Advertisement

Functional Analysis of Two Laccase Genes in Magnaporthe grisea

  • Xin Chen
  • Wende Liu
  • Chuanzhi Zhao
  • Shuji Liu
  • Minoo Razee
  • Guo-dong Lu
  • Zonghua Wang

Abstract

Laccase is found to be involved in pathogenicity of Cryphonectria parasitica and Cryptococcus neoformans. In this report we demonstrate that laccase is not necessary for pathogenicity in Magnaporthe grisea, which might be due to functional redundancy in some or all of the laccase genes. The major laccase activity in M. grisea is not encoded by either of the MGG_00551.5 and MGG_02876.5 genes, because targeted deletion of each gene shows only a slight decrease in laccase activity compared to wild-type strains. The MGG_00551.5 and MGG_02876.5 mutants share the same growth rate, conidiation and pathogenicity as wild-type strains. Taken together, our findings provide evidence that these genes are not essential for the differentiation and development of M. grisea.

Keywords

Gene knockout Laccase gene Magnaporthe grisea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhambra, G. K., Wang, Z. Y., Soanes, D. M., Wakley, G. E., & Talbot, N. J. (2006). Peroxisomal carnitine acetyl transferase is required for elaboration of penetration hyphae during plant infection by Magnaporthe grisea. Mol Microbiol, 61, 46–60.PubMedCrossRefGoogle Scholar
  2. Choi, G. H., Larson, T. G., & Nuss, D. L. (1992). Molecular analysis of the laccase gene from the chestnut blight fungus and selective suppression of its expression in an isogenic hypovirulent strain. Mol Plant Microbe Interact, 5, 119–128.PubMedGoogle Scholar
  3. de Jong, J. C., McCormack, B. J., Smirnoff, N., & Talbot, N. J. (1997). Glycerol generates turgor in rice blast. Nature, 389, 244–245.CrossRefGoogle Scholar
  4. Dean, R. A., Talbot, N. J., Ebbole, D. J., Farman, M. L., Mitchell, T. K., Orbach, M. J., et al. (2005). The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 434, 980–986.PubMedCrossRefGoogle Scholar
  5. Dixon, K. P., Xu, J. R., Smirnoff, N., and Talbot, N. J. (1999). Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell, 11, 2045–2058.PubMedCrossRefGoogle Scholar
  6. Howard, R. J., & Valent, B. (1996). Breaking and entering –host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol, 50, 491–512.PubMedCrossRefGoogle Scholar
  7. Howard, R. J., Ferrari, M. A., Roach, D. H., & Money, N. P. (1991). Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci USA, 88, 11281–11284.PubMedCrossRefGoogle Scholar
  8. Liu, L., Wakamatsu, K., Ito, S., & Williamson, P. R. (1999). Catecholamine oxidative products, but not melanin, are produced by Cryptococcus neoformans during neuropathogenesis in mice. Infect Immunity, 67, 108–112.Google Scholar
  9. Money, N. P., & Howard, R. J. (1996). Confirmation of a link between fungal pigmentation, turgor pressure, and pathogenicity using a new method of turgor measurement. Fungal Genet Biol, 20, 217–227.CrossRefGoogle Scholar
  10. Nosanchuk, J. D., Rosas, A. L., Lee, S. C., & Casadevall, A. (2000). Melanisation of Cryptococcus neoformans in human brain tissue. Lancet, 355, 2049–2050.PubMedCrossRefGoogle Scholar
  11. Odenbach, D., Breth, B., Thines, E., Weber, R. W. S., Anke, H., & Foster, A. J. (2007). The transcription factor Con7p is a central regulation of infection-related morphogenesis in the rice blast fungus Magnaporthe grisea. Mol Microbiol, 64, 293–307.PubMedCrossRefGoogle Scholar
  12. Ou, S.H. (1985). Rice Disease. Surrey, UK: Commonwealth Mycological Institute.Google Scholar
  13. Park, G., Xue, C. Y., Zhao, X. H., Kim, Y., Marc, O., & Xu, J. R. (2006). Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea. Plant Cell, 18, 2822–2835.PubMedCrossRefGoogle Scholar
  14. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  15. Sesma, A, & Osbourn, A. E. (2004). The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature, 431, 582–586.PubMedCrossRefGoogle Scholar
  16. Talbot, N. J. (2003). On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Phytopathol, 57, 177–202.Google Scholar
  17. Talbot, N. J., Ebbole, D. J., & Hamer, J. E. (1993). Identification and characterisation of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell, 5, 1575–1590.PubMedCrossRefGoogle Scholar
  18. Valent, B., & Chumley, F. G. (1991). Molecular genetic analysis of the rice blast fungus Magnaporthe grisea. Annu Rev Phytopathol, 29, 443–467.PubMedCrossRefGoogle Scholar
  19. Zhao, X. H., Xue, C. Y., Kim, Y., & Xu, J. R. (2004). A ligation-PCR approach for generating gene replacement constructs in Magnaporthe grisea. Fungal Genet Newsl 17–18.Google Scholar
  20. Xu, J. R., & Hamer, J. E. (1996). MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Gene Dev, 10, 3696–2706.Google Scholar
  21. Zhu, X., Gibbons, J., Zhang, S., Williamson, P. R. (2003). Copper-mediated reversal of defective laccase in a Δvph1 avirulent mutant of Cryptococcus neoformans. Mol Microbiol, 47,1007–1014.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Xin Chen
  • Wende Liu
  • Chuanzhi Zhao
  • Shuji Liu
  • Minoo Razee
  • Guo-dong Lu
  • Zonghua Wang
    • 1
  1. 1.The Key Laboratory of Biopesticide and Chemistry Biology, The School of Life Sciences, Ministry of EducationFujian Agriculture and Forestry UniversityP.R. China

Personalised recommendations