mitchell, T. K., Orbach, M. J., et al. (2005). The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 434, 980–986.

    CrossRef  PubMed  CAS  Google Scholar 

  • Dixon, K. P., Xu, J. R., Smirnoff, N., and Talbot, N. J. (1999). Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell, 11, 2045–2058.

    CrossRef  PubMed  CAS  Google Scholar 

  • Howard, R. J., & Valent, B. (1996). Breaking and entering –host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol, 50, 491–512.

    CrossRef  PubMed  CAS  Google Scholar 

  • Howard, R. J., Ferrari, M. A., Roach, D. H., & Money, N. P. (1991). Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci USA, 88, 11281–11284.

    CrossRef  PubMed  CAS  Google Scholar 

  • Liu, L., Wakamatsu, K., Ito, S., & Williamson, P. R. (1999). Catecholamine oxidative products, but not melanin, are produced by Cryptococcus neoformans during neuropathogenesis in mice. Infect Immunity, 67, 108–112.

    CAS  Google Scholar 

  • Money, N. P., & Howard, R. J. (1996). Confirmation of a link between fungal pigmentation, turgor pressure, and pathogenicity using a new method of turgor measurement. Fungal Genet Biol, 20, 217–227.

    CrossRef  Google Scholar 

  • Nosanchuk, J. D., Rosas, A. L., Lee, S. C., & Casadevall, A. (2000). Melanisation of Cryptococcus neoformans in human brain tissue. Lancet, 355, 2049–2050.

    CrossRef  PubMed  CAS  Google Scholar 

  • Odenbach, D., Breth, B., Thines, E., Weber, R. W. S., Anke, H., & Foster, A. J. (2007). The transcription factor Con7p is a central regulation of infection-related morphogenesis in the rice blast fungus Magnaporthe grisea. Mol Microbiol, 64, 293–307.

    CrossRef  PubMed  CAS  Google Scholar 

  • Ou, S.H. (1985). Rice Disease. Surrey, UK: Commonwealth Mycological Institute.

    Google Scholar 

  • Park, G., Xue, C. Y., Zhao, X. H., Kim, Y., Marc, O., & Xu, J. R. (2006). Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea. Plant Cell, 18, 2822–2835.

    CrossRef  PubMed  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Sesma, A, & Osbourn, A. E. (2004). The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature, 431, 582–586.

    CrossRef  PubMed  CAS  Google Scholar 

  • Talbot, N. J. (2003). On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Phytopathol, 57, 177–202.

    CAS  Google Scholar 

  • Talbot, N. J., Ebbole, D. J., & Hamer, J. E. (1993). Identification and characterisation of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell, 5, 1575–1590.

    CrossRef  PubMed  CAS  Google Scholar 

  • Valent, B., & Chumley, F. G. (1991). Molecular genetic analysis of the rice blast fungus Magnaporthe grisea. Annu Rev Phytopathol, 29, 443–467.

    CrossRef  PubMed  CAS  Google Scholar 

  • Zhao, X. H., Xue, C. Y., Kim, Y., & Xu, J. R. (2004). A ligation-PCR approach for generating gene replacement constructs in Magnaporthe grisea. Fungal Genet Newsl 17–18.

    Google Scholar 

  • Xu, J. R., & Hamer, J. E. (1996). MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Gene Dev, 10, 3696–2706.

    Google Scholar 

  • Zhu, X., Gibbons, J., Zhang, S., Williamson, P. R. (2003). Copper-mediated reversal of defective laccase in a Δvph1 avirulent mutant of Cryptococcus neoformans. Mol Microbiol, 47,1007–1014.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Chen, X. et al. (2009). Functional Analysis of Two Laccase Genes in Magnaporthe grisea . In: Wang, GL., Valent, B. (eds) Advances in Genetics, Genomics and Control of Rice Blast Disease. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9500-9_6

Download citation